PROPERTIES of R-AMINOBUTYRIC ACID ACTIVATED CHLORIDE CHANNELS in MAMMALIAN NEURONES by Claire Fiona Newland a Thesis Subm Itted

Total Page:16

File Type:pdf, Size:1020Kb

PROPERTIES of R-AMINOBUTYRIC ACID ACTIVATED CHLORIDE CHANNELS in MAMMALIAN NEURONES by Claire Fiona Newland a Thesis Subm Itted PROPERTIES OF r-AMINOBUTYRIC ACID ACTIVATED CHLORIDE CHANNELS IN MAMMALIAN NEURONES b y Claire Fiona Newland A Thesis submitted for the degree of Doctor of Philosophy at the University of London. Department of Pharmacology University College London Supervisors: Dr. S. G. Cull-Candy & Prof. D. Colquhoun, FRS. 1990 1 ProQuest Number: 10609808 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10609808 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 ABSTRACT GABA a receptor-channels in dissociated rat sympathetic ganglion neurones have been studied by conventional patch clamp techniques, with both whole-cell and outside-out patch configurations* T hese GABA a receptor-channels are shown to be pharmacologically similar to those of mammalian central neurones, being inhibited by bicuculline, picrotoxin, picrotoxinin and penicillin, and potentiated by pentobarbitone. Furthermore, peripheral GABAA-channels resemble central ones in their cur rent-voltage relationship (whole-cell and Bingle-channel) and in the voltage-dependence of their kinetic properties (noise an aly sis). The mechanism of action of the well established GABA a antagonist, picrotoxin, has been further investigated in these neurones. The effects of picrotoxin on GABA noise, on the GABA current-voltage relationship, and on single-channel currents have been considered. Also the rate of onset of block by picrotoxin was found to be ’use-dependent*. Based on these results and previous reports, the mechanism of action of picrotoxin appears to be a complex channel block rather than an open channel block, as originally proposed. The analysis of GABA a single-channel currents evoked by high concentrations of GABA has provided basic information about the kinetic behaviour of this receptor-channel in rat superior cervical ganglion neurones. Analysis of the ’probability of being open’ of these channels has revealed kinetic heterogeneity, which was not apparent from previously reported single-channel analysis employing low agonist concentrations. Randomization testing of observed and simulated single-channel activity (simulated activity of identical and independent channels) verify that this kinetic heterogeneity was a reed phenomenon. The most frequently observed conductance level of the GABA a receptor-channels in these neurones (measured from single-channel currents) was approximately 30pS (at room temperature). Conductance levels of 15-18pS and 22-23pS were also common, while conductance levels of 33-36pS and 7-9pS were occasionally, but reliably observed. Increasing the temperature or reducing the pH, increased the amplitude of the most frequently occurring conductance level. 2 TABLE OF CONTENTS Page number ABSTRACT ..................................................................................................................................... 2 TABLE OF CONTENTS.................................................................................................................... 3 LIST OF TABLES...........................................................................................................................6 LIST OF FIGURES.........................................................................................................................6 ACKNOWLEDGEMENTS ................................................................................................................... 8 1. INTRODUCTION.........................................................................................................................9 2. METHODS 2 .1 Preparation of dissociated c e lls ........................................................................ 10 2 .2 Electrophysiological recording .............................................................................10 2 .3 Ionophoretic application of GABA ........................................................................ 11 2 .4 Analysis of whole-cell current noise . ...................................................... 12 2 .5 Analysis of single-channel data 2 .5 .1 Shut time, open time and burst length distributions..........................13 2 .5 .2 Probability of being open ................................................................................... 14 2 .5 .3 Amplitude distributions........................................................................................14 2 .5 .4 Pandomiza ti on tes t ...................................................................................................15 3. MECHANISM OF ACTION OF PICROTOXIN ON GABA a RECEPTOR-CHANNELS IN SYMPA THETIC NEURONES OF THE RAT 3.1 SUMMARY............................................................................................................................... 18 3 .2 INTRODUCTION.................................................................................................................... 20 RESULTS 3 .3 Influence of picrotoxin on GABA current no ise............................................. 22 3 .4 Picrotoxin on whole-cell current-voltage relationship ............................28 3 .5 Single-channel burst-length and opening frequency 3 .5 .1 Distributions of shut tim es...............................................................................28 3 .5 .2 Distributions of burst lengths........................................................................35 3 .5 .3 Integrated open-time .............................................................................................. 36 3 .6 Rate of onset of block by picrotoxin ................................................................. 37 DISCUSSION................................................................................................................................. 44 3.7 General properties of GABA A receptoi—channels ................................................ 44 3 .8 Possible mechanisms of action o f picrotoxin on GABAk receptor- channels 3 .8 .1 Simple open channel block .................................................................................. 46 Intermediate dissociation ra te ........................................................................48 Page number Rapid dissociation ra te ....................................................................................... 48 Slow dissociation ra te ..........................................................................................49 3 .8 .2 Complex channel block ............................................................................................52 3 .8 .3 Combination of mechanisms................................................................................... 54 4. GABA a receptor - channels in rat superior cervical ganglion NEURONES ACTIVATED BY HIGH CONCENTRATIONS OF GABA 4.1 SUPMARY............................................................................................................................... 57 4 .2 INTRODUCTION.................................................................................................................... 59 RESULTS 4.3 Basic features of responses to high concentrations of GABA . .60 4.4 Multiple conductance sta te s................................................................................... 63 4.5 Probability of being open as a function of GABA concentration 4 .5 .1 Shut time distribution and choice of critical gap length . .72 4 .5 .2 Intracluster shut tim es........................................................................................73 4 .5 .3 Estimates of pQ curves..........................................................................................75 4 .5 .4 Expected spread of pQ for a homogeneous population of receptor- channels........................................................................................................................................ 75 4 .5 .5 Effect of ^ on the estimation of p ^ ...........................................................81 4 .5 .6 Two channels active simultaneously............................................................... 81 4 .6 Randomization test for heterogeneity of bursts......................................... 84 4.7 Whole-cell dose-response relationship .............................................................87 4 .8 Effect of guanosine 5 ’-triphosphate (GTP) .................................................... 90 4 .9 Effect of adenosine 5 ’-triphosphate and pentobarbitone ....................... 93 DISCUSSION 4.10 Multipie conductance sta te s.................................................................................97 4.11 Heterogeneous properties o f GABAA receptors in rat sympathetic n e u r o n e s.................................................................................................................................... 100 4.12 General features of the pQ curve....................................................................103 4.13 Possible intracellular modulation of GABAA receptoi—channels . .105 5. SOME GENERAL PHARMACOLOGICAL AND PHYSICAL PROPERTIES OF GABA a RECEPTOR-CHANNELS
Recommended publications
  • ANNNNNNNNNNNNNNNNNNNN 100A 006 Left Eye Input Right Eye Input
    US 20190175049A1 ( 19) United States (12 ) Patent Application Publication (10 ) Pub. No. : US 2019 /0175049 A1 Welling ( 43 ) Pub . Date : Jun . 13 , 2019 ( 54 ) TECHNIQUES FOR ANALYZING (52 ) U . S . CI. NON -VERBAL MARKERS OF CONDITIONS CPC . .. A61B 5 /04842 (2013 . 01 ) ; A61B 5 / 7289 USING ELECTROPHYSIOLOGICAL DATA (2013 . 01) ; A61B 5 /0478 ( 2013 .01 ) ; A61B 5 /7225 ( 2013. 01 ) ; G06N 20 / 10 (2019 .01 ) (71 ) Applicant: Massachusetts Institute of Technology , Cambridge , MA (US ) ( 57 ) ABSTRACT (72 ) Inventor : Caroline Welling, Hanover, NH (US ) Embodiments related to analyzing brain activity of a subject to identify signs associated with binocular rivalry . Sensed ( 21 ) Appl. No. : 16 / 206, 639 electrical activity of a subject' s brain is received over a time period while the subject is exposed to a visual stimulus. The ( 22 ) Filed : Nov. 30 , 2018 sensed electrical activity comprises a first frequency band Related U . S . Application Data associated with a first frequency of a first image presented to the subject ' s left eye , a second frequency band associated (60 ) Provisional application No .62 / 593 , 535, filed on Dec . with a second frequency of a second image presented to the 1 , 2017 subject ' s right eye . A set of events in the time period is determined based on the frequency bands, wherein an event Publication Classification is associated with a change from a previous perceptual event (51 ) Int. Ci. to a new perceptual event. A metric for the subject is A61B 5 /0484 ( 2006 .01 ) determined based on the set of events . The metric is ana A61B 5 /00 ( 2006 .01 ) lyzed to determine whether the subject exhibits signs asso GO6N 20 / 10 (2006 .01 ) ciated with a condition that is associated with binocular A61B 5 /0478 ( 2006 .01 ) rivalry .
    [Show full text]
  • Campro Catalog Stable Isotope
    Introduction & Welcome Dear Valued Customer, We are pleased to present to you our Stable Isotopes Catalog which contains more than three thousand (3000) high quality labeled compounds. You will find new additions that are beneficial for your research. Campro Scientific is proud to work together with Isotec, Inc. for the distribution and marketing of their stable isotopes. We have been working with Isotec for more than twenty years and know that their products meet the highest standard. Campro Scientific was founded in 1981 and we provide services to some of the most prestigious universities, research institutes and laboratories throughout Europe. We are a research-oriented company specialized in supporting the requirements of the scientific community. We are the exclusive distributor of some of the world’s leading producers of research chemicals, radioisotopes, stable isotopes and environmental standards. We understand the requirements of our customers, and work every day to fulfill them. In working with us you are guaranteed to receive: - Excellent customer service - High quality products - Dependable service - Efficient distribution The highly educated staff at Campro’s headquarters and sales office is ready to assist you with your questions and product requirements. Feel free to call us at any time. Sincerely, Dr. Ahmad Rajabi General Manager 180/280 = unlabeled 185/285 = 15N labeled 181/281 = double labeled (13C+15N, 13C+D, 15N+18O etc.) 186/286 = 12C labeled 182/282 = d labeled 187/287 = 17O labeled 183/283 = 13C labeleld 188/288 = 18O labeled 184/284 = 16O labeled, 14N labeled 189/289 = Noble Gases Table of Contents Ordering Information.................................................................................................. page 4 - 5 Packaging Information ..............................................................................................
    [Show full text]
  • 5994392 Tion of Application No. 67375.734 Eb3-1685, PEN. T
    USOO5994392A United States Patent (19) 11 Patent Number: 5,994,392 Shashoua (45) Date of Patent: Nov.30, 1999 54 ANTIPSYCHOTIC PRODRUGS COMPRISING 5,120,760 6/1992 Horrobin ................................. 514/458 AN ANTIPSYCHOTICAGENT COUPLED TO 5,141,958 8/1992 Crozier-Willi et al. ................ 514/558 AN UNSATURATED FATTY ACID 5,216,023 6/1993 Literati et al. .......................... 514/538 5,246,726 9/1993 Horrobin et al. ....................... 424/646 5,516,800 5/1996 Horrobin et al. ....................... 514/560 75 Inventor: Victor E. Shashoua, Brookline, Mass. 5,580,556 12/1996 Horrobin ................................ 424/85.4 73 Assignee: Neuromedica, Inc., Conshohocken, Pa. FOREIGN PATENT DOCUMENTS 30009 6/1981 European Pat. Off.. 21 Appl. No.: 08/462,820 009 1694 10/1983 European Pat. Off.. 22 Filed: Jun. 5, 1995 09 1694 10/1983 European Pat. Off.. 91694 10/1983 European Pat. Off.. Related U.S. Application Data 59-025327 2/1984 Japan. 1153629 6/1989 Japan. 63 Continuation of application No. 08/080,675, Jun. 21, 1993, 1203331 8/1989 Japan. abandoned, which is a continuation of application No. 07/952,191, Sep. 28, 1992, abandoned, which is a continu- (List continued on next page.) ation of application No. 07/577,329, Sep. 4, 1990, aban doned, which is a continuation-in-part of application No. OTHER PUBLICATIONS 07/535,812,tion of application Jun. 11, No. 1990, 67,375.734 abandoned, Eb3-1685, which is a continu-PEN. T. Higuchi et al. 66 Prodrugs as Noye Drug Delivery Sys 4,933,324, which is a continuation-in-part of application No.
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Sedative
    Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Sedative Chemical Dosage (+)-BORNYL-ISOVALERATE -- (-)-DICENTRINE LD50=187 1,8-CINEOLE -- 2-METHYLBUT-3-ENE-2-OL -- 6-GINGEROL -- 6-SHOGAOL -- ACYLSPINOSIN -- ADENOSINE -- AKUAMMIDINE -- ALPHA-PINENE -- ALPHA-TERPINEOL -- AMYL-BUTYRATE -- AMYLASE -- ANEMONIN -- ANGELIC-ACID -- ANGELICIN ED=20-80 ANISATIN 0.03 mg/kg ANNOMONTINE -- APIGENIN 30-100 mg/kg ARECOLINE 1 mg/kg ASARONE -- ASCARIDOLE -- ATHEROSPERMINE -- BAICALIN -- BALDRINAL -- BENZALDEHYDE -- BENZYL-ALCOHOL -- Chemical Dosage BERBERASTINE -- BERBERINE -- BERGENIN -- BETA-AMYRIN-PALMITATE -- BETA-EUDESMOL -- BETA-PHENYLETHANOL -- BETA-RESERCYCLIC-ACID -- BORNEOL -- BORNYL-ACETATE -- BOSWELLIC-ACID 20-55 mg/kg ipr rat BRAHMINOSIDE -- BRAHMOSIDE -- BULBOCAPNINE -- BUTYL-PHTHALIDE -- CAFFEIC-ACID 500 mg CANNABIDIOLIC-ACID -- CANNABINOL ED=200 CARPACIN -- CARVONE -- CARYOPHYLLENE -- CHELIDONINE -- CHIKUSETSUSAPONIN -- CINNAMALDEHYDE -- CITRAL ED 1-32 mg/kg CITRAL 1 mg/kg CITRONELLAL ED=1 mg/kg CITRONELLOL -- 2 Chemical Dosage CODEINE -- COLUBRIN -- COLUBRINOSIDE -- CORYDINE -- CORYNANTHEINE -- COUMARIN -- CRYOGENINE -- CRYPTOCARYALACTONE 250 mg/kg CUMINALDEHYDE -- CUSSONOSIDE-A -- CYCLOSTACHINE-A -- DAIGREMONTIANIN -- DELTA-9-THC 10 mg/orl/man/day DESERPIDINE -- DESMETHOXYANGONIN 200 mg/kg ipr DIAZEPAM 40-200 ug/lg/3-4x/day DICENTRINE LD50=187 DIDROVALTRATUM -- DIHYDROKAWAIN -- DIHYDROMETHYSTICIN 60 mg/kg ipr DIHYDROVALTRATE -- DILLAPIOL ED50=1.57 DIMETHOXYALLYLBENZENE -- DIMETHYLVINYLCARBINOL -- DIPENTENE
    [Show full text]
  • O'neill2020 Redacted.Pdf (7.617Mb)
    This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Functional Characterisation of Spontaneously Active GABAA Receptors in Rat Dentate Gyrus Granule Cells Nathanael O’Neill B.Medsc. (Hons) Doctor of Philosophy The University of Edinburgh 2020 ii Abstract GABAA receptors (GABAARs) are the principal inhibitory neurotransmitter receptors in the adult mammalian central nervous system. GABAARs mediate two forms of inhibition: fast, phasic conductance; and slow, tonic conductance. Tonic conductance arises due to the persistent activation of GABAARs. This persistent activation can occur by GABA-dependent or GABA- independent mechanisms. Low concentrations of ambient GABA activate high affinity GABAARs located outside the synapse – at peri-/extra-synaptic sites – to generate GABA-dependent tonic conductance. In contrast, GABA-independent tonic conductance is generated by GABAARs that activate spontaneously, in the absence of GABA, due to constitutive receptor gating.
    [Show full text]
  • Improved Forensic Hair Evidence for Drugs of Abuse by Mass Spectrometry
    Improved Forensic Hair Evidence for Drugs of Abuse by Mass Spectrometry Wilco F. Duvivier Thesis committee Promotor Prof. Dr M.W.F. Nielen Professor of Analytical Chemistry, with special emphasis for the detection of chemical food contaminants Wageningen University Co-promotor Dr T.A. van Beek Assistant professor, Laboratory of Organic Chemistry Wageningen University Other members Prof. Dr H.A. Schols, Wageningen University Prof. Dr R.M.A. Heeren, Maastricht University Prof. Dr A.C. van Asten, University of Amsterdam Dr F. Drijfhout, Keele University, Staffordshire, United Kingdom This research was conducted under the auspices of the Graduate School VLAG (Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences). Improved Forensic Hair Evidence for Drugs of Abuse by Mass Spectrometry Wilco F. Duvivier Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr A.P.J. Mol, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Tuesday 5 July 2016 at 4 p.m. in the Aula. Wilco F. Duvivier Improved Forensic Hair Evidence for Drugs of Abuse by Mass Spectrometry 194 pages. PhD thesis, Wageningen University, Wageningen, NL (2016) With references, with summaries in English and Dutch ISBN 978-94-6257-815-9 DOI 10.18174/381180 Table of contents List of abbreviations 7 Chapter 1: General Introduction 9 Chapter 2: Evidence Based Decontamination Protocols for the Removal of 33 External
    [Show full text]
  • Natural Agents Affecting Excitatory and Inhibitory Neurotransmission
    Natural Agents Affecting Excitatory and Inhibitory Neurotransmission Adenosine Receptor Glycine Receptor Antagonists: K Channel Antagonists: Na Channel Agents: Antagonists: • Oenanthe fistulosa (Water Dropwort) [Toxin] • Cicutoxin/Cicuta maculata (Water • Aconitine/Aconitum spp • Caffeine • Strychnine/Strychnos Nux Vomica Hemlock) AND Cicuta Virosa (Monkshood/Wolfsbane) (Cowbane or Northern Water Hemlock) • Taxine/Taxus (Yew) Ca Cl Cl Na Adenosine Adenosine Glycine DA/NE/E/S PRE-SYNAPTIC POST-SYNAPTIC K + Glutamate Other Glutamate GABA (NMDA, KA) O PLP CO O Sympathomimetics: Na +/- Ca 2 Cl + + INHIBITORY NEURON • Cathinones (Khat/Qat) H3N H3N O- O- • Cocaine/Coca Glutamic acid • Ephedra/Ephedra spp. (Ma Huang) EXCITATORY NEURON-O O decarboxylase Competitive Non-competitive • Synanceia (Stonefish) [Toxin] Glutamate Agonists: Glutamate GABA Antagonists: Antagonists: • β-N-oxalylamino-L-alanine • Bicuculline/Dicentra • Anisatin/Illicium anisatum Serotonergics: (BOAA)/Lathyrus Sativa cucullaria (Dutchman's (Japanese star anise) GAD Inhibitors: breeches) • Cicutoxin & Virol A/ Cicuta • Hypericum perforatum/ St. (Chickling Pea) • Cyanide/cyanogenic glycosides • Colchicine/Colchicum maculata (Water Hemlock) AND John's Wort • Domoic Acid/Pseudo-nitzschia australis [Amnestic Shellfish [Stonefruit] autumnale (Autumn crocus) Cicuta Virosa (Cowbane or Poisoning] • Domoic Acid/Pseudo-nitzschia • Oenanthe fistulosa (Water Northern Water Hemlock) • Ibotenic Acid/Amanita Muscaria australis [Amnestic Shellfish Dropwort) [Toxin] *Probably • Picrotoxin/Anamirta
    [Show full text]
  • The Gabaa Receptor 8 Subunit Gene Promoter Fragments to Direct Long - Term Neuron - Specific Expression
    THE GABAa RECEPTOR 8 SUBUNIT GENE PROMOTER : CHARACTERISATION AND USE Alexa Brett Roberts Division of Molecular Genetics Institute of Biomedical and Life Sciences University of Glasgow Glasgow A dissertation submitted for the degree of Doctor of Philosophy of the University of Glasgow February 1998 ProQuest Number: 13818612 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13818612 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 GIASGOW UNIVERSITY LIBRARY 11110 (coh O f GLASGOW 1 IUNIVERSITT I [LQgAW I For my husband Stuart and for my children Ross and Ailie with love Also to JR (Grandad) in loving memory Preface The work presented in this thesis was performed entirely by the author, except where acknowledged. I declare that my thesis contains unique work and will not be submitted for any other degree, diploma or qualification at any other University. A. Brett Roberts December 1997 Acknowledgements I would like to thank Professor R.W. Davies for giving me the opportunity to study for this degree and for his help throughout the last three years.
    [Show full text]
  • Tonic Gabaergic Inhibition As a New Way to Regulate Mesolimbic Dopamine System
    Tonic GABAergic inhibition as a new way to regulate mesolimbic dopamine system Elena Vashchinkina Institute of Biomedicine, Pharmacology University of Helsinki Academic Dissertation To be presented with the permission of the Medical Faculty of the University of Helsinki, for public examination in lecture hall 3, Biomedicum Helsinki 1, Haartmaninkatu 8, on December 13th 2013 at 12 noon Helsinki 2013 Supervisor Professor Esa R. Korpi, MD PhD Institute of Biomedicine, Pharmacology Faculty of Medicine University of Helsinki, Finland Reviewers Docent Mikko Airavaara, PhD Institute of Biotechnology University of Helsinki, Finland Docent Tarja Stenberg, MD PhD Institute of Biomedicine, Physiology University of Helsinki, Finland Dissertation Opponent Professor Kimmo Jensen, MD PhD Department of Biomedicine Aarhus University, Denmark ISBN 978-952-10-9636-5 (paperback) ISBN 978-952-10-9637-2 (PDF) http://ethesis.helsinki.fi Unigrafia OY Helsinki 2013 TABLE OF CONTENTS Abstract ......................................................................................................................... 1 Original publications ................................................................................................... 2 Abbreviations ............................................................................................................... 3 Glossary of terms ......................................................................................................... 4 1 INTRODUCTION ....................................................................................................
    [Show full text]
  • Neuroscience Products
    Neuroscience Products CATALOG CATALOG NUMBER U.S. $ NUMBER U.S. $ -A- 3-(N-ACETYLAMINO)-5-(N-DECYL-N- 1 mg 27.50 159549 METHYLAMINO)BENZYL ALCOHOL 5 mg 89.40 o A23187 0-5 C [103955-90-4] (ADMB) See: Antibiotic A23187 A Protein Kinase C activator. Ref.: Proc. Nat. Acad. Sci. USA, 83, 4214 AA-861 20 mg 72.70 (1986). 159061 Purity: 95% 100 mg 326.40 C20H34N2O2 MW 334.5 0oC Orally active, specific and potent inhibitor of 5-lipoxygenase. N-ACETYL-ASP-GLU 25 mg 45.00 153036 [3106-85-2] 100 mg 156.00 Ref.: 1. Yoshimoto, T., et.al., Biochim. o Biophys. Acta, 713, 470 (1982). 2. Ashida, -20-0 C An endogenous neuropeptide with high 250 mg 303.65 Y., et.al., Prostaglandins, 26, 955 (1983). 3. affinity for a brain "Glutamate" receptor. Ancill, R.J., et.al., J. Int. Med. Res., 18, 75 Ref: Zaczek, R., et al., Proc. Natl. Acad. (1990). Sci. (USA), 80, 1116 (1983). C21H26O3 MW 326.4 C11H16N2O8 MW 304.3 ABL PROTEIN TYROSINE KINASE 250 U 47.25 N-ACETYL-2-BENZYLTRYPTAMINE 195876 (v-abl) 1 KU 162.75 See: Luzindole -70oC Recombinant Expressed in E. coli ACETYL-DL-CARNITINE 250 mg 60.00 A truncated form of the v-abl protein 154690 [2504-11-2] 1 g 214.00 tyrosine kinase which contains the 0oC Hydrochloride minimum region needed for kinase activity Crystalline and fibroblast transformation. Suppresses C9H17NO4 • HCl MW 239.7 apoptosis and induces resistance to anti-cancer compounds. O-ACETYL-L-CARNITINE CHLORIDE 500 mg 11.45 Activity: 100 KU/ml 159062 [5080-50-2] 1 g 20.65 Unit Definition: one unit is the amount of 0-5oC (R-(-)-2-Acetyloxy-3-carboxy-N,N,N-trimethyl 5 g 97.45 enzyme which catalyzes the transfer of 1 -1-propanaminium chloride) pmol of phosphate to EAIYAAPFAKKK per Purity: >88% minute at 30°C, pH 7.5.
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Tinnitus
    Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Tinnitus Chemical Activity Count (+)-ALPHA-VINIFERIN 1 (+)-AROMOLINE 1 (+)-BORNYL-ISOVALERATE 1 (+)-CATECHIN 1 (+)-EUDESMA-4(14),7(11)-DIENE-3-ONE 1 (+)-HERNANDEZINE 2 (+)-ISOLARICIRESINOL 1 (+)-NORTRACHELOGENIN 1 (+)-PSEUDOEPHEDRINE 1 (+)-SYRINGARESINOL-DI-O-BETA-D-GLUCOSIDE 1 (+)-T-CADINOL 1 (-)-16,17-DIHYDROXY-16BETA-KAURAN-19-OIC 1 (-)-ALPHA-BISABOLOL 1 (-)-ANABASINE 1 (-)-APOGLAZIOVINE 1 (-)-BETONICINE 1 (-)-BORNYL-CAFFEATE 1 (-)-BORNYL-FERULATE 1 (-)-BORNYL-P-COUMARATE 1 (-)-CANADINE 1 (-)-DICENTRINE 1 (-)-EPICATECHIN 2 (-)-EPIGALLOCATECHIN-GALLATE 1 (1'S)-1'-ACETOXYCHAVICOL-ACETATE 1 (E)-4-(3',4'-DIMETHOXYPHENYL)-BUT-3-EN-OL 1 1,7-BIS-(4-HYDROXYPHENYL)-1,4,6-HEPTATRIEN-3-ONE 1 1,8-CINEOLE 4 Chemical Activity Count 1-ETHYL-BETA-CARBOLINE 2 10-ACETOXY-8-HYDROXY-9-ISOBUTYLOXY-6-METHOXYTHYMOL 1 10-DEHYDROGINGERDIONE 1 10-GINGERDIONE 1 12-(4'-METHOXYPHENYL)-DAURICINE 1 12-METHOXYDIHYDROCOSTULONIDE 1 13',II8-BIAPIGENIN 1 13-HYDROXYLUPANINE 1 13-OXYINGENOL-ESTER 1 16,17-DIHYDROXY-16BETA-KAURAN-19-OIC 1 16-HYDROXY-4,4,10,13-TETRAMETHYL-17-(4-METHYL-PENTYL)-HEXADECAHYDRO- 1 CYCLOPENTA[A]PHENANTHREN-3-ONE 16-HYDROXYINGENOL-ESTER 1 2'-O-GLYCOSYLVITEXIN 1 2-BETA,3BETA-27-TRIHYDROXYOLEAN-12-ENE-23,28-DICARBOXYLIC-ACID 1 2-METHYLBUT-3-ENE-2-OL 2 2-VINYL-4H-1,3-DITHIIN 1 20-DEOXYINGENOL-ESTER 1 22BETA-ESCIN 1 24-METHYLENE-CYCLOARTANOL 2 3,3'-DIMETHYLELLAGIC-ACID 1 3,4-DIMETHOXYTOLUENE 2 3,4-METHYLENE-DIOXYCINNAMIC-ACID-BORNYL-ESTER 1 3,4-SECOTRITERPENE-ACID-20-EPI-KOETJAPIC-ACID
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Epilepsy
    Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Epilepsy Chemical Activity Count (+)-ALPHA-VINIFERIN 1 (+)-BORNYL-ISOVALERATE 1 (+)-CATECHIN 3 (+)-EUDESMA-4(14),7(11)-DIENE-3-ONE 1 (+)-HERNANDEZINE 1 (+)-ISOCORYDINE 1 (+)-PSEUDOEPHEDRINE 1 (+)-SYRINGARESINOL-DI-O-BETA-D-GLUCOSIDE 1 (+)-T-CADINOL 1 (-)-16,17-DIHYDROXY-16BETA-KAURAN-19-OIC 1 (-)-ALPHA-BISABOLOL 2 (-)-ANABASINE 1 (-)-APOGLAZIOVINE 1 (-)-BETONICINE 1 (-)-BORNYL-CAFFEATE 1 (-)-BORNYL-FERULATE 1 (-)-BORNYL-P-COUMARATE 1 (-)-DICENTRINE 2 (-)-EPIAFZELECHIN 1 (-)-EPICATECHIN 1 (-)-EPIGALLOCATECHIN-GALLATE 1 (1'S)-1'-ACETOXYCHAVICOL-ACETATE 1 (15:1)-CARDANOL 1 (E)-4-(3',4'-DIMETHOXYPHENYL)-BUT-3-EN-OL 1 1,7-BIS-(4-HYDROXYPHENYL)-1,4,6-HEPTATRIEN-3-ONE 1 1,8-CINEOLE 4 10-ACETOXY-8-HYDROXY-9-ISOBUTYLOXY-6-METHOXYTHYMOL 1 Chemical Activity Count 10-DEHYDROGINGERDIONE 1 10-GINGERDIONE 1 11-HYDROXY-DELTA-8-THC 1 11-HYDROXY-DELTA-9-THC 1 13',II8-BIAPIGENIN 1 13-OXYINGENOL-ESTER 1 16,17-DIHYDROXY-16BETA-KAURAN-19-OIC 1 16-EPIMETHUENINE 1 16-HYDROXYINGENOL-ESTER 1 2'-O-GLYCOSYLVITEXIN 1 2-BETA,3BETA-27-TRIHYDROXYOLEAN-12-ENE-23,28-DICARBOXYLIC-ACID 1 2-METHYLBUT-3-ENE-2-OL 2 20-DEOXYINGENOL-ESTER 1 22BETA-ESCIN 1 24-METHYLENE-CYCLOARTANOL 1 3,3'-DIMETHYLELLAGIC-ACID 1 3,4-DIMETHOXYTOLUENE 1 3,4-METHYLENE-DIOXYCINNAMIC-ACID-BORNYL-ESTER 2 3,4-SECOTRITERPENE-ACID-20-EPI-KOETJAPIC-ACID 1 3-ACETYLACONITINE 1 3-ACETYLNERBOWDINE 1 3-BETA-HYDROXY-2,3-DIHYDROWITHANOLIDE-F 1 3-HYDROXY-FLAVONE 1 3-N-BUTYL-PHTHALIDE 3 3-O-ACETYLOLEANOLIC-ACID 1 3-OXO-11-ALPHA-HYDROXYOLEAN-12-ENE-30-OIC-ACID
    [Show full text]