Revised Correlation of Silurian Provincial Series of North America with Global and Regional Chronostratigraphic Units 13 and D Ccarb Chemostratigraphy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Brachiopod Phylogeny in the Cambrian Guliforms, Obolellates and Rhynchonelliforms (E.G., Zhang Et Al., 2009, 2014, 2015; Holmer Et Al., 2018A)
Permophiles Issue #66 Supplement 1 pods which may further address these questions. Glenn A. Brock The world’s oceans are changing. IPCC (2013) predictions Department of Biological Sciences, Macquarie University, NSW suggest that by the end of the current century our seas will be 2109, Australia ZDUPHUDQGWKHLUS+VLJQL¿FDQWO\ORZHU$OWKRXJKWKLVZLOOEH a challenge to all organisms, how will it impact brachiopods? Leonid E. Popov Given that they have a higher proportion of mineralised tissue 'HSDUWPHQWRI*HRORJ\1DWLRQDO0XVHXPRI:DOHV&DUGL൵ than virtually any other invertebrate group what will be the CF10 3NP, UK WKUHDWWRWKHPHLWKHULQWHUPVRIJURZLQJWKHLUVKHOOVLQWKH¿UVW Brachiopods are richly represented in the rock record and instance or repairing and maintaining that shell once it is made? as early as the Cambrian, where they show an impressive diver- In this talk I will review a series of experiments and historical sity of form and in shell morphology (e.g., Harper et al., 2017). studies undertaken with Emma Cross and Lloyd Peck (Cross et 3UHVHQWO\ WKH JURXS LV ¿UPO\ URRWHG ZLWKLQ WKH ORSKRWURFKR- al., 2015, 2016, 2018) that seek to explore the answers to these zoan branch of the bilaterian tree based on molecular data. Our questions. UHVHDUFKKDVLGHQWL¿HGVRPHPHPEHUVRIWKHHQLJPDWLF(DUO\ References Cambrian organophosphatic tommotiids as belonging to the &URVV(/3HFN/6 +DUSHU(02FHDQDFLGL¿FD- brachiopod stem (e.g., Holmer et al., 2002). Subsequent discov- tion does not impact shell growth or repair of the Antarctic HULHVRIWKH¿UVWHYHUDUWLFXODWHGVFOHULWRPHVRIEccentrotheca, brachiopod Liothyrella uva (Broderip, 1833). Journal of Paterimitra, and the inferred bivalved scleritome of Micrina f rom Experimental Marine Biology and Ecology, 462, 29–35. the lower Cambrian of South Australia reveals these three tom- Cross, E.L., Peck, L.S., Lamare, M.D. -
Stratographic Coloumn of Iowa
Iowa Stratographic Column November 4, 2013 QUATERNARY Holocene Series DeForest Formation Camp Creek Member Roberts Creek Member Turton Submember Mullenix Submember Gunder Formation Hatcher Submember Watkins Submember Corrington Formation Flack Formation Woden Formation West Okoboji Formation Pleistocene Series Wisconsinan Episode Peoria Formation Silt Facies Sand Facies Dows Formation Pilot Knob Member Lake Mills Member Morgan Member Alden Member Noah Creek Formation Sheldon Creek Formation Roxana/Pisgah Formation Illinoian Episode Loveland Formation Glasford Formation Kellerville Memeber Pre-Illinoian Wolf Creek Formation Hickory Hills Member Aurora Memeber Winthrop Memeber Alburnett Formation A glacial tills Lava Creek B Volcanic Ash B glacial tills Mesa Falls Volcanic Ash Huckleberry Ridge Volcanic Ash C glacial tills TERTIARY Salt & Pepper sands CRETACEOUS "Manson" Group "upper Colorado" Group Niobrara Formation Fort Benton ("lower Colorado ") Group Carlile Shale Greenhorn Limestone Graneros Shale Dakota Formation Woodbury Member Nishnabotna Member Windrow Formation Ostrander Member Iron Hill Member JURASSIC Fort Dodge Formation PENNSYLVANIAN (subsystem of Carboniferous System) Wabaunsee Group Wood Siding Formation Root Formation French Creek Shale Jim Creek Limestone Friedrich Shale Stotler Formation Grandhaven Limestone Dry Shale Dover Limestone Pillsbury Formation Nyman Coal Zeandale Formation Maple Hill Limestone Wamego Shale Tarkio Limestone Willard Shale Emporia Formation Elmont Limestone Harveyville Shale Reading Limestone Auburn -
Early Silurian Oceanic Episodes and Events
Journal of the Geological Society, London, Vol. 150, 1993, pp. 501-513, 3 figs. Printed in Northern Ireland Early Silurian oceanic episodes and events R. J. ALDRIDGE l, L. JEPPSSON 2 & K. J. DORNING 3 1Department of Geology, The University, Leicester LE1 7RH, UK 2Department of Historical Geology and Palaeontology, SiSlvegatan 13, S-223 62 Lund, Sweden 3pallab Research, 58 Robertson Road, Sheffield $6 5DX, UK Abstract: Biotic cycles in the early Silurian correlate broadly with postulated sea-level changes, but are better explained by a model that involves episodic changes in oceanic state. Primo episodes were characterized by cool high-latitude climates, cold oceanic bottom waters, and high nutrient supply which supported abundant and diverse planktonic communities. Secundo episodes were characterized by warmer high-latitude climates, salinity-dense oceanic bottom waters, low diversity planktonic communities, and carbonate formation in shallow waters. Extinction events occurred between primo and secundo episodes, with stepwise extinctions of taxa reflecting fluctuating conditions during the transition period. The pattern of turnover shown by conodont faunas, together with sedimentological information and data from other fossil groups, permit the identification of two cycles in the Llandovery to earliest Weniock interval. The episodes and events within these cycles are named: the Spirodden Secundo episode, the Jong Primo episode, the Sandvika event, the Malm#ykalven Secundo episode, the Snipklint Primo episode, and the lreviken event. Oceanic and climatic cyclicity is being increasingly semblages (Johnson et al. 1991b, p. 145). Using this recognized in the geological record, and linked to major and approach, they were able to detect four cycles within the minor sedimentological and biotic fluctuations. -
Biostratigraphy of Some Early Middle Silurian Ostracoda, Eastern Canada PART 11- Additional Silurian Arthropoda from Arctic and Eastern Canada
This document was produced by scanning the original publication. Ce document est Ie produit d'une numerisation par balayage de la publication originale. BULLETIN 200 PART I - Biostratigraphy of some early Middle Silurian Ostracoda, eastern Canada PART 11- Additional Silurian Arthropoda from Arctic and eastern Canada M. J. Copeland Ottawa Canada Price $1.50 1971 PART I - Biostratigraphy of some Early Middle Silurian Ostracoda, eastern Canada PART II-Additional Silurian Arthropoda from Arctic and eastern Canada 1,IOO.1970.6119 GEOLOGICAL SURVEY OF CANADA BULLETIN 200 PART I - Biostratigraphy of some Early Middle Silurian Ostracoda, eastern Canada PART II-Additional Silurian Arthropoda from Arctic and eastern Canada By M. J. Copeland DEPARTMENT OF ENERGY, MINES AND RESOURCES CANADA © Crown Copyrights reserved Available by mail from Information Canada, Ottawa, from neological Survey of Canada, 601 Booth St., Oltawa. and at the following Information Canada bookshops: HALIFAX 1735 Barrington Street MONTREAL Mterna-Vie Building, 1182 St. Catherine Street West OITAWA 171 Slater Street TORONTO 221 Yonge Street WINNIPEG Mall Center Building, 499 Portage Avenue VANCOUVER 657 Granville Street or through your bookseller A deposit copy of this publication is also available for reference in public libraries across Canada Price: $1.50 Catalogue No. M42-200 Price subject to change without notice Information Canada Ottawa, 1971 PREFACE As more detailed information is obtained on the stra tigraphic occurrence and systematic paleontology of Paleozoic Arthropoda, it is increasingly evident that these forms present a useful key for determining the paleontological zonation and age relationships of the enclosing rocks. They are particularly important in strata of lacustrine, brackish, or restricted marine environments in which rapidly evolving leperditiid ostra codes, eurypterids, and phyllocarids may occur to the exclusion of other distinctive faunal elements. -
The Geologic Time Scale Is the Eon
Exploring Geologic Time Poster Illustrated Teacher's Guide #35-1145 Paper #35-1146 Laminated Background Geologic Time Scale Basics The history of the Earth covers a vast expanse of time, so scientists divide it into smaller sections that are associ- ated with particular events that have occurred in the past.The approximate time range of each time span is shown on the poster.The largest time span of the geologic time scale is the eon. It is an indefinitely long period of time that contains at least two eras. Geologic time is divided into two eons.The more ancient eon is called the Precambrian, and the more recent is the Phanerozoic. Each eon is subdivided into smaller spans called eras.The Precambrian eon is divided from most ancient into the Hadean era, Archean era, and Proterozoic era. See Figure 1. Precambrian Eon Proterozoic Era 2500 - 550 million years ago Archaean Era 3800 - 2500 million years ago Hadean Era 4600 - 3800 million years ago Figure 1. Eras of the Precambrian Eon Single-celled and simple multicelled organisms first developed during the Precambrian eon. There are many fos- sils from this time because the sea-dwelling creatures were trapped in sediments and preserved. The Phanerozoic eon is subdivided into three eras – the Paleozoic era, Mesozoic era, and Cenozoic era. An era is often divided into several smaller time spans called periods. For example, the Paleozoic era is divided into the Cambrian, Ordovician, Silurian, Devonian, Carboniferous,and Permian periods. Paleozoic Era Permian Period 300 - 250 million years ago Carboniferous Period 350 - 300 million years ago Devonian Period 400 - 350 million years ago Silurian Period 450 - 400 million years ago Ordovician Period 500 - 450 million years ago Cambrian Period 550 - 500 million years ago Figure 2. -
Strophomenide and Orthotetide Silurian Brachiopods from the Baltic Region, with Particular Reference to Lithuanian Boreholes
Strophomenide and orthotetide Silurian brachiopods from the Baltic region, with particular reference to Lithuanian boreholes PETRAS MUSTEIKIS and L. ROBIN M. COCKS Musteikis, P. and Cocks, L.R.M. 2004. Strophomenide and orthotetide Silurian brachiopods from the Baltic region, with particular reference to Lithuanian boreholes. Acta Palaeontologica Polonica 49 (3): 455–482. Epeiric seas covered the east and west parts of the old craton of Baltica in the Silurian and brachiopods formed a major part of the benthic macrofauna throughout Silurian times (Llandovery to Pridoli). The orders Strophomenida and Orthotetida are conspicuous components of the brachiopod fauna, and thus the genera and species of the superfamilies Plec− tambonitoidea, Strophomenoidea, and Chilidiopsoidea, which occur in the Silurian of Baltica are reviewed and reidentified in turn, and their individual distributions are assessed within the numerous boreholes of the East Baltic, particularly Lithua− nia, and attributed to benthic assemblages. The commonest plectambonitoids are Eoplectodonta(Eoplectodonta)(6spe− cies), Leangella (2 species), and Jonesea (2 species); rarer forms include Aegiria and Eoplectodonta (Ygerodiscus), for which the new species E. (Y.) bella is erected from the Lithuanian Wenlock. Eight strophomenoid families occur; the rare Leptaenoideidae only in Gotland (Leptaenoidea, Liljevallia). Strophomenidae are represented by Katastrophomena (4 spe− cies), and Pentlandina (2 species); Bellimurina (Cyphomenoidea) is only from Oslo and Gotland. Rafinesquinidae include widespread Leptaena (at least 11 species) and Lepidoleptaena (2 species) with Scamnomena and Crassitestella known only from Gotland and Oslo. In the Amphistrophiidae Amphistrophia is widespread, and Eoamphistrophia, Eocymostrophia, and Mesodouvillina are rare. In the Leptostrophiidae Mesoleptostrophia, Brachyprion,andProtomegastrophia are com− mon, but Eomegastrophia, Eostropheodonta, Erinostrophia,andPalaeoleptostrophia are only recorded from the west in the Baltica Silurian. -
University of Birmingham Carbon Isotope (13Ccarb) and Facies
University of Birmingham Carbon isotope (13Ccarb) and facies variability at the Wenlock-Ludlow boundary (Silurian) of the Midland Platform, UK Blain, John Allan; Wheeley, James; Ray, David DOI: 10.1139/cjes-2015-0194 License: None: All rights reserved Document Version Peer reviewed version Citation for published version (Harvard): Blain, JA, Wheeley, J & Ray, D 2016, 'Carbon isotope (13Ccarb) and facies variability at the Wenlock-Ludlow boundary (Silurian) of the Midland Platform, UK', Canadian Journal of Earth Science. https://doi.org/10.1139/cjes-2015-0194 Link to publication on Research at Birmingham portal Publisher Rights Statement: Publisher Version of Record available at: http://dx.doi.org/10.1139/cjes-2015-0194 Validated Feb 2016 General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. -
(Silurian) Anoxic Palaeo-Depressions at the Western Margin of the Murzuq Basin (Southwest Libya), Based on Gamma-Ray Spectrometry in Surface Exposures
GeoArabia, Vol. 11, No. 3, 2006 Gulf PetroLink, Bahrain Identification of early Llandovery (Silurian) anoxic palaeo-depressions at the western margin of the Murzuq Basin (southwest Libya), based on gamma-ray spectrometry in surface exposures Nuri Fello, Sebastian Lüning, Petr Štorch and Jonathan Redfern ABSTRACT Following the melting of the Gondwanan icecap and the resulting postglacial sea- level rise, organic-rich shales were deposited in shelfal palaeo-depressions across North Africa and Arabia during the latest Ordovician to earliest Silurian. The unit is absent on palaeohighs that were flooded only later when the anoxic event had already ended. The regional distribution of the Silurian black shale is now well-known for the subsurface of the central parts of the Murzuq Basin, in Libya, where many exploration wells have been drilled and where the shale represents the main hydrocarbon source rock. On well logs, the Silurian black shale is easily recognisable due to increased uranium concentrations and, therefore, elevated gamma-ray values. The uranium in the shales “precipitated” under oxygen- reduced conditions and generally a linear relationship between uranium and organic content is developed. The distribution of the Silurian organic-rich shales in the outcrop belts surrounding the Murzuq Basin has been long unknown because Saharan surface weathering has commonly destroyed the organic matter and black colour of the shales, making it complicated to identify the previously organic-rich unit in the field. In an attempt to distinguish (previously) organic-rich from organically lean shales at outcrop, seven sections that straddle the Ordovician-Silurian boundary were measured by portable gamma-ray spectrometer along the outcrops of the western margin of the Murzuq Basin. -
Bowman 2020.Pdf
Palaeogeography, Palaeoclimatology, Palaeoecology 553 (2020) 109799 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Integrated sedimentary, biotic, and paleoredox dynamics from multiple T localities in southern Laurentia during the late Silurian (Ludfordian) extinction event ⁎ Chelsie N. Bowmana, , Anders Lindskoga,b, Nevin P. Kozika, Claudia G. Richbourga, Jeremy D. Owensa, Seth A. Younga a Department of Earth, Ocean, & Atmospheric Sciences | National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306, USA b Department of Geology, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden ARTICLE INFO ABSTRACT Keywords: The Silurian was a time of major climatic transition punctuated by multiple biotic crises and global carbon cycle Sulfur isotopes perturbations. The most severe of these biotic events was the late Silurian (Ludfordian) Lau/Kozlowskii ex- Iodine tinction event (LKE) and the associated Lau carbon isotope excursion (CIE). Although the extinction event and Microfacies Lau CIE are globally documented, the only records thus far of local and global marine paleoredox conditions Anoxia through this interval are from a single region in Scandinavia. Here we examine four sections along a bathymetric Euxinia transect of mixed carbonate-siliciclastic sediments from western Tennessee, USA. A novel approach using a Sea level multi-proxy dataset combining high-resolution geochemical data and microfacies analyses from -
Year in Review 2018/2019
Contents Shaping the Museum of the Future 2 Philanthropy on View 4 The Year at a Glance 8 Compelling Mix of Original and Touring Exhibitions 12 ROM Objects on Loan Locally and Globally 26 Leading-Edge Research 36 ROM Scholarship in Print 46 Community Connections 50 Access to First Peoples Art and Culture 58 Programming That Inspires 60 Learning at the ROM 66 Members and Volunteers 70 Digital Readiness 72 Philanthropy 74 ROM Leadership 80 Our Supporters 86 2 royal ontario museum year in review 2018–2019 3 One of the initiatives we were most proud of in 2018 was the opening of the Daphne Cockwell Gallery dedicated to First Peoples art & culture as free to the public every day the Museum is open. Initiatives such as this represent just one step on our journey. ROM programs and exhibitions continue to be bold, ambitious, and diverse, fostering discourse at home and around the world. Being Japanese Canadian: reflections on a broken world, Gods in My Home: Chinese New Year with Ancestor Portraits and Deity Prints and The Evidence Room helped ROM visitors connect past to present and understand forces and influences that have shaped our world, while #MeToo & the Arts brought forward a critical conversation about the arts, institutions, and cultural movements. Immersive and interactive exhibitions such as aptured in these pages is a pivotal Zuul: Life of an Armoured Dinosaur and Spiders: year for the Royal Ontario Museum. Fear & Fascination showcased groundbreaking Shaping Not only did the Museum’s robust ROM research and world-class storytelling. The Cattendance of 1.34 million visitors contribute to success achieved with these exhibitions set the our ranking as the #1 most-visited museum in stage for upcoming ROM-originals Bloodsuckers: the Canada and #7 in North America according to The Legends to Leeches, The Cloth That Changed the Art Newspaper, but a new report by Deloitte shows World: India’s Painted and Printed Cottons, and the the ROM, through its various activities, contributed busy slate of art, culture, and nature ahead. -
Early Silurian Δ13corg Excursions in the Foreland Basin of Baltica, Both
13 1 Early Silurian δ Corg excursions in the foreland basin of Baltica, both familiar 2 and surprising 3 4 Emma U. Hammarlund1,2*, David K. Loydell3, Arne T. Nielsen4, and Niels H. Schovsbo5 5 6 Affiliations: 7 1Translational Cancer Research, Laboratory Medicine, Lund University, Medicon Village 8 404:C3, Scheelevägen 2, 223 63 Lund, Sweden. 9 2Nordic Center for Earth Evolution, University of Southern Denmark, Campusvej 55, 5230 10 Odense M, Denmark. 11 3School of Earth and Environmental Sciences, University of Portsmouth, Burnaby Road, 12 Portsmouth PO1 3QL, United Kingdom. 13 4Department of Geosciences and Natural Resource Management, University of Copenhagen, 14 Øster Voldgade 10, 1350 København K, Denmark. 15 5Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350 Copenhagen K, 16 Denmark. 17 18 *Corresponding author e-mail: [email protected] 19 20 1 21 Abstract 22 The Sommerodde-1 core from Bornholm, Denmark, provides a nearly continuous 23 sedimentary archive from the Upper Ordovician through to the Wenlock Series (lower Silurian), 24 as constrained by graptolite biostratigraphy. The cored mudstones represent a deep marine 25 depositional setting in the foreland basin fringing Baltica and we present high-resolution data 13 26 on the isotopic composition of the section’s organic carbon (δ Corg). This chemostratigraphical 27 record is correlated with previously recognized δ13C excursions in the Upper Ordovician–lower 28 Silurian, including the Hirnantian positive isotope carbon excursion (HICE), the early Aeronian 29 positive carbon isotope excursion (EACIE), and the early Sheinwoodian positive carbon isotope 30 excursion (ESCIE). A new positive excursion of high magnitude (~4‰) is discovered in the 31 Telychian Oktavites spiralis Biozone (lower Silurian) and we name it the Sommerodde Carbon 13 32 Isotope Excursion (SOCIE). -
First Record of the Early Sheinwoodian Carbon Isotope Excursion (ESCIE) from the Barrandian Area of Northwestern Peri-Gondwana
Estonian Journal of Earth Sciences, 2015, 64, 1, 42–46 doi: 10.3176/earth.2015.08 First record of the early Sheinwoodian carbon isotope excursion (ESCIE) from the Barrandian area of northwestern peri-Gondwana Jiri Frýdaa,b, Oliver Lehnertc–e and Michael Joachimskic a Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6 – Suchdol, 165 21, Czech Republic b Czech Geological Survey, Klárov 3/131, 118 21 Prague 1, Czech Republic; [email protected] c GeoZentrum Nordbayern, Universität Erlangen, Schlossgarten 5, D-91054 Erlangen, Germany; [email protected], [email protected] d Department of Geology, Lund University, Sölvegatan 12, 223 62 Lund, Sweden; [email protected] e Institute of Geology at Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia Received 15 July 2014, accepted 21 October 2014 Abstract. The δ13C record from an early Sheinwoodian limestone unit in the Prague Basin suggests its deposition during the time of the early Sheinwoodian carbon isotope excursion (ESCIE). The geochemical data set represents the first evidence for the ESCIE in the Prague Basin which was located in high latitudes on the northwestern peri-Gondwana shelf during early Silurian times. Key words: Silurian, early Sheinwoodian, carbon isotope excursion, northern peri-Gondwana, Barrandian area, Prague Basin, Czech Republic. INTRODUCTION represent, beside coeval diamictites in western peri- Gondwana, an evidence of an early Silurian glaciation. The early Sheinwoodian carbon isotope excursion The expression of this glacial in the Prague Basin has (ESCIE) is known from several palaeocontinents in the already been discussed with respect to the deposition Silurian tropics and subtropics (Lehnert et al.