COLEUS Including Cultivars of C. Blumei (C. Scutelarioides in Part) C
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
MOLECULAR PHYLOGENY, LEAF MICROMORPHOLOGY and ANTIMICROBIAL ACTIVITY of PHYTOCONSTITUENTS of KENYAN Plectranthus SPECIES in the COLEUS CLADE
MOLECULAR PHYLOGENY, LEAF MICROMORPHOLOGY AND ANTIMICROBIAL ACTIVITY OF PHYTOCONSTITUENTS OF KENYAN Plectranthus SPECIES IN THE COLEUS CLADE FREDRICK MUTIE MUSILA Bsc. Biology (UoN), Msc. Botany (UoN) Reg. No. I80/92761/2013 A THESIS SUBMITTED IN FULFILMENT OF DOCTOR OF PHILOSOPHY DEGREE IN PLANT TAXONOMY AND ECONOMIC BOTANY OF THE UNIVERSITY OF NAIROBI December, 2017 DECLARATION This is my original work and has not been presented for a degree in any other University. Signed : _______________________________ Date: ________________________ Mr. Fredrick Mutie Musila, BSc Msc. School of Biological Sciences, College of Biological and Physical Sciences, University of Nairobi Supervisors This thesis has been submitted with our approval as university supervisors Signature: _______________________________ Date: _______________________ Prof. Dossaji Saifuddin F., BSc, MSc, PhD. School of Biological Sciences, College of Biological and Physical Sciences, University of Nairobi Signature: _______________________________ Date: _______________________ Dr. Catherine Lukhoba W. B.Ed, MSc, PhD. School of Biological Sciences, College of Biological and Physical Sciences, University of Nairobi Signature: _______________________________ Date: ________________________ Dr. Joseph Mwanzia Nguta, BVM, MSc, Ph.D. (UON). Department of Public Health, Pharmacology and Toxicology, Faculty of Veterinary Medicine, College of Agriculture and Veterinary Sciences, University of Nairobi i DEDICATION This thesis is dedicated to my family and friends who provided me with moral and financial support throughout my studies. ii ACKNOWLEDGEMENTS I am very grateful to the following individuals and organizations who contributed towards this thesis. First, I express my sincere gratitude to my supervisors Prof. S. F. Dossaji, Dr. C. Lukhoba and Dr. J. M. Nguta for their patience, guidance, suggestions, encouragement and excellent advice through the course of this study. -
Plectranthus (Labiatae) and Allied Genera in Southern Africa
Bothalia 11, 4:371-442 (1975) Plectranthus (Labiatae) and allied genera in Southern Africa L. E. CODD* ABSTRACT A revision is presented of the 40 species of Plectranthus, 1 species of Rabdosia and 3 species of Solenostemon which are indigenous, semi-naturalized or widely cultivated in Southern Africa. Descriptions, illustrations, keys and distribution data are provided. The following new names are published: P. mutabilis Codd, P. psammo- philus Codd, P. rubropunctatus Codd, P. unguentarius Codd, P. ornatus Codd (nom. nov. for Coleus comosus Hochst. ex Guerke), P. zatarhendi (Forsk.) E. A. Bruce var. tomentosus (Benth.) Codd, —var. woodii (Guerke) Codd, P. madagascariensis (Pers.) Benth. var. aliciae Codd, Solenostemon scutellarioides (L.) Codd and S. shirensis (Guerke) Codd. CONTENTS Page Page Introduction ...............................................................372 20. P. mutabilis Codd ....................................... 404 History .........................................................................372 21. P. psammophilus Codd .............................. 405 References ..................................................................441 Sect. Plectranthus ................................................ 406 Key to Genera ..................................................... ...374 22. P. verticillatus (L.f.) Druce ...................... 407 Plectranthus ..........................................................374 23. P. strigosus Benth............................................ 409 Key to Species .........................................................374 -
Plectranthus: a Plant for the Future? ⁎ L.J
Available online at www.sciencedirect.com South African Journal of Botany 77 (2011) 947–959 www.elsevier.com/locate/sajb Plectranthus: A plant for the future? ⁎ L.J. Rice a, G.J. Brits b, C.J. Potgieter c, J. Van Staden a, a Research Centre for Plant Growth and Development, School of Biological and Conservation Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa b Brits Nursery, 28 Flamingo Road, Stellenbosch 7600, South Africa c Bews Herbarium, School of Biological and Conservation Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa Abstract The genus Plectranthus (Lamiaceae) is a significant, prolific and extensively used genus in southern Africa. It plays a dominant role in both horticulture and traditional medicine. Some 12 species are documented for their use in treating ailments by various indigenous peoples of southern Africa. It is a firm favourite in gardens and Plectranthus has been bred to further utilise the remarkable diversity of indigenous South African wildflowers with amenity horticultural potential. Although previously subjected to both horticultural (Van Jaarsveld, 2006) and ethnobotanical (Lukhoba et al., 2006) review, Plectranthus is a genus with economic potential in various sectors, and this article aims to review this potential of southern African species. © 2011 SAAB. Published by Elsevier B.V. All rights reserved. Keywords: Ethnobotany; Flow cytometry; Flowering pot plants; Genetic resources; Plant Breeders' Rights; Plectranthus; Triploid breeding; Wildflowers 1. Introduction home to the species with most promise for horticulture (Van Jaarsveld, 2006). Other prominent areas of diversity are The genus Plectranthus L'Hér. -
Ingwehumbe Management Plan Final 2018
Ingwehumbe Nature Reserve KwaZulu-Natal South Africa Management Plan Prepared by KwaZulu-Natal Biodiversity Stewardship Programme Citation Johnson, I., Stainbank, M. and Stainbank, P. (2018). Ingwehumbe Nature Reserve Management Plan. Version 1.0. AUTHORISATION This Management Plan for Ingwehumbe Nature Reserve is approved: TITLE NAME SIGNATURE AND DATE KwaZulu-Natal MEC: Economic Development, Environmental Affairs and Tourism Recommended: TITLE NAME SIGNATURE AND DATE Chief Executive Officer: EKZNW Chairperson: EKZNW, Biodiversity Conservation Operations Management Committee Chairperson: People and Conservation Operations Committee Management Authority INGWEHUMBE NATURE RESERVE MANAGEME N T P L A N I TABLE OF CONTENTS AUTHORISATION I TABLE OF CONTENTS II LIST OF TABLES III LIST OF FIGURES III ABBREVIATIONS IV 1) BACKGROUND 1 1.1 Purpose of the plan 1 1.2 Structure of the plan 2 1.3 Alignment with METT 4 1.3 Introduction 4 1.4 The values of Ingwehumbe Nature Reserve 5 1.5 Adaptive management 7 2) DESCRIPTION OF INGWEHUMBE NATURE RESERVE AND ITS CONTEXT 9 2.1 The legislative basis for the management of Ingwehumbe Nature Reserve 9 2.2 The regional and local planning context of Ingwehumbe Nature Reserve 10 2.3 The history of Ingwehumbe Nature Reserve 12 2.4 Ecological context of Ingwehumbe Nature Reserve 14 2.6 Socio-economic context 20 2.7 Operational management within Ingwehumbe Nature Reserve 23 2.8 Summary of management issues, challenges and opportunities 24 3) STRATEGIC MANAGEMENT FRAMEWORK 26 3.1 Ingwehumbe Nature Reserve vision 26 -
Nomenclatural Changes in Coleus and Plectranthus (Lamiaceae): a Tale of More Than Two Genera
Nomenclatural changes in Coleus and Plectranthus (Lamiaceae): a tale of more than two genera Article Published Version Creative Commons: Attribution 4.0 (CC-BY) Open access Paton, A., Mwyanyambo, M., Govaerts, R. H.A., Smitha, K., Suddee, S., Phillipson, P. B., Wilson, T. C., Forster, P. I. and Culham, A. (2019) Nomenclatural changes in Coleus and Plectranthus (Lamiaceae): a tale of more than two genera. PhytoKeys, 129. pp. 1-158. ISSN 1314–2003 doi: https://doi.org/10.3897/phytokeys.129.34988 Available at http://centaur.reading.ac.uk/86484/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . To link to this article DOI: http://dx.doi.org/10.3897/phytokeys.129.34988 Publisher: Pensoft All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online A peer-reviewed open-access journal PhytoKeys 129:Nomenclatural 1–158 (2019) changes in Coleus and Plectranthus: a tale of more than two genera 1 doi: 10.3897/phytokeys.129.34988 RESEARCH ARTICLE http://phytokeys.pensoft.net Launched to accelerate biodiversity research Nomenclatural changes in Coleus and Plectranthus (Lamiaceae): a tale of more than two genera Alan J. Paton1, Montfort Mwanyambo2, Rafaël H.A. Govaerts1, Kokkaraniyil Smitha3, Somran Suddee4, Peter B. Phillipson5, Trevor C. -
Flower Abscission in Potted Plectranthus
Flower abscission in potted Plectranthus Laura Jane Rice FLOWER ABSCISSION IN POTTED PLECTRANTHUS LAURA JANE RICE Submitted in fulfillment of the academic requirements for the degree of Doctor of Philosophy in the Research Centre for Plant Growth and Development School of Life Sciences University of KwaZulu-Natal Pietermaritzburg January 2013 COLLEGE OF AGRICULTURE, ENGINEERING AND SCIENCES DECLARATION 1 - PLAGIARISM I, LAURA JANE RICE Student Number: 203507134 declare that: 1. The research contained in this thesis, except where otherwise indicated, is my original research. 2. This thesis has not been submitted for any degree or examination at any other University. 3. This thesis does not contain other persons’ data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other persons. 4. This thesis does not contain other persons’ writing, unless specifically acknowledged as being sourced from other researchers. Where other written sources have been quoted, then: a. Their words have been re-written but the general information attributed to them has been referenced. b. Where their exact words have been used, then their writing has been placed in italics and inside quotation marks, and referenced. 5. This thesis does not contain text, graphics or tables copied and pasted from the internet, unless specifically acknowledged, and the source being detailed in the thesis and in the reference section. Signed at………………………………….. day of …………….2013 Signature……………………….. ii STUDENT DECLARATION Flower Abscission in Potted Plectranthus I, LAURA JANE RICE Student Number: 203507134 Declare that: 1. The research reported in this dissertation, except where otherwise indicated is the result of my own endeavours in the Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg. -
Wonderful Plants Index of Names
Wonderful Plants Jan Scholten Index of names Wonderful Plants, Index of names; Jan Scholten; © 2013, J. C. Scholten, Utrecht page 1 A’bbass 663.25.07 Adansonia baobab 655.34.10 Aki 655.44.12 Ambrosia artemisiifolia 666.44.15 Aalkruid 665.55.01 Adansonia digitata 655.34.10 Akker winde 665.76.06 Ambrosie a feuilles d’artemis 666.44.15 Aambeinwortel 665.54.12 Adder’s tongue 433.71.16 Akkerwortel 631.11.01 America swamp sassafras 622.44.10 Aardappel 665.72.02 Adder’s-tongue 633.64.14 Alarconia helenioides 666.44.07 American aloe 633.55.09 Aardbei 644.61.16 Adenandra uniflora 655.41.02 Albizia julibrissin 644.53.08 American ash 665.46.12 Aardpeer 666.44.11 Adenium obesum 665.26.06 Albuca setosa 633.53.13 American aspen 644.35.10 Aardveil 665.55.05 Adiantum capillus-veneris 444.50.13 Alcea rosea 655.33.09 American century 665.23.13 Aarons rod 665.54.04 Adimbu 665.76.16 Alchemilla arvensis 644.61.07 American false pennyroyal 665.55.20 Abécédaire 633.55.09 Adlumia fungosa 642.15.13 Alchemilla vulgaris 644.61.07 American ginseng 666.55.11 Abelia longifolia 666.62.07 Adonis aestivalis 642.13.16 Alchornea cordifolia 644.34.14 American greek valerian 664.23.13 Abelmoschus 655.33.01 Adonis vernalis 642.13.16 Alecterolophus major 665.57.06 American hedge mustard 663.53.13 Abelmoschus esculentus 655.33.01 Adoxa moschatellina 666.61.06 Alehoof 665.55.05 American hop-hornbeam 644.41.05 Abelmoschus moschatus 655.33.01 Adoxaceae 666.61 Aleppo scammony 665.76.04 American ivy 643.16.05 Abies balsamea 555.14.11 Adulsa 665.62.04 Aletris farinosa 633.26.14 American -
The Botanical, Chemical and Ethnobotanical Diversity of Southern African Lamiaceae
molecules Review The Botanical, Chemical and Ethnobotanical Diversity of Southern African Lamiaceae Ryan D. Rattray and Ben-Erik Van Wyk * Department of Botany and Plant Biotechnology, University of Johannesburg, Auckland Park, P.O. Box 524, Johannesburg 2006, South Africa; [email protected] * Correspondence: [email protected]; Tel.: +27-11-559-2412 Abstract: The Lamiaceae is undoubtedly an important plant family, having a rich history of use that spans the globe with many species being used in folk medicine and modern industries alike. Their ability to produce aromatic volatile oils has made them valuable sources of materials in the cosmetic, culinary, and pharmaceutical industries. A thorough account of the taxonomic diversity, chemistry and ethnobotany is lacking for southern African Lamiaceae, which feature some of the region’s most notable medicinal and edible plant species. We provide a comprehensive insight into the Lamiaceae flora of southern Africa, comprising 297 species in 42 genera, 105 of which are endemic to the subcontinent. We further explore the medicinal and traditional uses, where all genera with documented uses are covered for the region. A broad review of the chemistry of southern African Lamiaceae is presented, noting that only 101 species (34%) have been investigated chemically (either their volatile oils or phytochemical characterization of secondary metabolites), thus presenting many and varied opportunities for further studies. The main aim of our study was therefore to present an up-to-date account of the botany, chemistry and traditional uses of the family in southern Africa, and Citation: Rattray, R.D.; Van Wyk, to identify obvious knowledge gaps. -
Selection of DNA Barcoding Loci and Phylogenetic Study of a Medicinal and Endemic Plant, Plectranthus Asirensis J.R.I
Selection of DNA barcoding loci and phylogenetic study of a medicinal and endemic plant, Plectranthus asirensis J.R.I. Wood from Saudi Arabia F. Al-Qurainy, S. Khan, M. Nadeem, M. Tarroum and A. Al-Ameri Department of Botany and Microbiology, College of Sciences, King Saud University, Saudi Arabia Corresponding author: S. Khan E-mail: [email protected] Genet. Mol. Res. 13 (3): 6184-6190 (2014) Received January 8, 2014 Accepted March 28, 2014 Published August 7, 2014 DOI http://dx.doi.org/10.4238/2014.August.7.31 ABSTRACT. Genuine medicinal plant materials are very important for potential crude drug production, which can be used to cure many human diseases. DNA barcoding of medicinal plants is an effective way to identify adulterated or contaminated market materials, but it can be quite challenging to generate barcodes and analyze the data to determine discrimination power. The molecular phylogeny of a plant species infers its relationship to other species. We screened the various loci of the nuclear and chloroplast genome for the barcoding of Plectranthus asirensis, an endemic plant of Saudi Arabia. The chloroplast genome loci such as rps16 and rpoB showed maximum similarity to taxa of the same and other genera via BLAST of the National Center for Biotechnology Information (NCBI) GenBank database; hence, they are less preferable for the development of a DNA barcode. However, nrDNA-ITS and chloroplast loci rbcL and rpoC1 showed less similarity via BLAST of the NCBI GenBank database; therefore, they could be used for DNA barcoding for this species. Key words: DNA barcoding; Chloroplast loci; Nuclear DNA marker; BLAST Genetics and Molecular Research 13 (3): 6184-6190 (2014) ©FUNPEC-RP www.funpecrp.com.br DNA barcoding loci and phylogeny of Plectranthus asirensis 6185 INTRODUCTION Plectranthus is a large and widely spread genus that contains ca. -
Chemistry of South African Lamiaceae: Structures and Biological Activity of Terpenoids
Chapter 2 Chemistry of South African Lamiaceae: Structures and Biological Activity of Terpenoids Ahmed A. Hussein Ahmed A. Hussein Additional information is available at the end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.77399 Abstract South Africa flora is one of the most important mega floras with high endemic species percentage. Lamiaceae is an important family in South Africa with ±308 species in 41 genera and contains many important plants (~23%) traditionally used for treatment of different human diseases. The chemical profile of Lamiaceae is very rich in terpenoids in general and more specifically diterpenes. Genera like Leonotis and Plectranthus are well studied, while on the other hand, genus like Stachys (~41 species, ~50% endemic) didn’t receive any attention. Different classes of diterpenes were identified and some of them demonstrating important biological activities. Keywords: South African flora, Lamiaceae,Leonotis , Plectranthus, chemical constituents, terpenoids This work is dedicated to Prof. Benjamin Rodriguez (Instituto de Quimica Organic General, CSIC, Spain) for his contributions in the field of natural products and specially in the chemistry of Lamiaceae family. 1. Introduction The Green economy concept has been driven as an urgent need for addressing global chal- lenges in vital fields like energy, environment, and health. Green economy is expected to play a very important role in changing the way that society manages the interaction of the environmental and economic domains. Consequently, a new paradigm has been established and shifted toward green economy or green growth. Natural products rep- resent one of the most important elements required to build safe and effective economy especially in health sector. -
Lamiaceae, Nepetoideae, Mentheae) Unter Besonderer Berücksichtigung Des Satureja-Komplexes
Phylogenetische und taxonomische Untersuchungen an der Subtribus Menthinae (Lamiaceae, Nepetoideae, Mentheae) unter besonderer Berücksichtigung des Satureja-Komplexes Dissertation der Fakultät für Biologie der Ludwig-Maximilians-Universität München zur Erlangung des Doktorgrades vorgelegt von Christian Bräuchler aus Mühldorf, Deutschland München, 5. Mai 2009 1. Gutachter: Prof. Dr. Günther Heubl 2. Gutachter: Prof. Dr. Jürke Grau Tag der mündlichen Prüfung: 22. Juni 2009 Für Verena, Felix und Sebastian Abkürzungsverzeichnis: Anmerkung: Abkürzungen von Pflanzennamen-Autoren und Zeitschriftentiteln sowie Herbariumakronyme sind nicht aufgeführt, da sie sich entsprechend der gängigen Praxis nach den Standards richten, die in IPNI (2009) und BPH online (2009), sowie Index Herbariorum (Holmgren & Holmgren, 1998) angegeben sind. 2n diploider Chromosomensatz 5,8s 5,8 Svedberg-Einheiten (=Sedimentationskoeffizient bei Ultrazentrifugation) Abb. Abbildung AFLP Amplified Fragment Length Polymorphism al. alii (lateinisch für: der, die, das andere/die anderen; Abkürzung bei Autorenzitat) äther. ätherisch bp basepair (englisch für: Basenpaar; bei gepaarten DNA-Strängen) bzw. beziehungsweise BGM Botanischer Garten München ca. circa (lateinisch für: ungefähr, in etwa) CB Christian Bräuchler Co. Company cp chloroplast (englisch für: Chloroplasten-; Vorsilbe zur Spezifizierung der DNA-Herkunft) d.h. das heißt DNA Deoxy RiboNucleic Acid (englisch für: Desoxyribonukleinsäure) ed./eds. editor/editors (englisch für: der/die Herausgeber) engl. englisch EST Expressed Sequence Tag etc. et cetera (lateinisch für: und übriges) fps2 nukleäres low copy Gen gapC nukleäres low copy Gen gen. genus (lateinisch für: Gattung) inkl. inklusive ISSR Inter Single Sequence Repeats ITS Internal Transcribed Spacer k.A. keine Angabe LMU Ludwig-Maximilians-Universität (München) matK codierender Bereich des Chloroplastengenoms max. maximal Mt. Mount (englisch für: Berg) N. Numero (lateinisch für: Nummer) ndhF codierender Bereich des Chloroplastengenoms nov. -
Evolution of Rosmarinic Acid Biosynthesis
Phytochemistry 70 (2009) 1663–1679 Contents lists available at ScienceDirect Phytochemistry journal homepage: www.elsevier.com/locate/phytochem Review Evolution of rosmarinic acid biosynthesis Maike Petersen *, Yana Abdullah, Johannes Benner, David Eberle, Katja Gehlen, Stephanie Hücherig, Verena Janiak, Kyung Hee Kim, Marion Sander, Corinna Weitzel, Stefan Wolters Institut für Pharmazeutische Biologie, Philipps-Universität Marburg, Deutschhausstr. 17A, D-35037 Marburg, Germany article info abstract Article history: Rosmarinic acid and chlorogenic acid are caffeic acid esters widely found in the plant kingdom and pre- Received 24 February 2009 sumably accumulated as defense compounds. In a survey, more than 240 plant species have been Received in revised form 19 May 2009 screened for the presence of rosmarinic and chlorogenic acids. Several rosmarinic acid-containing species Available online 25 June 2009 have been detected. The rosmarinic acid accumulation in species of the Marantaceae has not been known before. Rosmarinic acid is found in hornworts, in the fern family Blechnaceae and in species of several Keywords: orders of mono- and dicotyledonous angiosperms. The biosyntheses of caffeoylshikimate, chlorogenic Rosmarinic acid acid and rosmarinic acid use 4-coumaroyl-CoA from the general phenylpropanoid pathway as hydroxy- Caffeoylshikimic acid cinnamoyl donor. The hydroxycinnamoyl acceptor substrate comes from the shikimate pathway: shiki- Chlorogenic acid Phenylpropanoid metabolism mic acid, quinic acid and hydroxyphenyllactic acid derived from L-tyrosine. Similar steps are involved Acyltransferase in the biosyntheses of rosmarinic, chlorogenic and caffeoylshikimic acids: the transfer of the 4-coumaroyl CYP98A moiety to an acceptor molecule by a hydroxycinnamoyltransferase from the BAHD acyltransferase family and the meta-hydroxylation of the 4-coumaroyl moiety in the ester by a cytochrome P450 monooxygen- ase from the CYP98A family.