Find Your Telescope. Your Find Find Yourself
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nintendo 64 Product Overview
Nintendo 64 Product Overview ● Specifications ● Video games ● Accessories ● Variants Nintendo 64 Product Overview Table of Contents The Nintendo 64 System ................................................................................................................. 3 Specifications .................................................................................................................................. 3 List of N64 Games ........................................................................................................................... 4 Accessories ...................................................................................................................................... 6 Funtastic Series Variants ................................................................................................................. 7 Limited Edition Variants .................................................................................................................. 8 2 Nintendo 64 Product Overview The Nintendo 64 System The Nintendo 64 (N64) is a 64- bit video game entertainment system created by Nintendo. It was released in 1996 and 1997 in North America, Japan, Australia, France, and Brazil. It was discontinued in 2003. Upon release, the N64 was praised for its advanced 3D graphics, gameplay, and video game line-up. These video games included Super Mario 64, The Legend of Zelda: Ocarina of Time, GoldenEye 007, and Pokémon Stadium. The system also included numerous accessories that expanded play, including the controller -
Precollimator for X-Ray Telescope (Stray-Light Baffle) Mindrum Precision, Inc Kurt Ponsor Mirror Tech/SBIR Workshop Wednesday, Nov 2017
Mindrum.com Precollimator for X-Ray Telescope (stray-light baffle) Mindrum Precision, Inc Kurt Ponsor Mirror Tech/SBIR Workshop Wednesday, Nov 2017 1 Overview Mindrum.com Precollimator •Past •Present •Future 2 Past Mindrum.com • Space X-Ray Telescopes (XRT) • Basic Structure • Effectiveness • Past Construction 3 Space X-Ray Telescopes Mindrum.com • XMM-Newton 1999 • Chandra 1999 • HETE-2 2000-07 • INTEGRAL 2002 4 ESA/NASA Space X-Ray Telescopes Mindrum.com • Swift 2004 • Suzaku 2005-2015 • AGILE 2007 • NuSTAR 2012 5 NASA/JPL/ASI/JAXA Space X-Ray Telescopes Mindrum.com • Astrosat 2015 • Hitomi (ASTRO-H) 2016-2016 • NICER (ISS) 2017 • HXMT/Insight 慧眼 2017 6 NASA/JPL/CNSA Space X-Ray Telescopes Mindrum.com NASA/JPL-Caltech Harrison, F.A. et al. (2013; ApJ, 770, 103) 7 doi:10.1088/0004-637X/770/2/103 Basic Structure XRT Mindrum.com Grazing Incidence 8 NASA/JPL-Caltech Basic Structure: NuSTAR Mirrors Mindrum.com 9 NASA/JPL-Caltech Basic Structure XRT Mindrum.com • XMM Newton XRT 10 ESA Basic Structure XRT Mindrum.com • XMM-Newton mirrors D. de Chambure, XMM Project (ESTEC)/ESA 11 Basic Structure XRT Mindrum.com • Thermal Precollimator on ROSAT 12 http://www.xray.mpe.mpg.de/ Basic Structure XRT Mindrum.com • AGILE Precollimator 13 http://agile.asdc.asi.it Basic Structure Mindrum.com • Spektr-RG 2018 14 MPE Basic Structure: Stray X-Rays Mindrum.com 15 NASA/JPL-Caltech Basic Structure: Grazing Mindrum.com 16 NASA X-Ray Effectiveness: Straylight Mindrum.com • Correct Reflection • Secondary Only • Backside Reflection • Primary Only 17 X-Ray Effectiveness Mindrum.com • The Crab Nebula by: ROSAT (1990) Chandra 18 S. -
SN 2005Cs in M51 – II
Mon. Not. R. Astron. Soc. 394, 2266–2282 (2009) doi:10.1111/j.1365-2966.2009.14505.x SN 2005cs in M51 – II. Complete evolution in the optical and the near-infrared A. Pastorello,1 S. Valenti,1 L. Zampieri,2 H. Navasardyan,2 S. Taubenberger,3 S. J. Smartt,1 A. A. Arkharov,4 O. Barnbantner,¨ 5 H. Barwig,5 S. Benetti,2 P. Birtwhistle,6 M. T. Botticella,1 E. Cappellaro,2 M. Del Principe,7 F. Di Mille,8 G. Di Rico,7 M. Dolci,7 N. Elias-Rosa,9 N. V. Efimova,4,10 M. Fiedler,11 A. Harutyunyan,2,12 P. A. Hoflich,¨ 13 W. Kloehr,14 V. M. Larionov,4,10,15 V. Lorenzi,12 J. R. Maund,16,17 N. Napoleone,18 M. Ragni,7 M. Richmond,19 C. Ries,5 S. Spiro,1,18,20 S. Temporin,21 M. Turatto22 and J. C. Wheeler17 1Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN 2INAF Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122 Padova, Italy 3Max-Planck-Institut fur¨ Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching bei Munchen,¨ Germany 4Central Astronomical Observatory of Pulkovo, 196140 St Petersburg, Russia 5Universitats-Sternwarte¨ Munchen,¨ Scheinerstr. 1, 81679 Munchen,¨ Germany 6Great Shefford Observatory, Phlox Cottage, Wantage Road, Great Shefford RG17 7DA 7INAF Osservatorio Astronomico di Collurania, via M. Maggini, 64100 Teramo, Italy 8Dipartmento of Astronomia, Universita´ di Padova, Vicolo dell’Osservatorio 2, 35122 Padova, Italy 9Spitzer Science Center, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, USA 10Astronomical Institute of St Petersburg University, St Petersburg, Petrodvorets, Universitetsky pr. -
Quick Start Guide
Quick Start Guide CEM120™ Center‐Balanced GoTo Equatorial Mount Models: #7300, #7301, #7302 PACKAGE CONTENTS1 1X Telescope mount 1X Hand controller (HC) – Go2Nova® #8407 1X Counterweight (10 kg/22 lbs) 1X Stainless steel counterweight shaft (4.6kg) 1X HC controller cable 1X RS232‐RJ9 serial cable 1X 12V5A AC adapter – 100‐240V 4X Base mounting screws 1X GPS external antenna 1X Wi‐Fi external antenna Quick Start Guide (this document) ONLINE RESOURCES (at www.iOptron.com, under “Support”) User’s Manual Tips for set up and using the products Hand controller and mount firmware upgrades (check online for the latest version) 1 The design and packaging may change from time to time without notice. STOP!!! Read the Instruction BEFORE setting up and using the mount! Worm/gear system damage due to improperly use will not be covered by warranty. Questions? Contact us at [email protected] Instruction for CEM120 Gear Switch and Axle Locking Knob Both RA and DEC have the same Gear Switch and Axle Locking Knob, the operations are the same. Gear Switch Axle Locking Knob As an example, here are the positions for the Gear Switch and Axle Locking Knob for RA axis: Fig.1: When transferring or installing the mount, lock the Axle Locking Knob and disengage the Gear Switch . So the RA won’t swing and there is no force applied onto the worm/ring gear. Fig.2: During mount balancing process, pull and turn the Axle Locking Knob to release it and leave the Gear Switch at disengaged position . Now the mount will swing freely in RA direction. -
The Reflecting Telescope
The Reflecting Telescope Lens telescopes exist since 1609 when the Dutch maker of The optical properties data of the AstroMedia* reflecting tel- spectacles, Jan Lippershey, sold the first telescopes, then as escope roughly correspond to those of the first instrument a curiosity, to his astonished customers. It was made out of a built by Newton. The mirror has a focal length f=450mm (”f” concave and a convex lens, produced an upright standing from the Latin ”focus” is the abbreviation of focal length). It’s image and had a 3 1/2 times magnification. Galileo Galilei curve is spherical, i.e. is has the same round surface as a (1564-1642) improved on this invention and was the first to globe. make astronomical observations with it. Today almost A spherical concave mirror has one disadvantage: the all lens telescopes are built according to the prin- light rays reflected from the edge meet a little nearer ciples of Johannes Kepler (1571-1630). His tel- to the mirror than those reflected from the centre, escope, based on two convex lenses, produced causing a slight focus distortion. However, since an upside down but much bigger and better this distortion is is not grave and such mirrors focused image which of course for observing are relatively easy to grind, they are neverthe- the heavens are the most important factors. less used in smaller telescopes. In telescopes Building larger telescopes however with larger openings and stronger mag- brings two problems with it: Firstly, nification mirrors with parabolic curves in a lens the light rays are broken, are used. -
Distance Estimate and Progenitor Characteristics of SN 2005Cs In
Mon. Not. R. Astron. Soc. 000, 1–7 (2006) Printed 9 July 2018 (MN LATEX style file v2.2) Distance estimate and progenitor characteristics of SN 2005cs in M51 K. Tak´ats1⋆ and J. Vink´o1† 1Department of Optics and Quantum Electronics, University of Szeged, D´om t´er 9., Szeged, Hungary Accepted; Received; in original form ABSTRACT Distance to the Whirlpool Galaxy (M51, NGC 5194) is estimated using published pho- tometry and spectroscopy of the Type II-P supernova SN 2005cs. Both the Expanding Photosphere Method (EPM) and the Standard Candle Method (SCM), suitable for SNe II-P, were applied. The average distance (7.1 ± 1.2 Mpc) is in good agreement with earlier SBF- and PNLF-based distances, but slightly longer than the distance obtained by Baron et al. (1996) for SN 1994I via the Spectral Fitting Expanding At- mosphere Method (SEAM). Since SN 2005cs exhibited low expansion velocity during the plateau phase, similarly to SN 1999br, the constants of SCM were re-calibrated including the data of SN 2005cs as well. The new relation is better constrained in the −1 low velocity regime (vph(50) ∼ 1500−2000km s ), that may result in better distance estimates for such SNe. The physical parameters of SN 2005cs and its progenitor is re-evaluated based on the updated distance. All the available data support the low- mass (∼ 9 M⊙) progenitor scenario proposed previously by its direct detection with the Hubble Space Telescope (Maund et al. 2005; Li et al. 2006). Key words: stars: evolution – supernovae: individual (SN 2005cs) – galaxies: indi- vidual (M51) 1 INTRODUCTION Both teams have detected the possible progenitor, but only in the I band, which led to the conclusion that the progeni- The Type II-P SN 2005cs in M51 was discovered by Kloehr arXiv:astro-ph/0608430v1 21 Aug 2006 tor was probably a red giant. -
Telescopes and Binoculars
Continuing Education Course Approved by the American Board of Opticianry Telescopes and Binoculars National Academy of Opticianry 8401 Corporate Drive #605 Landover, MD 20785 800-229-4828 phone 301-577-3880 fax www.nao.org Copyright© 2015 by the National Academy of Opticianry. All rights reserved. No part of this text may be reproduced without permission in writing from the publisher. 2 National Academy of Opticianry PREFACE: This continuing education course was prepared under the auspices of the National Academy of Opticianry and is designed to be convenient, cost effective and practical for the Optician. The skills and knowledge required to practice the profession of Opticianry will continue to change in the future as advances in technology are applied to the eye care specialty. Higher rates of obsolescence will result in an increased tempo of change as well as knowledge to meet these changes. The National Academy of Opticianry recognizes the need to provide a Continuing Education Program for all Opticians. This course has been developed as a part of the overall program to enable Opticians to develop and improve their technical knowledge and skills in their chosen profession. The National Academy of Opticianry INSTRUCTIONS: Read and study the material. After you feel that you understand the material thoroughly take the test following the instructions given at the beginning of the test. Upon completion of the test, mail the answer sheet to the National Academy of Opticianry, 8401 Corporate Drive, Suite 605, Landover, Maryland 20785 or fax it to 301-577-3880. Be sure you complete the evaluation form on the answer sheet. -
Allview Mount Manual
Multi-Purpose Computerized Mount Instruction Manual Table of Contents Introduction .......................................................................................................................................................................................... 4 Warning .................................................................................................................................................................................. 4 Assembly................................................................................................................................................................................................ 5 Assembling the AllView™ Mount ......................................................................................................................................... 5 Tripod and Mount Setup ......................................................................................................................................... 5 Assembling and Installing the Mounting Bracket ..................................................................................................6 Fork Arm Configuration ..........................................................................................................................................................12 Inner Mounting Configuration: ...............................................................................................................................12 Outer Mounting Configuration: ..............................................................................................................................12 -
Surreal 64 Xxx B5.1 Ce Compatibility and Performance Settings List
. EMU SETTINGS PLAYABILITY / NOTES SURREAL 64 XXX B5.1 CE COMPATIBILITY AND PERFORMANCE SETTINGS LIST LAST UPDATED DECEMBER 1ST, 2009 POST YOUR SETTINGS AT THE CURRENT THREAD: http://forums.xbox-scene.com/index.php?showtopic=695621&st=105 KEY: Total unique games = 311 Bright Green = Runs Perfect, or almost = 134 Green = Playable, Some minor glitches = 102 Yellow = Borderline Playable, No Sound, and/or Major glitches = 36 Red = Unplayable, Doesn't load or unplayable due to glitches = 39 White = Untested ALL GAMES ARE (U) (!) MEANING THEY ARE VERIFIED AMERICAN RIPS, UNLESS OTHERWISE NOTED ALL SETTINGS ARE DEFAULT, UNLESS OTHERWISE NOTED 1964 DEFAULT SETTINGS: VIDEO PLUGIN = RICE 5.60, AUDIO PLUGIN = JTTL, VIDEO RAM = 4MB, DYNAREC = 8MB, PAGING = 4MB PJ64 DEFAULT SETTINGS: VIDEO PLUGIN = RICE 5.60, AUDIO PLUGIN = JTTL, VIDEO RAM = 4MB, DYNAREC = 16MB, PAGING = 4MB ALL GAMES ARE TESTED WITH SURREAL 64 XXX B5.1 CE, UNLESS OTHERWISE NOTED 1080 Snowboarding (JU) (!) 1964 Rice 5.31 Plays close to perfect. Plays perfectly. Hangs in 1964, use PJ64. Use Basic Audio for A Bug's Life PJ64 Basic Audio, Rice 5.10 normal speed. Use Rice 5.10 for best FPS and graphics. Plays well, slight audio stutter and low FPS. Use LLE RSP and Audio = LLE RSP, Rice 5.31, Video = 10, Dyna PJ64 for best sound, Rice 5.31 to render distance fog. Use Video Air Fighter's Assault PJ64 = 20 = 10 and Dyna = 20 for better speed. Plays pretty much perfectly. Use Rice 5.10 to render distance fog and give best FPS. Lap timer goes fast in 1964, use PJ64 to fix AeroGauge PJ64 Rice 5.10 this. -
Solar System Solar System
Delta Science Reader SolarSolar SystemSystem Delta Science Readers are nonfiction student books that provide science background and support the experiences of hands-on activities. Every Delta Science Reader has three main sections: Think About . , People in Science, and Did You Know? Be sure to preview the reader Overview Chart on page 4, the reader itself, and the teaching suggestions on the following pages. This information will help you determine how to plan your schedule for reader selections and activity sessions. Reading for information is a key literacy skill. Use the following ideas as appropriate for your teaching style and the needs of your students. The After Reading section includes an assessment and writing links. OVERVIEW Students will: discover facts about the Solar System In the Delta Science Reader Solar System, students take a tour of the Sun and the explore the planets and other objects in the planets. Other space objects such as dwarf Solar System planets, comets, asteroids, and meteoroids discuss the function of a table of contents, are explored. Students read about the headings, and a glossary rotation and revolution of the planets and interpret photographs and graphics to the causes of night and day, seasonal answer questions changes, and the phases of the Moon. The book describes the work of a planetary complete a KWL chart geologist. In addition, students discover organize information in a variety of ways how telescopes work. delta science modules Solar System 119 © Delta Education LLC. All rights reserved. -
First Telescope Purchase
Recommendation Report: First Telescope Purchase Purchasing a telescope can be very confusing for a person who is new to astronomy. This reports provides a comparison of entry-level telescopes for the amateur astronomer and recommends a specific type of telescope for the typical beginning astronomer. This report will focus on different types of telescopes, and not on specific brands. In addition to comparing several different types of telescopes, this report also compares different telescope mounts. Note: This report was prepared for the Austin Telescope Society, which is a non-profit organization dedicated to the enjoyment of astronomy and the education of the public about astronomy. Many people interested in astronomy waste money on a telescope of poor quality. A telescope in a department store may advertise that it can magnify several hundred times; however, the user is often disappointed when the image is dim, shaky, and hazy. To help avoid this confusion, it is important that the beginning astronomer understand the advantages and disadvantages of various types of telescopes. It is vitally important that the telescope have high quality optics and a sturdy mount. No extra gadgets and frills will help a telescope that has poor optics. Definition of Terms Before the actual comparison report, it is vital that several common terms are defined. The following terms must be understood before proceeding with this comparison: • Alt-azimuth mount. A type of telescope mount that moves in two directions: altitude and azimuth. This is the type of motion best illustrated by a cannon. It can be moved up or down, or rotated left or right. -
Dobsonian Synscan - 8” 10” 12” 14” 16”
INSTRUCTION MANUAL DOBSONIAN SYNSCAN - 8” 10” 12” 14” 16” SETUP ESC ENTER TOUR RATE UTILITY 1 2 3 M NGC IC 4 5 6 PLANET OBJECT USER 7 8 9 ID 0 180610V6-3.08 240412V1 TABLE OF CONTENTS DOBSONIAN BASE ASSEMBLY – – – – – – – – – – – – – – – – – – – – – – – – – – 3 3 PRIMARYTELESCOPE MIRROR SETUP INSTALLATION – – – – – – – – – – – – – – – – – – – – – – – – 7 7 TELESCOPE ALIGNING SETUP THE – –FINDERSCOPE – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 810 ALIGNINGFOCUSING THE FINDERSCOPE – – – – – – – – – – – – – – – – – – – – – – 810 FOCUSINGPOWER REQUIREMENTS – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 810 POWERPOWERING REQUIREMENTS THE DOBSONIAN – – – SYNSCAN – – – – – – – – – – – – – – – – – – – – – – 810 THE SYNSCANPOWERING AZ THE DOBSONIAN SYNSCAN – – – – – – – – – – – – – – – – 910 THE SYNSCANINTRODUCTION AZ – – – TO – –THE – – SYNSCAN – – – – – AZ– – – – – – – – – – – – – – – – – 911 INTRODUCTIONSYNSCAN AZ HAND TO THECONTROL SYNSCAN AZ – – – – – – – – – – – – – – – – – 911 AUTOTRACKINGSYNSCAN OPERATION AZ HAND CONTROL – – – – – – – – – – – – – – – – – – – – – 11 11 AUTOTRACKING INITIAL SETUP OPERATION – – – – – – – – – – – – – – – – – – – – – – – – – – 11 13 INITALAUTOMATIC SETUP TRACKING – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 11 13 AZ GOTOAUTOMATIC OPERATION TRACKING – – – – – – – – – – – – – – – – – – – – – – – – – – 12 13 AZ GOTOINITIAL OPERATION SETUP – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 12 14 INITIALSTAR ALIGNMENT SETUP – – – – – – – – – – – – –