Zoosystema2019v41a29 Pdfa.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Zoosystema2019v41a29 Pdfa.Pdf DIRECTEUR DE LA PUBLICATION: Bruno David Président du Muséum national d’Histoire naturelle RÉDACTRICE EN CHEF / EDITOR-IN-CHIEF: Laure Desutter-Grandcolas ASSISTANTS DE RÉDACTION / ASSISTANT EDITORS: Anne Mabille ([email protected]), Emmanuel Côtez MISE EN PAGE / PAGE LAYOUT: Anne Mabille COMITÉ SCIENTIFIQUE / SCIENTIFIC BOARD: James Carpenter (AMNH, New York, États-Unis) Maria Marta Cigliano (Museo de La Plata, La Plata, Argentine) Henrik Enghoff (NHMD, Copenhague, Danemark) Rafael Marquez (CSIC, Madrid, Espagne) Peter Ng (University of Singapore) Norman I. Platnick (AMNH, New York, États-Unis) Jean-Yves Rasplus (INRA, Montferrier-sur-Lez, France) Jean-François Silvain (IRD, Gif-sur-Yvette, France) Wanda M. Weiner (Polish Academy of Sciences, Cracovie, Pologne) John Wenzel (The Ohio State University, Columbus, États-Unis) COUVERTURE / COVER: Potential members of the genus Coccoglypta Pilsbry, 1895. Zoosystema est indexé dans / Zoosystema is indexed in: – Science Citation Index Expanded (SciSearch®) – ISI Alerting Services® – Current Contents® / Agriculture, Biology, and Environmental Sciences® – Scopus® Zoosystema est distribué en version électronique par / Zoosystema is distributed electronically by: – BioOne® (http://www.bioone.org) Les articles ainsi que les nouveautés nomenclaturales publiés dans Zoosystema sont référencés par / Articles and nomenclatural novelties published in Zoosystema are referenced by: – ZooBank® (http://zoobank.org) Zoosystema est une revue en fl ux continu publiée par les Publications scientifi ques du Muséum, Paris / Zoosystema is a fast track journal published by the Museum Science Press, Paris Les Publications scientifi ques du Muséum publient aussi / The Museum Science Press also publish: Adansonia, Geodiversitas, Anthropozoologica, European Journal of Taxonomy, Naturae, Cryptogamie sous-sections Algologie, Bryologie, Mycologie. Diff usion – Publications scientifi ques Muséum national d’Histoire naturelle CP 41 – 57 rue Cuvier F-75231 Paris cedex 05 (France) Tél. : 33 (0)1 40 79 48 05 / Fax : 33 (0)1 40 79 38 40 diff [email protected] / http://sciencepress.mnhn.fr © Publications scientifi ques du Muséum national d’Histoire naturelle, Paris, 2019 ISSN (imprimé / print) : 1280-9551/ ISSN (électronique / electronic) : 1638-9387 A review of the genus Coccoglypta Pilsbry, 1895 (Gastropoda: Pulmonata: Camaenidae) Barna PÁLL-GERGELY Plant Protection Institute, Centre for Agricultural Research, Herman Ottó Street 15, Budapest, H-1022 (Hungary) [email protected] [email protected] (corresponding author) András HUNYADI Adria sétány 10G 2/5., Budapest H-1148 (Hungary) Zhe-Yu CHEN Changqing Campus, College of food science and engineering, Wuhan Polytechnic University, Wuhan 430023, (P.R. China) Zhi-Tong LYU The Museum of Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, (P.R. China) Submitted on 4 January 2019 | Accepted on 8 April 2019 | Published on 20 December 2019 urn:lsid:zoobank.org:pub:D8049201-7F49-48A9-BA4D-5D6AEC55430E Páll-Gergely B., Hunyadi A., Chen Z.-Y. & Lyu Z.-T. 2019. — A review of the genus Coccoglypta Pilsbry, 1895 (Gas- tropoda: Pulmonata: Camaenidae). Zoosystema 41 (29): 595-608. https://doi.org/10.5252/zoosystema2019v41a29. http://zoosystema.com/41/29 ABSTRACT So far, the genus Coccoglypta Pilsbry, 1895 consisted of two species and two subspecies as follows: C. pinchoniana (Heude, 1886) type species of the genus, C. scrobiculata scrobiculata (Gredler, 1885) and C. scrobiculata hupeiana (Gredler, 1887). We examined shells and genitalia, and performed mo- lecular analyses of Coccoglypta specimens from Sichuan Province, which have revealed the existence of a yet undescribed species (Coccoglypta liui Páll-Gergely, n. sp.). Based on conchological information, Coccoglypta scrobiculata does not belong to the Camaenidae Pilsbry, 1895 s.l., but to the Ariophantidae Godwin-Austen, 1883. Since the systematics of Ariophantidae is not fully resolved yet, it is diffi cult to place this species in an appropriate genus. Th e conchologically most similar species is Hemiplecta KEY WORDS laotica (Möllendorff , 1899), therefore Coccoglypta scrobiculata is transferred to the genus Hemiplecta Anatomy, Albers, 1850. Eulota arbusticola chrysomphala Möllendorff , 1899 is elevated to species level, and treated shell sculpture, as “Bradybaena” chrysomphala (Möllendorff , 1899), because its shell diff ers considerably from that of China, new combinations, Bradybaena arbusticola (Deshayes, 1870). Bradybaena arbusticola, Satsuma leprosula (Heude, 1885) new species. and Helix billiana Heude, 1882 are assigned to Coccoglypta based on their mamillated sculpture. ZOOSYSTEMA • 2019 • 41 (29) © Publications scientifi ques du Muséum national d’Histoire naturelle, Paris. www.zoosystema.com 595 Páll-Gergely B. et al. RÉSUMÉ Étude sur le genre Coccoglypta Pilsbry, 1895 (Gastropoda: Pulmonata: Camaenidae). Jusqu’à présent, le genre Coccoglypta Pilsbry, 1895 comprenait deux espèces et deux sous-espèces : C. pin- choniana (Heude, 1886) espèce type du genre, C. scrobiculata scrobiculata (Gredler, 1885) et C. scrobiculata hupeiana (Gredler, 1887). Nous avons examiné les coquilles et les genitalia et eff ectué des analyses molécu- laires des spécimens de Coccoglypta de la province du Sichuan, qui ont révélé l’existence d’une espèce encore non décrite (Coccoglypta liui Páll-Gergely, n. sp.). Sur la base d’informations conchologiques, Coccoglypta scrobiculata n’appartient pas aux Camaenidae Pilsbry, 1895 s.l., mais aux Ariophantidae Godwin-Austen, 1883. La systématique des Ariophantidae n’étant pas encore entièrement résolue, il est diffi cile de placer cette espèce dans le genre approprié. Du point de vue des caractères conchologiques, l’espèce la plus simi- MOTS CLÉS laire étant Hemiplecta laotica (Möllendorff , 1899), Coccoglypta scrobiculata est donc transférée au genre Anatomie, Hemiplecta Albers, 1850. Eulota arbusticola chrysomphala Möllendorff , 1899 est élevée au niveau espèce et coquille sculpture, traitée comme “Bradybaena” chrysomphala (Möllendorff , 1899), car sa coquille diff ère considérablement Chine, combinaisons nouvelles, de celle de Bradybaena arbusticola (Deshayes, 1870). Bradybaena arbusticola, Satsuma leprosula (Heude, espèce nouvelle. 1885) et Helix billiana Heude, 1882 sont aff ectés à Coccoglypta sur la base de leur sculpture mamillée. INTRODUCTION drawings were produced. Appendix 1 presents locality names cited verbatim from the specimen labels. So far, Coccoglypta Pilsbry, 1895 has been known as a group of middle-sized camaenids inhabiting China (Schileyko 2004). Yen MOLECULAR ANALYSIS (1939) recognised two species and two subspecies as members Muscle tissue for DNA extraction was attained from each a of this genus: C. pinchoniana (Heude, 1886) from Sichuan, speci men of Coccoglypta liui Páll-Gergely, n. sp. (A1, China, Sichuan C. scrobiculata scrobiculata (Gredler, 1885) from Hunan and Province, Qingcheng Houshan, c. 30°55’N, 103°29’40”E, Liu C. scrobiculata hupeiana (Gredler, 1887) from Hubei. Zheng-Ping leg. , 07.IV.2018, SYS m001013) and Coccoglypta We have examined shell and ethanol-preserved material of pinchoniana (China, Sichuan Province, Chongzhou Shi, Jiezi Coccoglypta from Qingcheng Shan and Qingcheng Houshan Zhen, Fengqishan [风栖山], Liu Zheng-Ping leg., 13.I.2018, SYS (Near Chengdu, Sichuan), which resulted in the recognition of m001014), and then preserved in 95% ethanol. Genomic DNA two distinct species, one being C. pinchoniana, and the other was extracted from muscular tissue by using a DNA extraction kit being a species new to science. Examining shells of Coccoglypta from Tiangen Biotech (Beijing) Co., Ltd. Two mitochondrial genes, species and those of C. scrobiculata also revealed that the latter partial 16S ribosomal RNA gene (16S) and partial cytochrome C species does not belong to the Camaenidae Pilsbry, 1895, oxidase 1 gene (CO1), were amplifi ed. Primers used for 16S were but probably to the Ariophantidae Godwin-Austen, 1883, 16SA (5’-CGGCCGCCTGTTTATCAAAAACAT-3’) and 16SB although its generic placement is challenging due to the poorly (5’-GGAGCTCCGGTTTGAACTCAGATC-3’), and for CO1 established classifi cation of that family. Some camaenids are were co1F (5’- GGTCAACAAATCATAAAGATATTGG-3’) and known from the geographic vicinity of the area of Coccoglypta co1R (5’- TTAACTTCAGGGTGACCAAAAAATCA-3’). PCR that share the fi nely mamillated teleoconch sculpture of that amplifi cations were processed in a 20 μl reaction volume with the genus. However, without knowing the reproductive anatomy cycling conditions of an initial denaturing step at 94°C for 2 min, we can only hypothesise that they are related to Coccoglypta. 35 cycles of denaturing at 94°C for 30 s, annealing at 50°C for 30 Th e paper of Wu & Liu (2019) (published on 6 August s and extending at 72°C for 30s, and fi nal extending step of 72°C 2019) transferred Zonites scrobiculatus Gredler, 1885 to the for 10 min. PCR products were purifi ed with spin columns. Th e newly described Sinoxychilus Wu & Liu, 2019. Th e present purifi ed products were sequenced by Beijing Genomics Institute. manuscript was accepted on 8 April 2019 and published on All sequences were deposited in GenBank (Table 1). In addition, 20 December 2019, and classifi es that species in Hemiplecta 59 sequences from 36 known camaenid species were obtained from Albers, 1850. Instead of rewriting our manuscript entirely, we GenBank and incorporated into our dataset (Table 1). decided to publish the accepted version, which was written
Recommended publications
  • Arianta 6, 2018
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Arianta Jahr/Year: 2018 Band/Volume: 6 Autor(en)/Author(s): diverse Artikel/Article: Abstracts Talks Alpine and other land snails 11-27 ARIANTA 6 and correspond ecologically. For instance, the common redstart is a bird species breeding in the lowlands, whereas the black redstart is native to higher altitudes. Some species such as common swift and kestrel, which are originally adapted to enduring in rocky areas, even found a secondary habitat in the house facades and street canyons of towns and big cities. Classic rock dwellers include peregrine, eagle owl, rock­thrush, snowfinch and alpine swift. The presentation focuses on the biology, causes of threat as well as conservation measures taken by the national park concerning the species golden eagle, wallcreeper, crag martin and ptarmigan. Birds breeding in the rocks might not be that high in number, but their survival is all the more fascinating and worth protecting as such! Abstracts Talks Alpine and other land snails Arranged in chronological order of the program Range­constrained co­occurrence simulation reveals little niche partitioning among rock­dwelling Montenegrina land snails (Gastropoda: Clausiliidae) Zoltán Fehér1,2,3, Katharina Jaksch­Mason1,2,4, Miklós Szekeres5, Elisabeth Haring1,4, Sonja Bamberger1, Barna Páll­Gergely6, Péter Sólymos7 1 Central Research Laboratories, Natural History Museum Vienna, Austria; [email protected]
    [Show full text]
  • 137-144. New Hemiplecta
    Biodiversity Journal , 2012, 3 (2): 137-144 A new species of Hemiplecta Albers, 1850 (Gastropoda, Pul - monata, Ariophantidae) from Sumatra, Indonesia David P. Cilia 1* & John Abbas 2 1 29, Triq il-Palazz l-Aħmar, Santa Venera, Malta 28, Jalan Demaga Baru, Muara Angke, Jakarta Utara Pos 14450, Jakarta, Indonesia *Corresponding author, e-mail: [email protected] ABSTRACT The ariophantid Hemiplecta belerang sp. nov. from South Sumatra is described in this paper. It is compared with its closest congeners, from which it is geographically and reproductively isolated. KEY WORDS Ariophantidae; Hemiplecta belerang n. sp.; Sumatra; Indonesia. Received 03.06.2012; accepted 21.06.2012; printed 30.06.2012 INTRODUCTION d'Histoire Naturelle, Paris, France (MNHN); Na - tural History Museum, London, United Kingdom The family Ariophantidae Godwin-Austen, (NHMUK); National Museum of Natural History, 1888 is nested within the limacoid clade of pulmo - Mdina, Malta (NMNH); Zoological Department nates and is native to south-east Asia and India of Tel Aviv University, Israel (TAU); Institut für (Hausdorf, 2000). Evolutionsbiologie und Umweltwissenschaften/ The family includes the genus Hemiplecta Al - Zoologisches Museum Universität Zürich-Irchel, bers, 1850, a group of medium to large-sized Switzerland (ZMZ). ground-inhabiting snails (Boonngam et al., 2008; Morphology and anatomy. DG = dart gland; Schilthuizen, 2008), and the Sumatran representa - DGR = dart gland retractor muscle; D = diameter; tives include H. abbasi Maassen, 2009, H. goliath E = epiphallus; EC = epiphallic caecum; F = fla - van Benthem Jutting, 1959, H. humphreysiana gellum; GA = genital atrium; H = height; ht = ho - (Lea, 1840), H. obliquata (Reeve, 1852) and H. lotype; P = penis; PRM = penial retractor muscle; obliqueundulata van Benthem Jutting, 1959 (see S = spermatheca; sd = standard deviation; U = um - van Benthem Jutting, 1959; Dharma, 2005; Maas - bilicus; V = vagina; VD = was deferens; x = mean sen, 2009).
    [Show full text]
  • Natural Selection in the Origin
    Natural selection in the origin: how does selection act on snails’ shell colour in the source of a diversified population? Shun Ito1, Takahiro Hirano1, Satoshi Chiba1, and Junji Konuma2 1Tohoku University 2Toho University June 7, 2021 Abstract The mechanisms of adaptive radiation with phenotypic diversification and further adaptive speciation have been becoming clearer through a number of studies. Natural selection is one of the primary factors that contribute to these mechanisms. It has been demonstrated that divergent natural selection acts on a certain trait in adaptive radiation. However, it is not often known how natural selection acts on the source of a diversified population, although it has been detected in phylogenetic studies. Our study demonstrates how selection acts on a trait in a source population of diversified population using the Japanese land snail Euhadra peliomphala simodae. This snail’s shell colour has diversified due to disruptive selection after migration from the mainland to islands. We used trail-camera traps to identify the cause of natural selection on both the mainland and an island. We then conducted a mark-recapture experiment on the mainland to detect natural selection and compare the shape and strength of it to previous study in an island. In total, we captured and marked around 1,700 snails, and some of them were preyed on by an unknown predator. The trail-camera traps showed that the predator is the large Japanese field mouse Apodemus speciosus, but this predation did not correlate with shell colour. A Bayesian approach showed that the stabilising selection from factors other than predation acted on shell colour.
    [Show full text]
  • The Ultrastructure of Spermatozoa and Spermiogenesis in Pyramidellid Gastropods, and Its Systematic Importance John M
    HELGOLANDER MEERESUNTERSUCHUNGEN Helgol~inder Meeresunters. 42,303-318 (1988) The ultrastructure of spermatozoa and spermiogenesis in pyramidellid gastropods, and its systematic importance John M. Healy School of Biological Sciences (Zoology, A08), University of Sydney; 2006, New South Wales, Australia ABSTRACT: Ultrastructural observations on spermiogenesis and spermatozoa of selected pyramidellid gastropods (species of Turbonilla, ~gulina, Cingufina and Hinemoa) are presented. During spermatid development, the condensing nucleus becomes initially anterio-posteriorly com- pressed or sometimes cup-shaped. Concurrently, the acrosomal complex attaches to an electron- dense layer at the presumptive anterior pole of the nucleus, while at the opposite (posterior) pole of the nucleus a shallow invagination is formed to accommodate the centriolar derivative. Midpiece formation begins soon after these events have taken place, and involves the following processes: (1) the wrapping of individual mitochondria around the axoneme/coarse fibre complex; (2) later internal metamorphosis resulting in replacement of cristae by paracrystalline layers which envelope the matrix material; and (3) formation of a glycogen-filled helix within the mitochondrial derivative (via a secondary wrapping of mitochondria). Advanced stages of nuclear condensation {elongation, transformation of fibres into lamellae, subsequent compaction) and midpiece formation proceed within a microtubular sheath ('manchette'). Pyramidellid spermatozoa consist of an acrosomal complex (round
    [Show full text]
  • Malacologica
    FOLIA Folia Malacol. 24(3): 111–177 MALACOLOGICA ISSN 1506-7629 The Association of Polish Malacologists Faculty of Biology, Adam Mickiewicz University Bogucki Wydawnictwo Naukowe Poznań, September 2016 http://dx.doi.org/10.12657/folmal.024.008 PATTERNS OF SPATIO-TEMPORAL VARIATION IN LAND SNAILS: A MULTI-SCALE APPROACH SERGEY S. KRAMARENKO Mykolaiv National Agrarian University, Paryzka Komuna St. 9, Mykolaiv, 54020, Ukraine (e-mail: [email protected]) ABSTRACT: Mechanisms which govern patterns of intra-specific vatiation in land snails were traced within areas of different size, using Brephulopsis cylindrica (Menke), Chondrula tridens (O. F. Müller), Xeropicta derbentina (Krynicki), X. krynickii (Krynicki), Cepaea vindobonensis (Férussac) and Helix albescens Rossmässler as examples. Morphometric shell variation, colour and banding pattern polymorphism as well as genetic polymorphism (allozymes and RAPD markers) were studied. The results and literature data were analysed in an attempt to link patterns to processes, with the following conclusions. Formation of patterns of intra- specific variation (initial processes of microevolution) takes different course at three different spatial scales. At micro-geographical scale the dominant role is played by eco-demographic characteristics of the species in the context of fluctuating environmental factors. At meso-geographical scale a special part is played by stochastic population-genetic processes. At macro-geographical scale more or less distinct clinal patterns are associated with basic macroclimatic
    [Show full text]
  • Endemic Land Snail Fauna (Mollusca) on a Remote Peninsula in the Ogasawara Archipelago, Northwestern Pacific1
    Endemic Land Snail Fauna (Mollusca) on a Remote Peninsula in the Ogasawara Archipelago, Northwestern Pacific1 Satoshi Chiba2,3, Angus Davison,4 and Hideaki Mori3 Abstract: Historically, the Ogasawara Archipelago harbored more than 90 na- tive land snail species, 90% of which were endemic. Unfortunately, about 40% of the species have already gone extinct across the entire archipelago. On Haha- jima, the second-largest island and the one on which the greatest number of species was recorded, more than 50% of species are thought to have been lost. We report here the results of a recent survey of the snails of a remote peninsula, Higashizaki, on the eastern coast of Hahajima. Although the peninsula is small (@0.3 km2) and only part is covered by forest (<0.1 km2), we found 12 land snail species, all of which are endemic to Ogasawara. Among these species, five had been thought to already be extinct on Hahajima, including Ogasawarana yoshi- warana and Hirasea acutissima. Of the former, there has been no record since its original description in 1902. Except for the much larger island of Anijima and the main part of Hahajima, no single region on the Ogasawara Archipelago maintains as great a number of native land snail species. It is probable that the land snail fauna of the Higashizaki Peninsula is exceptionally well preserved be- cause of a lack of anthropogenic disturbance and introduced species. In some circumstances, even an extremely small area can be an important and effective refuge for threatened land snail faunas. The native land snail fauna of the Pacific one such example: of 95 recorded species, islands is one of the most seriously endan- more than 90% are endemic (Kuroda 1930, gered faunas in the world (e.g., Murray et al.
    [Show full text]
  • Entre Los Stylommatophora (Mollusca: Gastropoda)
    Rev. peru. biol. 16(1): 051- 056 (Agosto 2009) © Facultad de Ciencias Biológicas UNMSM Posición evolutiva de BOSTRYX y SCUTALUS dentroVersión de Online los Stylommatophora ISSN 1727-9933 Posición evolutiva de caracoles terrestres peruanos (Orthalicidae) entre los Stylommatophora (Mollusca: Gastropoda) Evolutionary position of Peruvian land snails (Orthalicidae) among Stylommatophora (Mollusca: Gastropoda) Jorge Ramirez1,2, Rina Ramírez1,2, Pedro Romero1,2, Ana Chumbe1,2, Pablo Ramírez3 1Laboratorio de Sistemática Mole- cular y Filogeografía, Facultad de Resumen Ciencias Biológicas, Universidad Nacional Mayor de San Marcos. Los géneros Bostryx y Scutalus (Orthalicidae: Bulimulinae) son endémicos de América del Sur y están principal- Email Jorge Ramirez: jolobio@ mente distribuidos en la vertiente occidental de los Andes del Perú. El objetivo del presente trabajo fue evaluar hotmail.com su posición evolutiva dentro de los gastrópodos Stylommatophora basada en el marcador mitocondrial 16S 2Departamento de Malacología y Carcinología, Museo de Historia rRNA. Fueron obtenidas cuatro secuencias las que, junto con 28 de otros Stylommatophora disponibles en el Natural, Universidad Nacional GenBank, fueron alineadas con ClustalX. La reconstrucción filogenética se realizó mediante los métodos de Mayor de San Marcos. Neighbor-Joining, Máxima Parsimonia, Máxima Verosimilitud e Inferencia Bayesiana. El alineamiento resultó en Av. Arenales 1256, Apartado 14- 371 sitios, con presencia de indels. Los dos géneros de la Familia Orthalicidae por primera vez incluidos en una 0434, Lima-14, Perú. Email Rina filogenia molecular (Bostryx y Scutalus), formaron un grupo monofilético con otro miembro de la superfamilia Ramírez: [email protected] Orthalicoidea (Placostylus), tal como lo obtenido con marcadores nucleares. Se discute también su relación 3Laboratorio de Microbiología Molecular, Facultad de Ciencias evolutiva con otros caracoles terrestres.
    [Show full text]
  • The Diversity of Land Snail Fauna in Chonburi Province, Eastern Thailand
    Kasetsart J. (Nat. Sci.) 42 : 256 - 263 (2008) The Diversity of Land Snail Fauna in Chonburi Province, Eastern Thailand Pratin Boonngam*, Pongrat Dumrongrojwattana and Surin Matchacheep ABSTRACT Land snails diversity were investigated in several habitats in Chonburi Province, Eastern Thailand. Snails were collected from 14 areas throughout Chonburi Province. A total of 16 families 29 genera and 48 species were recorded, 22 of which had been previously reported. The others could be identified into genus level and at least nine of them are being proposed as new to science. Key words: land snail, Gastropoda, Chonburi province INTRODUCTION snail were reported for Chonburi Province previously by Panha (1996) Hemmen and Land snails belong to the Phylum Hemmen (2001) Panha and Burch (2005). The Mollusca, Class Gastropoda and include two present study was undertaken to update the species groups prosobranchs and pulmonates. list of land snails in Chonburi Province. Prosobranchs, frequently have heavily calcified shells and opercula covering the aperture or MATERIALS AND METHODS opening or their shells. Pulmonates, lack opercula and used lung in gas exchange process. As Specimens were collected from several herbivores, snails eat many kinds of fresh and dead habitats in Chonburi Province. Methods consisted leaves and are eaten by many animals such as some of collecting soil samples where shells or predacious insects, snakes, birds and small fragments of shells were found, or where snails mammals. They live under leaves, litter, logs, were suspected to be present. Limestone soils are stones and trash. Some land snails carry serve as by far the richest source of snails in Chonburi hosts for some parasites such as Hemiplecta Province.
    [Show full text]
  • Land Molluscan Fauna of the Dongsha Island with Twenty New Recorded Species
    Taiwania, 52(2): 145-151, 2007 Land Molluscan Fauna of the Dongsha Island with Twenty New Recorded Species Shu-Ping Wu(1), Chung-Chi Hwang(2), Hui-Ming Huang(3), Hsueh-Wen Chang(4), Yao-Sung Lin(1,5) and Pei-Fen Lee(1,5,6) (Manuscript received 19 October, 2006; accepted 10 February, 2007) ABSTRACT: A thorough field survey concerning the land molluscan fauna of the Dongsha Island in the South China Sea was conducted in summer and fall, 2006. Twenty-six species belonging to thirteen families of land snail were recorded. Of these, 20 species and four families are new records. Emendations of five species from the previous records were also made. Alive adults along with juvenile individuals were collected in most of the species. Since no endemic land snail species was found, we proposed that the plausible origin of these land snails might have dispersed from adjacent localities or via artificial introduction. KEY WORDS: Land molluscan fauna, Pratas Island, Taiwan, South China Sea, New recorded species. INTRODUCTION Ministry of the Interior. In particular, we conducted a thorough inventory on the land molluscan fauna in The Dongsha (Pratas) Island is situated at the the Dongsha Island and studied the distribution and western side of the Dongsha reef atoll and is the taxonomy of these species. We also discussed the largest island in the South China Sea. The atoll has a origin, dispersal pathway and biogeography of the reputation for abundance in fishery resources (Su et snails. al., 1976; Lu and Shieh, 1981). There are several natural resources inventory conducted in the island MATERIALS AND METHODS and adjacent waters (Chang et al., 1995; Chen et al., 1991; Chiang, 1975; Huang et al., 1994; Jeng et al., Study Area 2005; Severinghaus et al., 2005).
    [Show full text]
  • Snail Mucus from the Mantle and Foot of Two Land
    Noothuan et al. BMC Res Notes (2021) 14:138 https://doi.org/10.1186/s13104-021-05557-0 BMC Research Notes RESEARCH NOTE Open Access Snail mucus from the mantle and foot of two land snails, Lissachatina fulica and Hemiplecta distincta, exhibits diferent protein profle and biological activity Nattaphop Noothuan1, Kantamas Apitanyasai1, Somsak Panha2 and Anchalee Tassanakajon1* Abstract Objective: Snails secrete diferent types of mucus that serve several functions, and are increasingly being exploited for medical and cosmetic applications. In this study, we explored the protein pattern and compared the biological properties of the mucus secreted from the mantle collar and foot of two snail species, Lissachatina fulica and Hemi- plecta distincta. Result: Protein profle showed a diferent pattern between the two species and between the two secretory parts. The mantle-specifc protein bands were further characterized and among them was an antibacterial protein, achacin. Accordingly, the mucus from the mantle exhibited the higher antibacterial activity than that from the foot in both snail species. The mucus from H. distincta, frst reported here, also showed antibacterial properties, but with a lower activity compared to that for L. fulica. Snail mucus also exhibited anti-tyrosinase activity and antioxidant activity but with no signifcant diference between the foot and mantle mucus. These results indicate some diferent protein compositions and biological activities of snail slime from the mantle and foot, which might be associated with their specifc functions in the animal and are useful for medical applications. Keywords: Land snail, Snail mucus, Antimicrobial activity, Anti-tyrosinase activity, Antioxidant activity Introduction compounds have been found in snail mucus, such as Land snails have been used as food and for various allantoin, hyaluronic acid, peptides and proteins [3, 4, medical treatments for centuries [1–3].
    [Show full text]
  • A Phylogenetic Analysis of Polygyridae (Gastropoda: Pulmonata) Based on Mitochondrial DNA Sequence Data Nicholas A
    Southern Illinois University Carbondale OpenSIUC Honors Theses University Honors Program 2012 A Phylogenetic Analysis of Polygyridae (Gastropoda: Pulmonata) Based on Mitochondrial DNA Sequence Data Nicholas A. Defreitas Southern Illinois University Carbondale, [email protected] Follow this and additional works at: http://opensiuc.lib.siu.edu/uhp_theses Recommended Citation Defreitas, Nicholas A., "A Phylogenetic Analysis of Polygyridae (Gastropoda: Pulmonata) Based on Mitochondrial DNA Sequence Data" (2012). Honors Theses. Paper 348. This Dissertation/Thesis is brought to you for free and open access by the University Honors Program at OpenSIUC. It has been accepted for inclusion in Honors Theses by an authorized administrator of OpenSIUC. For more information, please contact [email protected]. A Phylogenetic Analysis of Polygyridae (Gastropoda: Pulmonata) Based on Mitochondrial DNA Sequence Data Nicholas Defreitas University Honors Program Senior Thesis Introduction Despite the increasing use of molecular methods to determine evolutionary relationships among taxa, molecular sequence data have never been used to assess the relationships among the polygyrid snails (Gastropoda:Pulmonata:Polygyridae). This is surprising, considering how large, charismatic and common they are. Polygyrids range across North America, going as far north as parts of Canada and south as Mexico and even deeper into Central America (Pilsbry 1940). There is a particular concentration of these snails in the Appalachian Mountains, where they primarily serve as detritivores and prey for various woodland vertebrates in forest habitats. Yet despite the broad geographic distribution and high abundance of polygyrids in many forest habitats, there is still little known about their phylogeny (evolutionary relationships). Polygyrids are broadly distributed across North America. Mesodontini and Triodopsini are both found in eastern North America (Hubricht 1985).
    [Show full text]
  • Pulmonata, Helicoidea, Hygromiidae)
    Ruthenica, 2019, vol. 29, No. 2: 77-86. © Ruthenica, 2019 Published online March 5, 2019 http: www.ruthenica.com On the phylogenetic relationships of Elbasania Schileyko et Fehér, 2017 (Pulmonata, Helicoidea, Hygromiidae) Marco T. NEIBER Universität Hamburg, Centrum für Naturkunde (CeNak), Zoologisches Museum, Abteilung Biodiversität der Tiere, Martin-Luther-King-Platz 3, 20146 Hamburg, GERMANY. E-Mail [email protected]; [email protected] ABSTRACT. The genus-group taxon Elbasania Schi- mainly on the basis of similarities of the dart appara- leyko et Fehér, 2017 has recently been introduced as a tus. subgenus of Metafruticicola Ihering, 1892 for a spe- In a comprehensive molecular phylogenetic study cies occurring in north-western Greece and Albania. Using mitochondrial and nuclear markers, the phyloge- of western Palearctic Helicoidea Rafinesque, 1815, netic relationships of Elbasania within Metafruticico- Razkin et al. [2015] classified the clade to which lini (Hygromiidae) are reconstructed. The results of hygromiids and related groups belong into three these analyses suggest that Elbasania is more closely newly delimited families: Canariellidae Schileyko, related to Hiltrudia Nordsieck, 1993, which has a range 1991, Geomitridae Boettger, 1909 and Hygromii- adjacent to that of Elbasania from Croatia to northern dae. The Hygromiidae were classified into three Albania, than to Metafruticicola. Elbasania shares subfamilies, Hygromiinae (including Trochulinae with Hiltrudia and also Cyrnotheba Germain, 1929 a Lindholm, 1927 and Monachainae Wenz, 1930 very characteristic microsculpture of the shell and an (1904)), Ciliellinae Schileyko, 1970 and Leptaxinae overall similar genital system, which however differs Boettger, 1909. However, the sampling of Hygromi- among these three taxa with regard to its internal struc- idae was focused on West European taxa and repre- tures, especially those of the penis.
    [Show full text]