Tese Daniele Acuña
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arianta 6, 2018
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Arianta Jahr/Year: 2018 Band/Volume: 6 Autor(en)/Author(s): diverse Artikel/Article: Abstracts Talks Alpine and other land snails 11-27 ARIANTA 6 and correspond ecologically. For instance, the common redstart is a bird species breeding in the lowlands, whereas the black redstart is native to higher altitudes. Some species such as common swift and kestrel, which are originally adapted to enduring in rocky areas, even found a secondary habitat in the house facades and street canyons of towns and big cities. Classic rock dwellers include peregrine, eagle owl, rockthrush, snowfinch and alpine swift. The presentation focuses on the biology, causes of threat as well as conservation measures taken by the national park concerning the species golden eagle, wallcreeper, crag martin and ptarmigan. Birds breeding in the rocks might not be that high in number, but their survival is all the more fascinating and worth protecting as such! Abstracts Talks Alpine and other land snails Arranged in chronological order of the program Rangeconstrained cooccurrence simulation reveals little niche partitioning among rockdwelling Montenegrina land snails (Gastropoda: Clausiliidae) Zoltán Fehér1,2,3, Katharina JakschMason1,2,4, Miklós Szekeres5, Elisabeth Haring1,4, Sonja Bamberger1, Barna PállGergely6, Péter Sólymos7 1 Central Research Laboratories, Natural History Museum Vienna, Austria; [email protected] -
Molecular Detection of Human Parasitic Pathogens
MOLECULAR DETECTION OF HUMAN PARASITIC PATHOGENS MOLECULAR DETECTION OF HUMAN PARASITIC PATHOGENS EDITED BY DONGYOU LIU Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2013 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20120608 International Standard Book Number-13: 978-1-4398-1243-3 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. -
UC Santa Barbara Dissertation Template
UNIVERSITY OF CALIFORNIA Santa Barbara Social organization in trematode parasitic flatworms A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Ecology, Evolution and Marine Biology by Ana Elisa Garcia Vedrenne Committee in charge: Professor Armand M. Kuris, Chair Professor Kathleen R. Foltz Professor Ryan F. Hechinger Professor Todd H. Oakley March 2018 The dissertation of Ana Elisa Garcia Vedrenne is approved. _____________________________________ Ryan F. Hechinger _____________________________________ Kathleen R. Foltz _____________________________________ Todd H. Oakley _____________________________________ Armand M. Kuris, Committee Chair March 2018 ii Social organization in trematode parasitic flatworms Copyright © 2018 by Ana Elisa Garcia Vedrenne iii Acknowledgements As I wrap up my PhD and reflect on all the people that have been involved in this process, I am happy to see that the list goes on and on. I hope I’ve expressed my gratitude adequately along the way– I find it easier to express these feeling with a big hug than with awkward words. Nonetheless, the time has come to put these acknowledgements in writing. Gracias, gracias, gracias! I would first like to thank everyone on my committee. I’ve been lucky to have a committee that gave me freedom to roam free while always being there to help when I got stuck. Armand Kuris, thank you for being the advisor that says yes to adventures, for always having your door open, and for encouraging me to speak my mind. Thanks for letting Gaby and me join your lab years ago and inviting us back as PhD students. Kathy Foltz, it is impossible to think of a better role model: caring, patient, generous and incredibly smart. -
Chromosome Diversity and Evolution in Helicoide a (Gastropoda: Stylommatophora): a Synthesis from Original and Literature Data
animals Article Chromosome Diversity and Evolution in Helicoide a (Gastropoda: Stylommatophora): A Synthesis from Original and Literature Data Agnese Petraccioli 1, Paolo Crovato 2, Fabio Maria Guarino 1 , Marcello Mezzasalma 1,3,* , Gaetano Odierna 1,* , Orfeo Picariello 1 and Nicola Maio 1 1 Department of Biology, University of Naples Federico II, I-80126 Naples, Italy; [email protected] (A.P.); [email protected] (F.M.G.); [email protected] (O.P.); [email protected] (N.M.) 2 Società Italiana di Malacologia, Via Mezzocannone, 8-80134 Naples, Italy; [email protected] 3 CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Rua Padre Armando Quintas 7, 4485-661 Vairaõ, Portugal * Correspondence: [email protected] (M.M.); [email protected] (G.O.) Simple Summary: The superfamily Helicoidea is a large and diverse group of Eupulmonata. The su- perfamily has been the subject of several molecular and phylogenetic studies which greatly improved our knowledge on the evolutionary relationships and historical biogeography of many families. In contrast, the available karyological information on Helicoidea still results in an obscure general picture, lacking a homogeneous methodological approach and a consistent taxonomic record. Never- theless, the available karyological information highlights the occurrence of a significant chromosomal diversity in the superfamily in terms of chromosome number (varying from 2n = 40 to 2n = 62), Citation: Petraccioli, A.; Crovato, P.; chromosome morphology and the distribution of different karyological features among different Guarino, F.M.; Mezzasalma, M.; taxonomic groups. Here we performed a molecular and a comparative cytogenetic analysis on of Odierna, G.; Picariello, O.; Maio, N. -
UC Santa Barbara Dissertation Template
UC Santa Barbara UC Santa Barbara Electronic Theses and Dissertations Title Social organization in trematode parasitic flatworms Permalink https://escholarship.org/uc/item/2xg9s6xt Author Garcia Vedrenne, Ana Elisa Publication Date 2018 Supplemental Material https://escholarship.org/uc/item/2xg9s6xt#supplemental Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Santa Barbara Social organization in trematode parasitic flatworms A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Ecology, Evolution and Marine Biology by Ana Elisa Garcia Vedrenne Committee in charge: Professor Armand M. Kuris, Chair Professor Kathleen R. Foltz Professor Ryan F. Hechinger Professor Todd H. Oakley March 2018 The dissertation of Ana Elisa Garcia Vedrenne is approved. _____________________________________ Ryan F. Hechinger _____________________________________ Kathleen R. Foltz _____________________________________ Todd H. Oakley _____________________________________ Armand M. Kuris, Committee Chair March 2018 ii Social organization in trematode parasitic flatworms Copyright © 2018 by Ana Elisa Garcia Vedrenne iii Acknowledgements As I wrap up my PhD and reflect on all the people that have been involved in this process, I am happy to see that the list goes on and on. I hope I’ve expressed my gratitude adequately along the way– I find it easier to express these feeling with a big hug than with awkward words. Nonetheless, the time has come to put these acknowledgements in writing. Gracias, gracias, gracias! I would first like to thank everyone on my committee. I’ve been lucky to have a committee that gave me freedom to roam free while always being there to help when I got stuck. -
Spined Echinostoma Spp.: a Historical Review
ISSN (Print) 0023-4001 ISSN (Online) 1738-0006 Korean J Parasitol Vol. 58, No. 4: 343-371, August 2020 ▣ INVITED REVIEW https://doi.org/10.3347/kjp.2020.58.4.343 Taxonomy of Echinostoma revolutum and 37-Collar- Spined Echinostoma spp.: A Historical Review 1,2, 1 1 1 3 Jong-Yil Chai * Jaeeun Cho , Taehee Chang , Bong-Kwang Jung , Woon-Mok Sohn 1Institute of Parasitic Diseases, Korea Association of Health Promotion, Seoul 07649, Korea; 2Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul 03080, Korea; 3Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea Abstract: Echinostoma flukes armed with 37 collar spines on their head collar are called as 37-collar-spined Echinostoma spp. (group) or ‘Echinostoma revolutum group’. At least 56 nominal species have been described in this group. However, many of them were morphologically close to and difficult to distinguish from the other, thus synonymized with the others. However, some of the synonymies were disagreed by other researchers, and taxonomic debates have been continued. Fortunately, recent development of molecular techniques, in particular, sequencing of the mitochondrial (nad1 and cox1) and nuclear genes (ITS region; ITS1-5.8S-ITS2), has enabled us to obtain highly useful data on phylogenetic relationships of these 37-collar-spined Echinostoma spp. Thus, 16 different species are currently acknowledged to be valid worldwide, which include E. revolutum, E. bolschewense, E. caproni, E. cinetorchis, E. deserticum, E. lindoense, E. luisreyi, E. me- kongi, E. miyagawai, E. nasincovae, E. novaezealandense, E. -
Selfing and Outcrossing in a Parasitic Hermaphrodite Helminth (Trematoda, Echinostomatidae)
Heredity 77 (1996 1—8 Received 7 April 1995 Selfing and outcrossing in a parasitic hermaphrodite helminth (Trematoda, Echinostomatidae) SANDRINE TROUVE, FRANOIS RENAUDtI PATRICK DURAND & JOSEPH JOURDANE* Centre de Biologie et d'Ecologie Tropicale et Méditerranéenne, Laboratoire de Biologie Animale, CNRS URA 698, Université de Perpignan, Avenue de Villeneuve, 66860 Perpignan Cedex and fLaboratoire de Parasitologie Comparée, CNRS URA 698, USTL Montpe/lier II, Place E. Batailon, 34095 Montpe/lier Cedex 05, France Echinostomesare simultaneous hermaphrodite trematodes, parasitizing the intestine of verte- brates. They are able to self- and cross-inseminate. Using electrophoretic markers specific for three geographical isolates (strains) of Echinostoma caproni, we studied the outcrossing rate from a 'progeny-array analysis' by comparing the mother genotype with those of its progeny. In a simultaneous infection of a single mouse with two individuals of two different strains, each individual exhibits an unrestricted mating pattern involving both self- and cross-fertilization. The association in mice of two adults of the same strain and one adult of another strain shows a marked mate preference between individuals of the same isolate. From mice coinfected with one parent of the three isolates, each parent was shown to be capable of giving and receiving sperm to and from at least two different partners. Mating system polymorphism in our parasitic model is thus discussed in the context of the theories usually advanced. Keywords:assortativemating, -
Lietuvos Moliuskų Sąrašas/Check List of Mollusca Living in Lithuania
LIETUVOJE GYVENANČIŲ MOLIUSKŲ TAKSONOMINIS SĄRAŠAS Parengė Albertas Gurskas Duomenys atnaujinti 2019-09-05 Check list of mollusca in Lithuania Compiled by Albertas Gurskas Updated 2019-09-05 TIPAS. MOLIUSKAI – MOLLUSCA Cuvier, 1795 KLASĖ. SRAIGĖS (pilvakojai) – GASTROPODA Cuvier, 1795 Poklasis. Orthogastropoda Ponder & Lindberg, 1995 Antbūris. Neritaemorphi Koken, 1896 BŪRYS. NERITOPSINA Cox & Knight, 1960 Antšeimis. Neritoidea Lamarck, 1809 Šeima. Neritiniai – Neritidae Lamarck, 1809 Pošeimis. Neritinae Lamarck, 1809 Gentis. Theodoxus Montfort, 1810 Pogentė. Theodoxus Montfort, 1810 Upinė rainytė – Theodoxus (Theodoxus) fluviatilis (Linnaeus, 1758) Antbūris. Caenogastropoda Cox, 1960 BŪRYS. ARCHITAENIOGLOSSA Haller, 1890 Antšeimis. Cyclophoroidea Gray, 1847 Šeima. Aciculidae Gray, 1850 Gentis Platyla Moquin-Tandon, 1856 Lygioji spaiglytė – Platyla polita (Hartmann, 1840) Antšeimis. Ampullarioidea Gray, 1824 Šeima. Nendreniniai – Viviparidae Gray, 1847 Pošeimis. Viviparinae Gray, 1847 Gentis. Viviparus Montfort, 1810 Ežerinė nendrenė – Viviparus contectus (Millet, 1813) Upinė nendrenė – Viviparus viviparus (Linnaeus, 1758) BŪRYS. NEOTAENIOGLOSSA Haller, 1892 Antšeimis. Rissooidea Gray, 1847 Šeima. Bitinijiniai – Bithyniidae Troschel, 1857 Gentis. Bithynia Leach, 1818 Pogentis. Bithynia Leach, 1818 Paprastoji bitinija – Bithynia (Bithynia) tentaculata (Linnaeus, 1758) Pogentis. Codiella Locard, 1894 Mažoji bitinija – Bithynia (Codiella) leachii (Sheppard, 1823) Balinė bitinija – Bithynia (Codiella) troschelii (Paasch, 1842) Šeima. Vandeniniai -
The Bulletin of Zoological Nomenclature V57 Part01
Original from and digitized by National University of Singapore Libraries Volume 57, Part 1, 31 March 2000, pp. 1-68 ISSN 0007-5167 Q_l B The Bulletin of Zoological Nomenclature llCZZCjjhe Official Periodical of the International Commissu on Zoological Nomenclature ional University of Singapore, Science brary (Serials) letin of Zoological Nomenclature Original from and digitized by National University of Singapore Libraries THE BULLETIN OF ZOOLOGICAL NOMENCLATURE The Bulletin is published four times a year for the International Commission on Zoological Nomenclature by the International Trust for Zoological Nomenclature, a charity (no. 211944) registered in England. The annual subscription for 2000 is £110 or $200, postage included. All manuscripts, letters and orders should be sent to: The Executive Secretary, International Commission on Zoological Nomenclature, c/o The Natural History Museum, Cromwell Road, London, SW7 5BD, U.K. (Tel. 020 7942 5653) (e-mail: [email protected]) (http://www.iczn.org) INTERNATIONAL COMMISSION ON ZOOLOGICAL NOMENCLATURE Officers President Prof A. Minelli {Italy) Vice-President Dr W. N. Eschmeyer {U.S.A.) Executive Secretary Dr P. K. Tubbs {United Kingdom) Members Prof W. J. Bock {U.S.A.; Ornithology) Dr V. Mahnert Dr P. Bouchet {France; Mollusca) {Switzerland; Ichthyology) Prof D. J. Brothers Prof U. R. Martins de Souza {South Africa; Hymenoptera) {Brazil; Coleoptera) Dr L. R. M. Cocks {U.K.; Brachiopoda) Prof S. F. Mawatari {Japan; Bryozoa) DrH.G. Cogger {Australia; Herpetology) Prof A. Minelli {Italy; Myriapoda) Prof C. Dupuis {France; Heteroptera) Dr C. Nielsen {Denmark; Bryozoa) Dr W. N. Eschmeyer Dr L. Papp {Hungary; Diptera) {U.S.A.; Ichthyology) Prof D. -
A Taxonomic Note on the Helicoid Land Snail Genus Traumatophora (Eupulmonata, Camaenidae)
A peer-reviewed open-access journal ZooKeys 835: 139–152 A(2019) taxonomic note on the helicoid land snail genus Traumatophora 139 doi: 10.3897/zookeys.835.32697 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A taxonomic note on the helicoid land snail genus Traumatophora (Eupulmonata, Camaenidae) Min Wu1 1 School of Life Sciences, Nanjing University, Xianlindadao 163, Qixia, Nanjing 210023, China Corresponding author: Min Wu ([email protected]) Academic editor: M. Haase | Received 27 December 2018 | Accepted 7 March 2019 | Published 5 April 2019 http://zoobank.org/F1A0E68D-DB99-4162-B720-45D31465CA00 Citation: Wu M (2019) A taxonomic note on the helicoid land snail genus Traumatophora (Eupulmonata, Camaenidae). ZooKeys 835: 139–152. https://doi.org/10.3897/zookeys.835.32697 Abstract Traumatophora triscalpta (Martens, 1875) is reported for the first time from the Tianmushan Mountains, Zhejiang Province, and its morpho-anatomy is described based on this new material. The genus Trau- matophora is redefined on the basis of both shell and genital anatomy of its type species. The presence of the dart apparatus suggests this genus belongs to the subfamily Bradybaeninae rather than to the Cama- eninae. This genus is distinguished from all other Chinese bradybaenine genera by the combination of the following key morphological characteristics: embryonic shell smooth, palatal teeth present, dart sac tiny with rounded proximal accessory sac that opens into a dart sac chamber, mucous glands well developed, entering an accessory sac through a papilla, epiphallic papilla absent, flagellum present. A comparison is also presented of Chinese bradybaenine genera with known terminal genitalia. -
Abbreviation Kiel S. 2005, New and Little Known Gastropods from the Albian of the Mahajanga Basin, Northwestern Madagaskar
1 Reference (Explanations see mollusca-database.eu) Abbreviation Kiel S. 2005, New and little known gastropods from the Albian of the Mahajanga Basin, Northwestern Madagaskar. AF01 http://www.geowiss.uni-hamburg.de/i-geolo/Palaeontologie/ForschungImadagaskar.htm (11.03.2007, abstract) Bandel K. 2003, Cretaceous volutid Neogastropoda from the Western Desert of Egypt and their place within the noegastropoda AF02 (Mollusca). Mitt. Geol.-Paläont. Inst. Univ. Hamburg, Heft 87, p 73-98, 49 figs., Hamburg (abstract). www.geowiss.uni-hamburg.de/i-geolo/Palaeontologie/Forschung/publications.htm (29.10.2007) Kiel S. & Bandel K. 2003, New taxonomic data for the gastropod fauna of the Uzamba Formation (Santonian-Campanian, South AF03 Africa) based on newly collected material. Cretaceous research 24, p. 449-475, 10 figs., Elsevier (abstract). www.geowiss.uni-hamburg.de/i-geolo/Palaeontologie/Forschung/publications.htm (29.10.2007) Emberton K.C. 2002, Owengriffithsius , a new genus of cyclophorid land snails endemic to northern Madagascar. The Veliger 45 (3) : AF04 203-217. http://www.theveliger.org/index.html Emberton K.C. 2002, Ankoravaratra , a new genus of landsnails endemic to northern Madagascar (Cyclophoroidea: Maizaniidae?). AF05 The Veliger 45 (4) : 278-289. http://www.theveliger.org/volume45(4).html Blaison & Bourquin 1966, Révision des "Collotia sensu lato": un nouveau sous-genre "Tintanticeras". Ann. sci. univ. Besancon, 3ème AF06 série, geologie. fasc.2 :69-77 (Abstract). www.fossile.org/pages-web/bibliographie_consacree_au_ammon.htp (20.7.2005) Bensalah M., Adaci M., Mahboubi M. & Kazi-Tani O., 2005, Les sediments continentaux d'age tertiaire dans les Hautes Plaines AF07 Oranaises et le Tell Tlemcenien (Algerie occidentale). -
Sequence and Structural Variation in the Genome of the Biomphalaria Glabrata Embryonic (Bge) Cell Line Nicolas J
Wheeler et al. Parasites & Vectors (2018) 11:496 https://doi.org/10.1186/s13071-018-3059-2 RESEARCH Open Access Sequence and structural variation in the genome of the Biomphalaria glabrata embryonic (Bge) cell line Nicolas J. Wheeler1, Nathalie Dinguirard1, Joshua Marquez2, Adrian Gonzalez2, Mostafa Zamanian1, Timothy P. Yoshino1 and Maria G. Castillo2* Abstract Background: The aquatic pulmonate snail Biomphalaria glabrata is a significant vector and laboratory host for the parasitic flatworm Schistosoma mansoni, an etiological agent for the neglected tropical disease schistosomiasis. Much is known regarding the host-parasite interactions of these two organisms, and the B. glabrata embryonic (Bge) cell line has been an invaluable resource in these studies. The B. glabrata BB02 genome sequence was recently released, but nothing is known of the sequence variation between this reference and the Bge cell genome, which has likely accumulated substantial genetic variation in the ~50 years since its isolation. Results: Here, we report the genome sequence of our laboratory subculture of the Bge cell line (designated Bge3), which we mapped to the B. glabrata BB02 reference genome. Single nucleotide variants (SNVs) were predicted and focus was given to those SNVs that are most likely to affect the structure or expression of protein-coding genes. Furthermore, we have highlighted and validated high-impact SNVs in genes that have often been studied using Bge cells as an in vitro model, and other genes that may have contributed to the immortalization of this cell line. We also resolved representative karyotypes for the Bge3 subculture, which revealed a mixed population exhibiting substantial aneuploidy, in line with previous reports from other Bge subcultures.