Schistocephalus Solidus and Its Interactions with Aquatic Hosts
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Guide to Culturing Parasites, Establishing Infections and Assessing Immune Responses in the Three-Spined Stickleback
ARTICLE IN PRESS Hook, Line and Infection: A Guide to Culturing Parasites, Establishing Infections and Assessing Immune Responses in the Three-Spined Stickleback Alexander Stewart*, Joseph Jacksonx, Iain Barber{, Christophe Eizaguirrejj, Rachel Paterson*, Pieter van West#, Chris Williams** and Joanne Cable*,1 *Cardiff University, Cardiff, United Kingdom x University of Salford, Salford, United Kingdom { University of Leicester, Leicester, United Kingdom jj Queen Mary University of London, London, United Kingdom #Institute of Medical Sciences, Aberdeen, United Kingdom **National Fisheries Service, Cambridgeshire, United Kingdom 1Corresponding author: E-mail: [email protected] Contents 1. Introduction 3 2. Stickleback Husbandry 7 2.1 Ethics 7 2.2 Collection 7 2.3 Maintenance 9 2.4 Breeding sticklebacks in vivo and in vitro 10 2.5 Hatchery 15 3. Common Stickleback Parasite Cultures 16 3.1 Argulus foliaceus 17 3.1.1 Introduction 17 3.1.2 Source, culture and infection 18 3.1.3 Immunology 22 3.2 Camallanus lacustris 22 3.2.1 Introduction 22 3.2.2 Source, culture and infection 23 3.2.3 Immunology 25 3.3 Diplostomum Species 26 3.3.1 Introduction 26 3.3.2 Source, culture and infection 27 3.3.3 Immunology 28 Advances in Parasitology, Volume 98 ISSN 0065-308X © 2017 Elsevier Ltd. http://dx.doi.org/10.1016/bs.apar.2017.07.001 All rights reserved. 1 j ARTICLE IN PRESS 2 Alexander Stewart et al. 3.4 Glugea anomala 30 3.4.1 Introduction 30 3.4.2 Source, culture and infection 30 3.4.3 Immunology 31 3.5 Gyrodactylus Species 31 3.5.1 Introduction 31 3.5.2 Source, culture and infection 32 3.5.3 Immunology 34 3.6 Saprolegnia parasitica 35 3.6.1 Introduction 35 3.6.2 Source, culture and infection 36 3.6.3 Immunology 37 3.7 Schistocephalus solidus 38 3.7.1 Introduction 38 3.7.2 Source, culture and infection 39 3.7.3 Immunology 43 4. -
Diversidade E Dinâmica De Microcrustáceos Em Áreas Úmidas Intermitentes
Universidade Federal do Rio Grande Instituto de Ciências Biológicas Pós-graduação em Biologia de Ambientes Aquáticos Continentais Diversidade e dinâmica de microcrustáceos em áreas úmidas intermitentes Maiby Glorize da Silva Bandeira Orientadora: Profa. Dra. Edélti F. Albertoni Coorientador: Prof. Dr. Luiz U. Hepp Rio Grande 2020 Universidade Federal do Rio Grande Instituto de Ciências Biológicas Pós-graduação em Biologia de Ambientes Aquáticos Continentais Diversidade e dinâmica de microcrustáceos em áreas úmidas intermitentes Aluna: Maiby Glorize da Silva Bandeira Orientadora: Profa. Dra. Edélti F. Albertoni Coorientador: Prof. Dr. Luiz U. Hepp Tese apresentada ao Programa de Pós- graduação em Biologia de Ambientes Aquáticos Continentais como requisito parcial para a obtenção do título de Doutora em Biologia de Ambientes Aquáticos Continentais. Rio Grande 2020 Dedico ao meu querido Andirobal (Monte Alegre-PA) Cujos moradores são a minha motivação diária Eles me mantém focada nos meus objetivos E me fazem ser mais persistente com os meus sonhos Que de certa forma são deles também. AGRADECIMENTOS Primeiramente a Deus que nunca desiste de mim. Segundo, à queridíssima profª. Edélti Albertoni que desde o meu primeiro email (no início de 2016), me aceitou e permitiu que eu realizasse mais um grande sonho na minha vida. Nunca terei palavras para expressar o carinho que ela, o prof. Cleber, a Manu e o Leandro tiveram comigo quando cheguei ao tenebroso frio do Sul. A Edélti não foi só uma orientadora, também foi mãe, amiga, conselheira e sempre nos acolheu com muito carinho, seja no laboratório ou no aconchego do seu lar. Sempre me apoiou nas minhas decisões, nas desilusões, nas conquistas, e soube me frear quando achou necessário. -
Review and Meta-Analysis of the Environmental Biology and Potential Invasiveness of a Poorly-Studied Cyprinid, the Ide Leuciscus Idus
REVIEWS IN FISHERIES SCIENCE & AQUACULTURE https://doi.org/10.1080/23308249.2020.1822280 REVIEW Review and Meta-Analysis of the Environmental Biology and Potential Invasiveness of a Poorly-Studied Cyprinid, the Ide Leuciscus idus Mehis Rohtlaa,b, Lorenzo Vilizzic, Vladimır Kovacd, David Almeidae, Bernice Brewsterf, J. Robert Brittong, Łukasz Głowackic, Michael J. Godardh,i, Ruth Kirkf, Sarah Nienhuisj, Karin H. Olssonh,k, Jan Simonsenl, Michał E. Skora m, Saulius Stakenas_ n, Ali Serhan Tarkanc,o, Nildeniz Topo, Hugo Verreyckenp, Grzegorz ZieRbac, and Gordon H. Coppc,h,q aEstonian Marine Institute, University of Tartu, Tartu, Estonia; bInstitute of Marine Research, Austevoll Research Station, Storebø, Norway; cDepartment of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Łod z, Poland; dDepartment of Ecology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; eDepartment of Basic Medical Sciences, USP-CEU University, Madrid, Spain; fMolecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston-upon-Thames, Surrey, UK; gDepartment of Life and Environmental Sciences, Bournemouth University, Dorset, UK; hCentre for Environment, Fisheries & Aquaculture Science, Lowestoft, Suffolk, UK; iAECOM, Kitchener, Ontario, Canada; jOntario Ministry of Natural Resources and Forestry, Peterborough, Ontario, Canada; kDepartment of Zoology, Tel Aviv University and Inter-University Institute for Marine Sciences in Eilat, Tel Aviv, -
Molecular Detection of Human Parasitic Pathogens
MOLECULAR DETECTION OF HUMAN PARASITIC PATHOGENS MOLECULAR DETECTION OF HUMAN PARASITIC PATHOGENS EDITED BY DONGYOU LIU Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2013 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20120608 International Standard Book Number-13: 978-1-4398-1243-3 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. -
Esox Lucius) Ecological Risk Screening Summary
Northern Pike (Esox lucius) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, February 2019 Web Version, 8/26/2019 Photo: Ryan Hagerty/USFWS. Public Domain – Government Work. Available: https://digitalmedia.fws.gov/digital/collection/natdiglib/id/26990/rec/22. (February 1, 2019). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2019a): “Circumpolar in fresh water. North America: Atlantic, Arctic, Pacific, Great Lakes, and Mississippi River basins from Labrador to Alaska and south to Pennsylvania and Nebraska, USA [Page and Burr 2011]. Eurasia: Caspian, Black, Baltic, White, Barents, Arctic, North and Aral Seas and Atlantic basins, southwest to Adour drainage; Mediterranean basin in Rhône drainage and northern Italy. Widely distributed in central Asia and Siberia easward [sic] to Anadyr drainage (Bering Sea basin). Historically absent from Iberian Peninsula, Mediterranean France, central Italy, southern and western Greece, eastern Adriatic basin, Iceland, western Norway and northern Scotland.” Froese and Pauly (2019a) list Esox lucius as native in Armenia, Azerbaijan, China, Georgia, Iran, Kazakhstan, Mongolia, Turkey, Turkmenistan, Uzbekistan, Albania, Austria, Belgium, Bosnia Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Macedonia, Moldova, Monaco, 1 Netherlands, Norway, Poland, Romania, Russia, Serbia, Slovakia, Slovenia, Sweden, Switzerland, United Kingdom, Ukraine, Canada, and the United States (including Alaska). From Froese and Pauly (2019a): “Occurs in Erqishi river and Ulungur lake [in China].” “Known from the Selenge drainage [in Mongolia] [Kottelat 2006].” “[In Turkey:] Known from the European Black Sea watersheds, Anatolian Black Sea watersheds, Central and Western Anatolian lake watersheds, and Gulf watersheds (Firat Nehri, Dicle Nehri). -
Characterization of Vertically and Cross-Species Transmitted Viruses in the Cestode Parasite 2 Schistocephalus Solidus
bioRxiv preprint doi: https://doi.org/10.1101/803247; this version posted October 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Characterization of vertically and cross-species transmitted viruses in the cestode parasite 2 Schistocephalus solidus 3 Megan A Hahna, Karyna Rosariob, Pierrick Lucasc, Nolwenn M Dheilly a# 4 5 a School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook NY, USA 6 b College of Marine Science, University of South Florida, Saint Petersburg, FL, USA 7 c ANSES, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du 8 Travail - Laboratoire de Ploufragan-Plouzané, Unité Génétique Virale de Biosécurité, 9 Ploufragan, France 10 11 # Address correspondence to Nolwenn M Dheilly: [email protected] 12 1 bioRxiv preprint doi: https://doi.org/10.1101/803247; this version posted October 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 13 Abstract 14 Parasitic flatworms (Neodermata) represent a public health and economic burden due to associated 15 debilitating diseases and limited therapeutic treatments available. Despite their importance, there 16 is scarce information regarding flatworm-associated microbes. We report the discovery of six RNA 17 viruses in the cestode Schistocephalus solidus. -
Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................ -
Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans
Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans by Robert George Young A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Robert George Young, March, 2016 ABSTRACT MOLECULAR SPECIES DELIMITATION AND BIOGEOGRAPHY OF CANADIAN MARINE PLANKTONIC CRUSTACEANS Robert George Young Advisors: University of Guelph, 2016 Dr. Sarah Adamowicz Dr. Cathryn Abbott Zooplankton are a major component of the marine environment in both diversity and biomass and are a crucial source of nutrients for organisms at higher trophic levels. Unfortunately, marine zooplankton biodiversity is not well known because of difficult morphological identifications and lack of taxonomic experts for many groups. In addition, the large taxonomic diversity present in plankton and low sampling coverage pose challenges in obtaining a better understanding of true zooplankton diversity. Molecular identification tools, like DNA barcoding, have been successfully used to identify marine planktonic specimens to a species. However, the behaviour of methods for specimen identification and species delimitation remain untested for taxonomically diverse and widely-distributed marine zooplanktonic groups. Using Canadian marine planktonic crustacean collections, I generated a multi-gene data set including COI-5P and 18S-V4 molecular markers of morphologically-identified Copepoda and Thecostraca (Multicrustacea: Hexanauplia) species. I used this data set to assess generalities in the genetic divergence patterns and to determine if a barcode gap exists separating interspecific and intraspecific molecular divergences, which can reliably delimit specimens into species. I then used this information to evaluate the North Pacific, Arctic, and North Atlantic biogeography of marine Calanoida (Hexanauplia: Copepoda) plankton. -
Climate Change May Restrict the Predation Efficiency of Mesocyclops
insects Article Climate Change May Restrict the Predation Efficiency of Mesocyclops aspericornis (Copepoda: Cyclopidae) on Aedes aegypti (Diptera: Culicidae) Larvae Nobuko Tuno 1,* , Tran Vu Phong 2,3 and Masahiro Takagi 2 1 Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan 2 Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; [email protected] (T.V.P.); [email protected] (M.T.) 3 Department of Medical Entomology and Zoology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam * Correspondence: tuno@staff.kanazawa-u.ac.jp; Tel.: +81-76-264-6214 Received: 31 March 2020; Accepted: 13 May 2020; Published: 14 May 2020 Abstract: (1) Dengue is the most spread mosquito-borne viral disease in the world, and vector control is the only available means to suppress its prevalence, since no effective treatment or vaccine has been developed. A biological control program using copepods that feed on mosquito larvae has been practiced in Vietnam and some other countries, but the application of copepods was not always successful. (2) To understand why the utility of copepods varies, we evaluated the predation efficiency of a copepod species (Mesocyclops aspericornis) on a vector species (Aedes aegypti) by laboratory experiments under different temperatures, nutrition and prey-density conditions. (3) We found that copepod predation reduced intraspecific competition among Aedes larvae and then shortened the survivor’s aquatic life and increased their pupal weight. In addition, the predatory efficiency of copepods was reduced at high temperatures. Furthermore, performance of copepod offspring fell when the density of mosquito larvae was high, probably because mosquito larvae had adverse effects on copepod growth through competition for food resources. -
UC Santa Barbara Dissertation Template
UNIVERSITY OF CALIFORNIA Santa Barbara Social organization in trematode parasitic flatworms A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Ecology, Evolution and Marine Biology by Ana Elisa Garcia Vedrenne Committee in charge: Professor Armand M. Kuris, Chair Professor Kathleen R. Foltz Professor Ryan F. Hechinger Professor Todd H. Oakley March 2018 The dissertation of Ana Elisa Garcia Vedrenne is approved. _____________________________________ Ryan F. Hechinger _____________________________________ Kathleen R. Foltz _____________________________________ Todd H. Oakley _____________________________________ Armand M. Kuris, Committee Chair March 2018 ii Social organization in trematode parasitic flatworms Copyright © 2018 by Ana Elisa Garcia Vedrenne iii Acknowledgements As I wrap up my PhD and reflect on all the people that have been involved in this process, I am happy to see that the list goes on and on. I hope I’ve expressed my gratitude adequately along the way– I find it easier to express these feeling with a big hug than with awkward words. Nonetheless, the time has come to put these acknowledgements in writing. Gracias, gracias, gracias! I would first like to thank everyone on my committee. I’ve been lucky to have a committee that gave me freedom to roam free while always being there to help when I got stuck. Armand Kuris, thank you for being the advisor that says yes to adventures, for always having your door open, and for encouraging me to speak my mind. Thanks for letting Gaby and me join your lab years ago and inviting us back as PhD students. Kathy Foltz, it is impossible to think of a better role model: caring, patient, generous and incredibly smart. -
Parasites of the Common Carp Cyprinus Carpio L., 1758 (Teleostei: Cyprinidae) from Water Bodies of Turkey: Updated Checklist and Review for the 1964–2014 Period
Turkish Journal of Zoology Turk J Zool (2015) 39: 545-554 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1401-42 Parasites of the common carp Cyprinus carpio L., 1758 (Teleostei: Cyprinidae) from water bodies of Turkey: updated checklist and review for the 1964–2014 period 1, 1 2 Lorenzo VILIZZI *, Ali Serhan TARKAN , Fitnat Güler EKMEKÇİ 1 Faculty of Fisheries, Muğla Sıtkı Koçman University, Kötekli, Muğla, Turkey 2 Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey Received: 18.01.2014 Accepted/Published Online: 14.11.2014 Printed: 30.07.2015 Abstract: A synopsis is provided of the parasites of common carp Cyprinus carpio L. from water bodies of Turkey based on literature data from 1964 to 2014. In total, 45 studies were included in the review and these provided data from 41 water bodies, comprising 12 man-made reservoirs, 21 natural lakes, and 8 water courses. Forty-one different taxa (including molluscan Glochidium sp.) in total were recorded. Of these taxa, 2 had not been previously reviewed for Turkey, and 4 were excluded from the list because of dubious identification. The Turkish parasite fauna of common carp living under natural conditions was dominated by ciliates (Ciliophora) among the protozoans and by flatworms (Platyhelminthes) among the metazoans, and this was both in terms of occurrence on fish and across water bodies. The absence of 7 taxa from both the European and North American checklists can be explained by the location of Turkey at the frontier between Asia and Europe. Additionally, the parasite fauna of the common carp in Turkey was consistently different from that of the far eastern species’ specimens. -
Assessment of the Potential Effects of Diseases Present in Salmonid
July 2011 technical report 1A Assessment of the potential effects of diseases present in salmonid enhancement facilities The Cohen Commission of Inquiry on Fraser River sockeye salmon into the Decline of Sockeye Salmon in the Fraser River Craig Stephen, Tyler Stitt, Jennifer Dawson-Coates and Anne McCarthy Assessment of the potential effects of diseases present in salmonid enhancement facilities on Fraser River sockeye salmon Craig Stephen, Tyler Stitt, Jennifer Dawson-Coates and Anne McCarthy Centre for Coastal Health 900 5th Street, Nanaimo, BC V6B 4N7 www.centreforcoastalhealth.ca Technical Report 1A July 2011 Recommended citation for this report: Stephen, C., T. Stitt, J. Dawson-Coates and A. McCarthy. 2011. Assessment of the potential effects of diseases present in salmonid enhancement facilities on Fraser River sockeye salmon. Cohen Commission Tech. Rept. 1A: 180p. Vancouver, B.C. www.cohencommission.ca Preface Fraser River sockeye salmon are vitally important for Canadians. Aboriginal and non-Aboriginal communities depend on sockeye for their food, social, and ceremonial purposes; recreational pursuits; and livelihood needs. They are key components of freshwater and marine aquatic ecosystems. Events over the past century have shown that the Fraser sockeye resource is fragile and vulnerable to human impacts such as rock slides, industrial activities, climatic change, fisheries policies and fishing. Fraser sockeye are also subject to natural environmental variations and population cycles that strongly influence survival and production. In 2009, the decline of sockeye salmon stocks in the Fraser River in British Columbia led to the closure of the fishery for the third consecutive year, despite favourable pre-season estimates of the number of sockeye salmon expected to return to the river.