Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Epilepsy

Total Page:16

File Type:pdf, Size:1020Kb

Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Epilepsy Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Epilepsy Chemical Activity Count (+)-ALPHA-VINIFERIN 1 (+)-BORNYL-ISOVALERATE 1 (+)-CATECHIN 3 (+)-EUDESMA-4(14),7(11)-DIENE-3-ONE 1 (+)-HERNANDEZINE 1 (+)-ISOCORYDINE 1 (+)-PSEUDOEPHEDRINE 1 (+)-SYRINGARESINOL-DI-O-BETA-D-GLUCOSIDE 1 (+)-T-CADINOL 1 (-)-16,17-DIHYDROXY-16BETA-KAURAN-19-OIC 1 (-)-ALPHA-BISABOLOL 2 (-)-ANABASINE 1 (-)-APOGLAZIOVINE 1 (-)-BETONICINE 1 (-)-BORNYL-CAFFEATE 1 (-)-BORNYL-FERULATE 1 (-)-BORNYL-P-COUMARATE 1 (-)-DICENTRINE 2 (-)-EPIAFZELECHIN 1 (-)-EPICATECHIN 1 (-)-EPIGALLOCATECHIN-GALLATE 1 (1'S)-1'-ACETOXYCHAVICOL-ACETATE 1 (15:1)-CARDANOL 1 (E)-4-(3',4'-DIMETHOXYPHENYL)-BUT-3-EN-OL 1 1,7-BIS-(4-HYDROXYPHENYL)-1,4,6-HEPTATRIEN-3-ONE 1 1,8-CINEOLE 4 10-ACETOXY-8-HYDROXY-9-ISOBUTYLOXY-6-METHOXYTHYMOL 1 Chemical Activity Count 10-DEHYDROGINGERDIONE 1 10-GINGERDIONE 1 11-HYDROXY-DELTA-8-THC 1 11-HYDROXY-DELTA-9-THC 1 13',II8-BIAPIGENIN 1 13-OXYINGENOL-ESTER 1 16,17-DIHYDROXY-16BETA-KAURAN-19-OIC 1 16-EPIMETHUENINE 1 16-HYDROXYINGENOL-ESTER 1 2'-O-GLYCOSYLVITEXIN 1 2-BETA,3BETA-27-TRIHYDROXYOLEAN-12-ENE-23,28-DICARBOXYLIC-ACID 1 2-METHYLBUT-3-ENE-2-OL 2 20-DEOXYINGENOL-ESTER 1 22BETA-ESCIN 1 24-METHYLENE-CYCLOARTANOL 1 3,3'-DIMETHYLELLAGIC-ACID 1 3,4-DIMETHOXYTOLUENE 1 3,4-METHYLENE-DIOXYCINNAMIC-ACID-BORNYL-ESTER 2 3,4-SECOTRITERPENE-ACID-20-EPI-KOETJAPIC-ACID 1 3-ACETYLACONITINE 1 3-ACETYLNERBOWDINE 1 3-BETA-HYDROXY-2,3-DIHYDROWITHANOLIDE-F 1 3-HYDROXY-FLAVONE 1 3-N-BUTYL-PHTHALIDE 3 3-O-ACETYLOLEANOLIC-ACID 1 3-OXO-11-ALPHA-HYDROXYOLEAN-12-ENE-30-OIC-ACID 1 3-OXO-11-ALPHA-METHOXYOLEAN-12-ENE-30-OIC-ACID 1 2 Chemical Activity Count 3-OXO-OLEAN-9(11),12-DIENE-30-OIC-ACID 1 4'-O-METHYLCURINE 1 4-VINYL-GUAIACOL 1 5,6-DEHYDROKAWAIN 1 5,7-DIMETHOXYFLAVONE 1 5-DEOXYINGENOL-ESTER 1 5-HYDROXYTRYPTOPHAN 1 6,7-DIMETHYLAESCULETIN 1 6,7-DIMETHYLESCULETIN 1 6-DEHYDROGINGERDIONE 1 6-DEOXYJACAREUBIN 1 6-GINGERDIONE 1 6-GINGEROL 2 6-O-(2''-ACETYL-3'',4''-O-DI-P-METHOXYCINNAMOYL-ALPHA-L-RHAMNOPYRANOSYL)-CATALPOL 1 6-O-(4''-ACETYL-2'',3''-O-DI-P-METHOXYCINNAMOYL-ALPHA-L-RHAMNOPYRANOSYL)-CATALPOL 1 6-SHOGAOL 2 7-METHOXYCOUMARIN 2 8(14),15-SANDARACOPIMARADIEN-7ALPHA,18-DIOL 1 8-ACETYLHARPAGIDE 1 8-METHOXY-CIRSILINEOL 1 8-O-CINNAMOYLHARPAGIDE 1 9-O-ETHYLLYCORENINE 1 ABRINE 1 ACANTHOIC-ACID 1 ACANTHOSIDE-D 1 ACETYL-11-KETO-BETA-BOSWELLIC-ACID 1 ACETYL-BETA-BOSWELLIC-ACID 1 3 Chemical Activity Count ACETYLSALICYLIC-ACID 1 ACETYLSHIKONIN 1 ACONITINE 1 ACORIC-ACID 1 ACTINIDOLES 1 ACYLSPINOSIN 1 ADENOSINE 5 AESCIN 1 AESCULETIN 2 AESCULIN 1 AIPHANOL 1 AJMALICINE 2 AJMALINE 2 AJOENE 3 AKNADINE 1 AKUAMMIDINE 2 ALANTOLACTONE 2 ALCHORNEINE 1 ALCHORNINE 1 ALCORNINE 1 ALKANNIN 1 ALKAVERVIR 1 ALLANTOIN 1 ALLICIN 3 ALLOHIMACHALOL 1 ALLOPURINOL 1 ALPHA-AMYRIN 1 4 Chemical Activity Count ALPHA-AMYRIN-ACETATE 1 ALPHA-AMYRIN-PALMITATE 1 ALPHA-ASARONE 1 ALPHA-BISABOLOL 2 ALPHA-BOSWELLIC-ACID 2 ALPHA-CURCUMENE 1 ALPHA-LINOLENIC-ACID 2 ALPHA-NARCOTINE 1 ALPHA-PEROXYACHIFOLIDE 1 ALPHA-PINENE 4 ALPHA-SPINASTEROL 1 ALPHA-TERPINENE 1 ALPHA-TERPINEOL 2 ALPHA-TOCOPHEROL 1 AMENTOFLAVONE 1 AMINOPHYLLINE 2 AMURENSINE 1 AMURINE 1 AMYGDALIN 2 AMYL-BUTYRATE 1 AMYLASE 1 ANABASINE 1 ANCISTROCLADIDINE 1 ANDROGRAPHOLIDE 1 ANEMONIN 1 ANETHOLE 2 ANGELIC-ACID 1 5 Chemical Activity Count ANGELICIN 4 ANISATIN 1 ANISODAMINE 1 ANISODINE 1 ANNOMONTINE 2 ANTHOCYANIDINS 1 ANTHOCYANINS 2 ANTHOCYANOSIDE 3 ANTHRANILIC-ACID 1 ANTIEPILEPSIRIN 1 APIGENIN 8 APIGENIN-7,4'-DIMETHYL-ETHER 1 APIGENIN-7-GLYCOSIDE 2 APIGENIN-7-O-GLUCOSIDE 1 APIGENIN-DIMETHYL-ETHER 1 APIIN 1 APIOLE 1 APOATROPINE 1 APOCYANIN 2 APOCYNIN 1 APOGLAZIOVINE 1 APOMORPHINE 1 AR-TURMERONE 2 ARBORINE 1 ARBORININE 2 ARCHANGELICIN 1 ARECOLINE 1 6 Chemical Activity Count ARGININE 1 ARISTOLOCHIC-ACID 1 ARMILLARIEN-A 2 ARTABSIN 1 ARTECANIN 1 ARTEMETIN 1 ARVENOSIDE-A 1 ASARONE 5 ASCARIDOLE 1 ASCORBIC-ACID 4 ASIATICOSIDE 1 ASPERULOSIDE 1 ASPIRIN 1 ASPIRIN (ACETYLSALICYLIC-ACID; NOT NATURAL) 1 ASTRAMEMBRANIN-I 1 ASTRASIERVERSIANIN-XVI 1 ASTRINGENIN 1 ATHAMANTHIN 1 ATHEROSPERMIDINE 1 ATHEROSPERMINE 1 ATRACTYLENOLIDE 1 ATRACTYLENOLIDE-I 1 ATRACTYLENOLIDE-II 1 ATRACTYLENOLIDE-III 1 ATRACTYLOCHROMENE 2 ATRACTYLON 1 ATROPINE 2 7 Chemical Activity Count AUCUBIN 1 AURAPTEN 1 AURICULOSIDE 2 AVISAN 1 AXILLARIN 1 AZULENE 2 BACCOSIDES 1 BAICALEIN 3 BAICALEIN-5,6,7-TRIHYDROXY-FLAVONE 1 BAICALIN 4 BALDRINAL 1 BAOHUOSIDE-1 1 BARBATOSIDE-A 1 BARBATOSIDE-B 1 BARTSIOSIDE 1 BASSIC-ACID 1 BAVACHININ 1 BAYACHININE 1 BENZALDEHYDE 2 BENZOXAZINOIDS 1 BENZOYLACONINE 1 BENZYL-ALCOHOL 1 BENZYL-BENZOATE 2 BERBAMINE 3 BERBERASTINE 6 BERBERINE 7 BERGAPTEN 3 8 Chemical Activity Count BERGENIN 2 BETA-AESCIN 1 BETA-AMYRIN 1 BETA-AMYRIN-ACETATE 2 BETA-AMYRIN-PALMITATE 1 BETA-ASARONE 3 BETA-BOSWELLIC-ACID 1 BETA-CAROTENE 2 BETA-DAMASCENONE 2 BETA-ESCIN 1 BETA-EUDESMOL 1 BETA-HIMACHALINE 2 BETA-PHENYLETHANOL 1 BETA-PINENE 2 BETA-RESERCYCLIC-ACID 1 BETA-SANTALENE 1 BETA-SITOSTEROL 1 BETA-SITOSTEROL-3-O-BETA-D-GLUCOPYRANOSIDE 1 BETA-SITOSTEROL-BETA-D-GLUCOSIDE 1 BETA-SITOSTEROL-D-GLUCOSIDE 1 BETA-TURMERONE 2 BETONICINE 1 BETULIN 1 BETULINIC-ACID 1 BILOBALIDE 1 BIS-(4-HYDROXY-CINNAMOYL)-METHANE 1 BIS-DESMETHOXYCURCUMIN 1 9 Chemical Activity Count BISABOLOXIDE 2 BISABOLOXIDE-A 1 BISABOLOXIDE-B 1 BOEHMEROL-ACETATE 1 BOLDINE 2 BOLDINE-METHOCHLORIDE 1 BORJATRIOL 1 BORNEOL 5 BORNYL-ACETATE 3 BOSWELLIC-ACID 4 BOWDICHIONE 1 BRADYKININASE 1 BRAHMASIDE 1 BRAHMINOSIDE 2 BRAHMOSIDE 2 BRAZILIN 1 BROMELAIN 3 BROUSSOAURONE-A 1 BROUSSOCHALCONE-A 2 BROUSSOFLAVONOL-F 1 BRYONOLIC-ACID 1 BUDMUNCHIAMINES 1 BULBOCAPNINE 1 BUPLEURIN 1 BUTEIN 1 BUTYL-PHTHALIDE 3 BUTYLIDENE-PHTHALIDE 3 10 Chemical Activity Count CAFESTOL 1 CAFFEIC-ACID 5 CAFFEINE 1 CAFFEOYLMARIC-ACID 1 CAFFEOYLTARTARIC-ACID 1 CALCIUM 5 CALOPHYLLIN-B 1 CALOPHYLLOLIDE 1 CAMPHOR 1 CANBISOL 1 CANESCINE 1 CANNABICHROMENE 1 CANNABIDIOL 3 CANNABIDIOLIC-ACID 1 CANNABIGEROL 1 CANNABINOL 1 CANNFLAVIN 1 CANNIPRENE 1 CAPSAICIN 3 CARACURINE 1 CARBENOXOLONE 1 CARBOXY-OXY-NAPTHOQUINONE 1 CARBOXYATRACTYLOSIDE 1 CARDOL 1 CARISSONE-3-N1-HOMOPIPERYL-HYDRAZONE 1 CARNOSINE 1 CARNOSOL 2 11 Chemical Activity Count CARPACIN 1 CARVACROL 3 CARVONE 1 CARYOPHYLLENE 3 CARYOPHYLLENE-OXIDE 1 CASSININE 1 CATECHIN 2 CAUDOSIDE 1 CAUDOSTROSIDE 1 CENTDAROL 1 CEPAENE 1 CEPHARAMINE 1 CEPHARANOLINE 1 CEPHARANTHINE 1 CHAKSINE 1 CHAMAZULENE 2 CHAMILLIN 1 CHEBULIN 1 CHELERYTHRINE 1 CHELIDONINE 2 CHIKUSETSUSAPONIN 3 CHIKUSETSUSAPONIN-V 1 CHLOROGENIC-ACID 1 CHLOROGENIN 1 CHRYSANTHEMOL 1 CHRYSIN 6 CHRYSIN-5,7-DIHYDROXYFLAVONE 1 12 Chemical Activity Count CHRYSOPHANIC-ACID 1 CHRYSOSPLENIN 2 CHRYSOSPLENOL 2 CHYMOTRYPSIN 1 CINCHOPHYLLINE 2 CINNAMALDEHYDE 6 CINNAMIC-ACID 2 CINNAMIC-ACID-BORNYL-ESTER 2 CIRSILINEOL 3 CIRSIMARITIN 2 CIS-COMMUNIC-ACID 1 CIS-ISOASARONE 2 CIS-METHYLSULPHINOTHIOIC-ACID-S-1-PROPENYLESTER 1 CIS-N-PROPYLSULPHINOTHIOIC-ACID-S-1-PROPENYLESTER 1 CIS-SPIROETHER 2 CISSAMPELINE 1 CISSAMPELOSIN 1 CITRACRIDONE 1 CITRAL 4 CITRONELLAL 1 CITRONELLOL 1 CLITORIACETAL 1 CNICIN 1 CNIDILIDE 2 CODEINE 2 COELOGIN 1 COIXENOLIDE 1 13 Chemical Activity Count COIXOL 2 COLCHICINE 1 COLCHICOSIDE 1 COLUBRIN 1 COLUBRINOSIDE 1 COLUMBIANADIN 2 CONIFERYL-ALDEHYDE 1 CONJUGATED-LINOLEIC-ACID 1 COPPER 1 COPPER-SALICYLATE 1 COPTISINE 1 COREXIMINE 1 CORIANDROL 1 CORILAGIN 1 CORONARIDINE 1 CORYDALINE 3 CORYDAMINE 1 CORYDINE 1 CORYNANTHEINE 2 COUMARIN 2 CROTALOBURINE 1 CRYOGENINE 4 CRYPTOAESCIN 1 CRYPTOCARYALACTONE 1 CRYPTOMERIDOL 1 CUCURBITACIN-B 1 CULARINE 2 14 Chemical Activity Count CUMINALDEHYDE 1 CUPARENE 1 CURCUMIN 4 CURCUMINOIDS 1 CURINE 1 CUSPARINE 1 CUSSONOSIDE-A 1 CYANIDIN-3-O-GLUCOSIDE 2 CYCLEANINE 2 CYCLOARTENOL 1 CYCLOBUXINE-D 1 CYCLOSADOL 1 CYCLOSTACHINE-A 2 CYTISINE 1 DAIDZEIN 2 DAIDZIN 1 DAIGREMONTIANIN 1 DAIJISON 1 DAIJISONG 1 DAMASCEINE 1 DAUCOSTEROL 1 DAURICINE 2 DAURICOLINE 1 DAURINOLINE 1 DAURISOLINE 1 DEHYDROCURDIONE 1 DEHYDROCYCLOGUANANDIN 1 15 Chemical Activity Count DELTA-3-CARENE 1 DELTA-8-THC 1 DELTA-9-THC 2 DEMETHOXYCURCUMIN 1 DEMETHYLTETRANDRINE 1 DESERPIDINE 3 DESMETHOXYANGONIN 3 DIABOLINE 1 DIAZEPAM 5 DICENTRINE 2 DICHOTOSIN 2 DIDROVALTRATUM 2 DIFFUTIN 2 DIHYDROCANTHINE 1 DIHYDROCORYNANTHEINE 1 DIHYDROHELENALIN 1 DIHYDROHELENALIN-ESTERS 1 DIHYDROKAWAIN 5 DIHYDROMETHYSTICIN 6 DIHYDROVALTRATE 1 DILLAPIOL 1 DIMETHOXYALLYLBENZENE 1 DIMETHYLVINYLCARBINOL 1 DIOSGENIN 2 DIOSMIN 2 DIPENTENE 1 DIPHENYLHYDANTOIN 2 16 Chemical Activity Count DIRCA-PHENOLIC-GLUCOSIDE-5 1 DISENECIONYL-CIS-KHELIACTONE 1 DITETRAHYDROPALMATINE 1 DIVARICOSIDE 1 DIVOSTROSIDE 1 DL-DEMETHYLCOCLAURINE 1 DL-TETRAHYDROPALMATINE 2 DUBINIDINE 1 ECHITAMINE 2 EDPETILINE 1 EICOSAPENTAENOIC-ACID 2 ELAEOCARPINE 1 ELAIDIC-ACID 1 ELEMICIN 1 ELEUTHEROSIDE-C 1 ELEUTHEROSIDE-E 1 ELEUTHEROSIDES 1 ELLAGIC-ACID 1 EMETINE 1 EMODIN 3 EN-YN-DICYCLOETHER 2 ENHYDRIN 1 ENT-16A-,17-DIHYDROXY-KAURAN-19-OIC-ACID 1 EPHEDRINE 3 EPHEDROXANE 1 EPI-PROCURCUMENOL 1 EPICATECHIN 1 17 Chemical Activity Count ERIODICTYOL 1 ERYSOPINE 2 ERYSOTHIOPINE 2 ERYSOTHIOVINE 2 ERYSOVINE 2 ESCIN 1 ESCULETIN 2 ESCULIN 1 ESTRAGOL 2 ETHYL-ACETATE 1 EUGENOL 5 EUGENOL-METHYL-ETHER 1 EUGENYL-ACETATE 2 EUGLOBAL 1 EUPAFORMOSANIN 1 EUPAHYSSOPIN 1 EUPATOLIDE 1 EUXANTHONE 1 EVODIAMINE 2 EVODOL 2 EVOXINE 2 FAGARAMIDE 1 FAGARINE 1 FALCARINOL 1 FARADIOL 1 FARADIOL-MONOESTER 1 FARNESOL 2 18 Chemical Activity Count FENFANGJINE-B 1 FENFANGJINE-C 1 FENFANGJINE-D 1 FENUGREEKINE 1 FERULIC-ACID 2 FERULOYL-4-HYDROXYCINNAMOYL-METHANE 1 FERULOYLHISTAMINE 1 FETIDINE 1 FIBER 1 FICIN 1 FISETIN 1 FLAVIDIN 1 FLAVOKAWAIN-B 2 FLAVONE 2 FORMONONETIN 1 FORSKOLIN 3 FRANGUFOLINE 1 FRAXIN 1 FRIEDELAN-3-BETA-OL 1 FRIEDELIN 1 FRITILLINE 1 FRITIMINE 1 FRUTICINE 1 FUMARILINE 2 FUMARINE
Recommended publications
  • (12) United States Patent (10) Patent No.: US 6,692,728 B2 Weipert Et Al
    USOO6692728B2 (12) United States Patent (10) Patent No.: US 6,692,728 B2 Weipert et al. (45) Date of Patent: Feb. 17, 2004 (54) POLYESTERS BASED ON HYDROXY FATTY (52) U.S. Cl. ......................... 424/59; 424/497; 424/489; ACDS AND LOWER HYDROXY ALKYL 424/70.11; 424/78.37; 424/78.08; 514/785; ACDS AND USES THEREOF 560/171; 560/172; 560/176; 560/183; 525/400 (58) Field of Search .......................... 424/59, 497, 489, (75) Inventors: Paul David Weipert, High Point, NC 424/70.11, 78.37; 514/785; 560/172,176, (US); Bharat B. Desai, Spartanburg, 183; 525/400 SC (US) (73) Assignee: Ethox Chemicals LLC, Greenville, SC ") References Cited (US) U.S. PATENT DOCUMENTS ( c: ) Notice: Subject to any disclaimer, the term of this 5,502,116 A 3/1996 Noda ......................... 525/415 patent is extended or adjusted under 35 5,614,576 A * 3/1997 Rutherford et al. ......... 524/270 U.S.C. 154(b) by 0 days. 5,851,937 A * 12/1998 Wu et al. ................... 442/394 * cited by examiner (21) Appl. No.: 10/388,426 (22) Filed: Mar 17, 2003 Primary Examiner Sabiha Qazi 9 (74) Attorney, Agent, or Firm-Isaac A. Angres (65) Prior Publication Data (57) ABSTRACT US 2003/0175222 A1 Sep. 18, 2003 The present invention provides biodegradable polyesters Related U.S. Application Data based on lower hydroxy acids and hydroxy fatty acids. The resulting polyesters are useful as cosmetic vehicles for (62) Division of application No. 09/805,894, filed on Mar. 15, Sunscreens, skin lotions and by themselves are also useful as 2001, now Pat.
    [Show full text]
  • Régulation De L'inflammation Par Les Lipides Bioactifs : Interactions Biosynthétiques Et Fonctionnelles Entre Les Endocannabinoïdes Et Les Éicosanoïdes
    Régulation de l'inflammation par les lipides bioactifs : interactions biosynthétiques et fonctionnelles entre les endocannabinoïdes et les éicosanoïdes Thèse Caroline Turcotte Doctorat en microbiologie-immunologie Philosophiæ doctor (Ph. D.) Québec, Canada © Caroline Turcotte, 2019 Régulation de l’inflammation par les lipides bioactifs : interactions biosynthétiques et fonctionnelles entre les endocannabinoïdes et les éicosanoïdes Thèse Caroline Turcotte Sous la direction de : Nicolas Flamand, directeur de recherche Marie-Renée Blanchet, codirectrice de recherche Résumé Les maladies inflammatoires chroniques sont un fardeau de santé important à travers le monde. Les traitements actuellement disponibles soulagent la douleur et l’inflammation, mais leurs effets secondaires rendent leur utilisation à long terme risquée. À la lumière de cette problématique, la communauté scientifique s’intéresse au potentiel d’anti-inflammatoires naturels comme les endocannabinoïdes. Les endocannabinoïdes sont des lipides endogènes qui activent les récepteurs cannabinoïdes (CB1 et CB2). Ils régulent ainsi divers processus physiologiques tels l’appétit, l’adipogénèse et la nociception. Les deux endocannabinoïdes les mieux caractérisés, le 2-AG et l’AEA, peuvent également moduler l’inflammation en activant le récepteur CB2 à la surface des cellules immunitaires. Les souris déficientes pour le récepteur CB2 présentent un phénotype inflammatoire exacerbé, suggérant que ce récepteur est anti-inflammatoire. Cependant, le rôle des endocannabinoïdes dans l’inflammation est beaucoup plus complexe puisqu’ils peuvent être métabolisés en une grande variété de médiateurs lipidiques de l’inflammation. Leur voie de dégradation principale est leur hydrolyse en acide arachidonique (AA), qui sert de précurseur à la biosynthèse d’éicosanoïdes pro-inflammatoires comme le leucotriène B4 et la prostaglandine E2. Ils peuvent également être métabolisés directement par certaines enzymes impliquées dans la synthèse d’éicosanoïdes, pour générer des médiateurs comme les prostaglandines-glycérol (PG-G).
    [Show full text]
  • Multi-Class Determination of 64 Illicit Compounds in Dietary Supplements Using Liquid Chromatography–Tandem Mass Spectrometry
    molecules Article Multi-Class Determination of 64 Illicit Compounds in Dietary Supplements Using Liquid Chromatography–Tandem Mass Spectrometry Dasom Shin, Hui-Seung Kang *, Hyungsoo Kim and Guiim Moon New Hazardous Substances Division, Department of Food Safety Evaluation, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju 28159, Korea; [email protected] (D.S.); [email protected] (H.K.); [email protected] (G.M.) * Correspondence: [email protected] Received: 11 August 2020; Accepted: 17 September 2020; Published: 24 September 2020 Abstract: In this work, liquid chromatography–tandem mass spectrometry (LC-MS/MS) method was developed and validated for screening and confirmation of 64 illicit compounds in dietary supplements. The target compounds were illegally used pharmaceutical drugs, prohibited compounds, and not authorized ingredients for different therapeutics (sexual enhancement, weight loss, muscular strengthening, and relaxing products). The validation procedure was performed to evaluate selectivity, linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, and precision according to the Association of Official Analytical Chemists guidelines. The linearity was >0.98 in the range of 1 1 0.5–200 µg L− . The LOQs were in the range 1–10 µg kg− for all target compounds. The accuracy (expressed as recovery) was 78.5–114%. The precision (expressed as the relative standard deviation) was below 9.15%. The developed method was applied for the determination of illicit compounds in dietary supplements collected from websites. As a result, the total detection rate was 13.5% (27 samples detected in 200 samples). The concentrations of detected samples ranged from 0.51 1 to 226 mg g− .
    [Show full text]
  • Réglementation De La Pharmacie
    R E C U E I L D E T E X T E S S U R L A P H A R M A C I E Mis à jour le 13 février 2017 par l’Inspection de la pharmacie P R É A M B U L E La réglementation relative à la pharmacie en vigueur en Nouvelle-Calédonie résulte de la coexistence des dispositions adoptées par la Nouvelle-Calédonie au titre de ses compétences en matières d’hygiène publique, de santé et de professions de la pharmacie1, et de celles adoptées par l’Etat au titre de ses compétences en matières de garanties des libertés publiques, de droit civil et de droit commercial2. Sur le contenu du recueil En 1954, la Nouvelle-Calédonie s’est vue étendre les articles L. 511 à L. 520 et L. 549 à L. 665 de l’ancien Livre V relatif à la Pharmacie du code de la santé publique métropolitain par la loi n° 54-418 du 15 avril 1954 étendant aux territoires d'outre-mer, au Togo et au Cameroun certaines dispositions du Code de la santé publique relatives à l'exercice de la pharmacie3, dont les modalités d’application ont été fixées par le décret modifié n° 55-1122 du 16 août 1955 fixant les modalités d'application de la loi n° 54-418 du 15 avril 1954 étendant aux territoires d'outre-mer, au Togo et au Cameroun certaines dispositions du code de la santé publique relatives à l'exercice de la pharmacie4. Depuis sont intervenues la loi- cadre Defferre5, la loi référendaire de 19886 et la loi organique n° 99-209 du 19 mars 1999 dont les apports ont eu pour résultat le transfert de ces articles de la compétence de l’Etat à la compétence de la Nouvelle-Calédonie, permettant à celle-ci de s’en approprier et de les modifier à sa guise par des délibérations du congrès de la Nouvelle-Calédonie7.
    [Show full text]
  • Anti-Cholinergic Alkaloids As Potential Therapeutic Agents for Alzheimer's Disease
    Indian Journal of Biochemistry & Biophysics Vol. 50, April 2013, pp. 120-125 Anti-cholinergic alkaloids as potential therapeutic agents for Alzheimer’s disease: An in silico approach Huma Naaz, Swati Singh, Veda P Pandey, Priyanka Singh and Upendra N Dwivedi* Bioinformatics Infrastructure Facility, Center of Excellence in Bioinformatics, Department of Biochemistry, University of Lucknow, Lucknow 226 007, India Received 10 September 2012; revised 25 January 2013 Alzheimer’s disease (AD), a progressive neurodegenerative disorder with many cognitive and neuropsychiatric symptoms is biochemically characterized by a significant decrease in the brain neurotransmitter acetylcholine (ACh). Plant-derived metabolites, including alkaloids have been reported to possess neuroprotective properties and are considered to be safe, thus have potential for developing effective therapeutic molecules for neurological disorders, such as AD. Therefore, in the present study, thirteen plant-derived alkaloids, namely pleiocarpine, kopsinine, pleiocarpamine (from Pleiocarpa mutica, family: Annonaceae), oliveroline, noroliveroline, liridonine, isooncodine, polyfothine, darienine (from Polyalthia longifolia, family: Apocynaceae) and eburnamine, eburnamonine, eburnamenine and geissoschizol (from Hunteria zeylanica, family: Apocynaceae) were analyzed for their anti-cholinergic action through docking with acetylcholinesterase (AChE) as target. Among the alkaloids, pleiocarpine showed promising anti-cholinergic potential, while its amino derivative showed about six-fold
    [Show full text]
  • Supplementary Materials Evodiamine Inhibits Both Stem Cell and Non-Stem
    Supplementary materials Evodiamine inhibits both stem cell and non-stem-cell populations in human cancer cells by targeting heat shock protein 70 Seung Yeob Hyun, Huong Thuy Le, Hye-Young Min, Honglan Pei, Yijae Lim, Injae Song, Yen T. K. Nguyen, Suckchang Hong, Byung Woo Han, Ho-Young Lee - 1 - Table S1. Short tandem repeat (STR) DNA profiles for human cancer cell lines used in this study. MDA-MB-231 Marker H1299 H460 A549 HCT116 (MDA231) Amelogenin XX XY XY XX XX D8S1179 10, 13 12 13, 14 10, 14, 15 13 D21S11 32.2 30 29 29, 30 30, 33.2 D7S820 10 9, 12 8, 11 11, 12 8 CSF1PO 12 11, 12 10, 12 7, 10 12, 13 D3S1358 17 15, 18 16 12, 16, 17 16 TH01 6, 9.3 9.3 8, 9.3 8, 9 7, 9.3 D13S317 12 13 11 10, 12 13 D16S539 12, 13 9 11, 12 11, 13 12 D2S1338 23, 24 17, 25 24 16 21 D19S433 14 14 13 11, 12 11, 14 vWA 16, 18 17 14 17, 22 15 TPOX 8 8 8, 11 8, 9 8, 9 D18S51 16 13, 15 14, 17 15, 17 11, 16 D5S818 11 9, 10 11 10, 11 12 FGA 20 21, 23 23 18, 23 22, 23 - 2 - Table S2. Antibodies used in this study. Catalogue Target Vendor Clone Dilution ratio Application1) Number 1:1000 (WB) ADI-SPA- 1:50 (IHC) HSP70 Enzo C92F3A-5 WB, IHC, IF, IP 810-F 1:50 (IF) 1 :1000 (IP) ADI-SPA- HSP90 Enzo 9D2 1:1000 WB 840-F 1:1000 (WB) Oct4 Abcam ab19857 WB, IF 1:100 (IF) Nanog Cell Signaling 4903S D73G4 1:1000 WB Sox2 Abcam ab97959 1:1000 WB ADI-SRA- Hop Enzo DS14F5 1:1000 WB 1500-F HIF-1α BD 610958 54/HIF-1α 1:1000 WB pAkt (S473) Cell Signaling 4060S D9E 1:1000 WB Akt Cell Signaling 9272S 1:1000 WB pMEK Cell Signaling 9121S 1:1000 WB (S217/221) MEK Cell Signaling 9122S 1:1000
    [Show full text]
  • Download Download
    What’s On Your Mind? Percy Lavon Julian PhD — The Man Who Wouldn’t Give Up Richard J. Barohn In the Volume 2, Issue 1 of this journal, I told the story of Vivien Thomas, an incredibly bright and technically adept laboratory technician who had to take a role behind the physician Alfred Blalock, literally in the operating room where he would tell Dr. Blalock how to proceed in the new open heart surgeries Vivien developed, and throughout his whole life as he struggled as a black man in the scientific world. He is indeed a scientific hero worthy of honor for Black History Month. Let me tell you the story of another black pioneer in health care science that has touched millions of lives but Figure 1. Percy Julian is seen here in this 1920 photo at who you may never have heard of, and while February DePauw University. was officially Black History month, we should consider any month or day a good time to honor great scientists of and was that year’s valedictorian, majoring in chemistry. all backgrounds. The scientists I will tell you about now He applied to graduate school at DePauw and at many will be of particular interest to neuromuscular health care other institutions around the country, but he was denied researchers and providers. admission. In 1960 he told this story as follows: Percy Lavon Julian, PhD was born in Montgomery, Alabama in 1899, the son of a railway mail clerk and the I shall never forget the week of anxious waiting in 1920 grandson of slaves.
    [Show full text]
  • CAS Number Index
    2334 CAS Number Index CAS # Page Name CAS # Page Name CAS # Page Name 50-00-0 905 Formaldehyde 56-81-5 967 Glycerol 61-90-5 1135 Leucine 50-02-2 596 Dexamethasone 56-85-9 963 Glutamine 62-44-2 1640 Phenacetin 50-06-6 1654 Phenobarbital 57-00-1 514 Creatine 62-46-4 1166 α-Lipoic acid 50-11-3 1288 Metharbital 57-22-7 2229 Vincristine 62-53-3 131 Aniline 50-12-4 1245 Mephenytoin 57-24-9 1950 Strychnine 62-73-7 626 Dichlorvos 50-23-7 1017 Hydrocortisone 57-27-2 1428 Morphine 63-05-8 127 Androstenedione 50-24-8 1739 Prednisolone 57-41-0 1672 Phenytoin 63-25-2 335 Carbaryl 50-29-3 569 DDT 57-42-1 1239 Meperidine 63-75-2 142 Arecoline 50-33-9 1666 Phenylbutazone 57-43-2 108 Amobarbital 64-04-0 1648 Phenethylamine 50-34-0 1770 Propantheline bromide 57-44-3 191 Barbital 64-13-1 1308 p-Methoxyamphetamine 50-35-1 2054 Thalidomide 57-47-6 1683 Physostigmine 64-17-5 784 Ethanol 50-36-2 497 Cocaine 57-53-4 1249 Meprobamate 64-18-6 909 Formic acid 50-37-3 1197 Lysergic acid diethylamide 57-55-6 1782 Propylene glycol 64-77-7 2104 Tolbutamide 50-44-2 1253 6-Mercaptopurine 57-66-9 1751 Probenecid 64-86-8 506 Colchicine 50-47-5 589 Desipramine 57-74-9 398 Chlordane 65-23-6 1802 Pyridoxine 50-48-6 103 Amitriptyline 57-92-1 1947 Streptomycin 65-29-2 931 Gallamine 50-49-7 1053 Imipramine 57-94-3 2179 Tubocurarine chloride 65-45-2 1888 Salicylamide 50-52-2 2071 Thioridazine 57-96-5 1966 Sulfinpyrazone 65-49-6 98 p-Aminosalicylic acid 50-53-3 426 Chlorpromazine 58-00-4 138 Apomorphine 66-76-2 632 Dicumarol 50-55-5 1841 Reserpine 58-05-9 1136 Leucovorin 66-79-5
    [Show full text]
  • Note: the Letters 'F' and 'T' Following the Locators Refers to Figures and Tables
    Index Note: The letters ‘f’ and ‘t’ following the locators refers to figures and tables cited in the text. A Acyl-lipid desaturas, 455 AA, see Arachidonic acid (AA) Adenophostin A, 71, 72t aa, see Amino acid (aa) Adenosine 5-diphosphoribose, 65, 789 AACOCF3, see Arachidonyl trifluoromethyl Adlea, 651 ketone (AACOCF3) ADP, 4t, 10, 155, 597, 598f, 599, 602, 669, α1A-adrenoceptor antagonist prazosin, 711t, 814–815, 890 553 ADPKD, see Autosomal dominant polycystic aa 723–928 fragment, 19 kidney disease (ADPKD) aa 839–873 fragment, 17, 19 ADPKD-causing mutations Aβ, see Amyloid β-peptide (Aβ) PKD1 ABC protein, see ATP-binding cassette protein L4224P, 17 (ABC transporter) R4227X, 17 Abeele, F. V., 715 TRPP2 Abbott Laboratories, 645 E837X, 17 ACA, see N-(p-amylcinnamoyl)anthranilic R742X, 17 acid (ACA) R807X, 17 Acetaldehyde, 68t, 69 R872X, 17 Acetic acid-induced nociceptive response, ADPR, see ADP-ribose (ADPR) 50 ADP-ribose (ADPR), 99, 112–113, 113f, Acetylcholine-secreting sympathetic neuron, 380–382, 464, 534–536, 535f, 179 537f, 538, 711t, 712–713, Acetylsalicylic acid, 49t, 55 717, 770, 784, 789, 816–820, Acrolein, 67t, 69, 867, 971–972 885 Acrosome reaction, 125, 130, 301, 325, β-Adrenergic agonists, 740 578, 881–882, 885, 888–889, α2 Adrenoreceptor, 49t, 55, 188 891–895 Adult polycystic kidney disease (ADPKD), Actinopterigy, 223 1023 Activation gate, 485–486 Aframomum daniellii (aframodial), 46t, 52 Leu681, amino acid residue, 485–486 Aframomum melegueta (Melegueta pepper), Tyr671, ion pathway, 486 45t, 51, 70 Acute myeloid leukaemia and myelodysplastic Agelenopsis aperta (American funnel web syndrome (AML/MDS), 949 spider), 48t, 54 Acylated phloroglucinol hyperforin, 71 Agonist-dependent vasorelaxation, 378 Acylation, 96 Ahern, G.
    [Show full text]
  • Assessment Report on Ricinus Communis L., Oleum Final
    2 February 2016 EMA/HMPC/572973/2014 Committee on Herbal Medicinal Products (HMPC) Assessment report on Ricinus communis L., oleum Final Based on Article 10a of Directive 2001/83/EC as amended (well-established use) Herbal substance(s) (binomial scientific name Ricinus communis L., oleum (castor oil) of the plant, including plant part) Herbal preparation Fatty oil obtained from seeds of Ricinus communis L. by cold expression Pharmaceutical forms Herbal preparation in liquid or solid dosage forms for oral use Rapporteur C. Purdel Peer-reviewer B. Kroes 30 Churchill Place ● Canary Wharf ● London E14 5EU ● United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5555 Send a question via our website www.ema.europa.eu/contact An agency of the European Union © European Medicines Agency, 2016. Reproduction is authorised provided the source is acknowledged. Table of contents Table of contents ................................................................................................................... 2 1. Introduction ....................................................................................................................... 4 1.1. Description of the herbal substance(s), herbal preparation(s) or combinations thereof .. 4 1.2. Search and assessment methodology ..................................................................... 6 2. Data on medicinal use ........................................................................................................ 6 2.1. Information about products on the market .............................................................
    [Show full text]
  • Steroid Interference with Antifungal Activity of Polyene Antibiotics
    APPLIED MICROBIOLOGY, Nov., 1966 Vol. 14, No. 6 Copyright © 1966 American Society for Microbiology Printed in U.S.A. Steroid Interference with Antifungal Activity of Polyene Antibiotics WALTER A. ZYGMUNT AND PETER A. TAVORMINA Department of Microbiology and Natural Products Research, Mead Johnson & Company, Evansville, Indiana Received for publication 21 April 1966 ABSTRACT ZYGMUNT, WALTER A. (Mead Johnson & Co., Evansville, Ind.), AND PETER A. TAVORMINA. Steroid interference with antifungal activity of polyene antibiotics. Appl. Microbiol. 14:865-869. 1966.-Wide differences exist among the polyene antibiotics, nystatin, rimocidin, filipin, pimaricin, and amphotericin B, with ref- erence to steroid interference with their antifungal activities against Candida albicans. Of the numerous steroids tested, ergosterol was the only one which ef- fectively antagonized the antifungal activity of all five polyene antibiotics. The antifungal activities of nystatin and amphotericin B were the least subject to vitia- tion by the addition of steroids other than ergosterol, and those of filipin, rimo- cidin, and pimaricin were the most sensitive to interference. Attempts to delineate the structural requirements of steroids possessing polyene-neutralizing activity in growing cultures of C. albicans are discussed. The ultraviolet absorbance of certain antibiotic steroid combinations was also studied. It has been suggested (1, 9, 13) that the polyene While studying the effects of various steroids antibiotics become bound to the fungal cell mem- on the antimonilial activity of pimaricin, we brane and cause permeability changes with observed that ergostenol was almost as effective attendant depletion of essential cellular con- as the above A5-3/3-hydroxy steroids in antag- stituents. Loss of potassium and ammonium onizing pimaricin.
    [Show full text]
  • Castor Oil Induces Laxation and Uterus Contraction Via Ricinoleic Acid Activating Prostaglandin EP3 Receptors Sorin Tunarua, Till F
    Castor oil induces laxation and uterus contraction via ricinoleic acid activating prostaglandin EP3 receptors Sorin Tunarua, Till F. Althoffa, Rolf M. Nüsingb, Martin Dienerc, and Stefan Offermannsa,d,1 aDepartment of Pharmacology, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany; dMedical Faculty, bInstitute for Clinical Pharmacology, J. W. Goethe University Frankfurt, 60590 Frankfurt, Germany; and cInstitute for Veterinary Physiology, Justus Liebig University, 35392 Giessen, Germany Edited by John H. Exton, Vanderbilt University School of Medicine, Nashville, TN, and approved April 25, 2012 (received for review January 30, 2012) Castor oil is one of the oldest drugs. When given orally, it has by the enteric nervous system or are direct effects on intestinal a laxative effect and induces labor in pregnant females. The smooth muscle remained unclear. effects of castor oil are mediated by ricinoleic acid, a hydroxylated The present study was undertaken to elucidate the molecular fatty acid released from castor oil by intestinal lipases. Despite the mechanism underlying the biological effect of castor oil-derived wide-spread use of castor oil in conventional and folk medicine, ricinoleic acid. Based on cellular signaling studies and an siRNA the molecular mechanism by which ricinoleic acid acts remains screening approach, we identified prostaglandin E2 receptors as unknown. Here we show that the EP3 prostanoid receptor is spe- targets of ricinoleic acid and show that the EP3 receptor medi- cifically activated by ricinoleic acid and that it mediates the phar- ates the effects of castor oil on the motility of the uterus and macological effects of castor oil. In mice lacking EP3 receptors, the the intestine.
    [Show full text]