Roles of Three Putative Salmon Louse (Lepeophtheirus Salmonis)

Total Page:16

File Type:pdf, Size:1020Kb

Roles of Three Putative Salmon Louse (Lepeophtheirus Salmonis) Dalvin et al. Parasites Vectors (2021) 14:206 https://doi.org/10.1186/s13071-021-04690-w Parasites & Vectors RESEARCH Open Access Roles of three putative salmon louse (Lepeophtheirus salmonis) prostaglandin E2 synthases in physiology and host–parasite interactions Sussie Dalvin1, Christiane Eichner2, Michael Dondrup3 and Aina‑Cathrine Øvergård2* Abstract Background: The salmon louse (Lepeophtheirus salmonis) is a parasite of salmonid fsh. Atlantic salmon (Salmo salar) exhibit only a limited and inefective immune response when infested with this parasite. Prostaglandins (PGs) have many biological functions in both invertebrates and vertebrates, one of which is the regulation of immune responses. This has led to the suggestion that prostaglandin E2 (PGE2) is important in the salmon louse host–parasite interaction, although studies of a salmon louse prostaglandin E2 synthase (PGES) 2 gene have not enabled conformation of this hypothesis. The aim of the present study was, therefore, to characterize two additional PGES‑like genes. Methods: Lepeophtheirus salmonis microsomal glutathione S‑transferase 1 like (LsMGST1L) and LsPGES3L were inves‑ tigated by sequencing, phylogenetics, transcript localization and expression studies. Moreover, the function of these putative PGES genes in addition to the previously identifed LsPGES2 gene was analyzed in double stranded (ds) RNA‑ mediated knockdown (KD) salmon louse. Results: Analysis of the three putative LsPGES genes showed a rather constitutive transcript level throughout development from nauplius to the adult stages, and in a range of tissues, with the highest levels in the ovaries or gut. DsRNA‑mediated KD of these transcripts did not produce any characteristic changes in phenotype, and KD animals displayed a normal reproductive output. The ability of the parasite to infect or modulate the immune response of the host fsh was also not afected by KD. Conclusions: Salmon louse prostaglandins may play endogenous roles in the management of reproduction and oxidative stress and may be a product of salmon louse blood digestions. Keywords: Invertebrate, Arthropod, Copepod, Blood‑feeding, RNA interference, ROS, Immune response Background stages: nauplius 1, nauplius 2 and the infective copepodid Te salmon louse (Lepeophtheirus salmonis) is a marine stage. All further development takes place on the fsh and ectoparasite of salmonid fsh, feeding on fsh mucus, skin consists of two chalimi, two preadult stages and the adult and blood [1, 2]. Salmon lice have a life-cycle consist- stage [3, 4]. Heavy infestations can cause severe problems ing of eight stages, starting with three planktonic larval to the host, including wounding, secondary infections and osmotic disturbances [5, 6]. Infestations of farmed *Correspondence: aina‑[email protected] fsh have been difcult to manage due to the develop- 2 Department of Biological Sciences, SLCR‑Sea Lice Research Centre, ment of resistance against parasiticides [7], and the nega- University of Bergen, P. box 7803, 5020 Bergen, Norway tive impact on wild salmonid fsh through transmission Full list of author information is available at the end of the article © The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Dalvin et al. Parasites Vectors (2021) 14:206 Page 2 of 17 of lice from farmed to wild fsh stocks is a cause of envi- Atlantic salmon (Salmo salar) display a limited and ronmental concern [8–10]. mainly local immune response to salmon louse, which Prostaglandin E2 (PGE2) is an eicosanoid component does not eliminate the infection [32–35]. Tis has led to with hormone-like functions, derived from arachidonic eforts to understand how the salmon louse modulates its acid (AA) through three sequential enzymatic reactions host, and PGE2 has been put forward as a putative can- [11]. Generally, phospholipase A 2 releases AA from cell didate for immune modulation. PGE2 has been detected membranes, a cyclooxygenase (COX) converts AA to in excretory/secretory products from dopamine-treated PGG2 and further to PGH 2, which can be metabolized to salmon louse, and it was demonstrated that the level of PGE2 by PGE 2 synthases (PGESs). Te action of PGE 2 is PGE2 quickly dropped after lice were removed from the dependent on the binding of prostanoid EP receptor sub- host fsh [36, 37]. Moreover, Atlantic salmon immune tis- types (EP1–4), and PGE2 has diverse roles in physiologi- sue express the EP4 prostaglandin E receptors [38], and cal processes, such as infammation, reproduction and PGE2 treatment has been shown to down-modulate the embryonic development, depending on cell type and EP expression of MHC class I proteins and interleukin-1β receptor subtype [12–16]. in a salmon macrophage-like cell line [37]. However, in a PGESs are found in a large range of organisms where more recent study in which excretory/secretory products they play diverse physiological roles [17]. In mammals, were obtained by agitating lice in sea water, PGE 2 was not three isotypes of PGES exist, two of which are mem- identifed [39]. Moreover, studies of a putative salmon brane bound (PGES1 and -2) and one cytosolic (PGES3). louse gene, PGES2 (LsPGES2) were unable to reveal any Tese isotypes typically display diferent enzymatic involvement of LsPGES2 in the host–parasite interaction properties, expression patterns, cellular localizations [40]. Instead, expression of LsPGES2 indicated a function and functions. PGESs have also been described in many in reproductive organs, although no visible alteration in arthropods, including crustacean species, and similar to reproductive phenotype was observed in knockdown mammals, three genes encoding PGESs have been found (KD) animals. in penaeid shrimp [18]. Te functional property of a few In the present study, we hypothesized that this lack of invertebrate synthases has also been confrmed, where phenotypic alterations is due to the action of additional the conversion of PGH2 to PGE2 by recombinant Gam- salmon lice PGES genes beyond the already described marus and Caprella sp. PGES2 has been demonstrated LsPGES2 and that these may be involved in the host– [19]. PGESs and their product PGE2 are involved in parasite interaction in addition to endogenous processes. reproduction, including maturation of ovaries and vitel- Two additional genes with putative PGES activity were logenesis in prawn and crabs [18, 20–22]. PGES has also identifed and their functional role analyzed by double- been detected in blood cells of crab, indicative of a role stranded (ds) RNA-mediated KD and studies of host– in immunity [23], and PGE2 has been detected in both parasite interactions, reproduction, oxidative stress and tapeworms and crab nervous tissue where it is likely to be blood digestion. important for development and function [20, 24]. Parasites with a long-term interaction with their host need mechanisms to evade potential host immune reac- Methods tion, and prostaglandins (PGs) such as PGE 2 have been Culture of salmon lice and source of tissue found to play important roles in many host–parasite Laboratory strains of the Atlantic salmon lice subspecies protozoan and metazoan interactions [25, 26]. How- Lepeophtheirus salmonis salmonis [41] were maintained ever, uncovering the role of PGs is complicated by their on farmed Atlantic salmon (Salmo salar) according to diverse roles and the fact that these compounds are pro- Hamre et al. [42]. Te salmon were hand fed a commer- duced by both the host and the parasite [27]. In blood- cial diet and reared in sea water with a salinity of 34.5 g/ feeding arthropods such as ticks, PGs are suggested to be kg and a temperature of 10 °C. Eggs, nauplii and copepo- involved in vasodilation and immune modulation in the dids were kept in seawater from the same source. Nauplii host, as high concentrations of PGE 2 are found in tick were obtained from hatching eggs and kept in a fow- saliva [28–30]. Both PGE2 and PGD2 have been detected through single-well system [42]. in gland secretions from the fsh tapeworm Diphylloboth- For ontogenetic expression analysis of the two PGES- rium dendriticum when incubated in serum from a host like genes, LsMGST1L and LsPGES3L, we collected a fsh [24], and in vitro studies have suggested that PGE2 time-series of all lice stages from egg to adult lice, in pen- derived from the tapeworm Schistocephalus solidus have taplicate samples, as follows: (i) eggs: 1 egg sac (string) the potential to modulate host leukocyte viability and (containing approximately 200 eggs; (ii) nauplius 1, nau- reactive oxygen species production [31]. plius 2 and copepodids (free-living) (approximately 100 larvae); copepodids, 2 days post-infestation (dpi) and 4 Dalvin et al. Parasites Vectors (2021) 14:206 Page 3 of 17 dpi (60 larvae); (iv) chalimus: chalimus 1 (30 animals) and amplifcation kit (Clontech Laboratories, Inc. Mountain chalimus 2 (20 animals); (v) preadult and adult stages: View, CA, USA) using 1 μg total RNA from adult female single animals (adult females were defned as young lice.
Recommended publications
  • A Guide to Culturing Parasites, Establishing Infections and Assessing Immune Responses in the Three-Spined Stickleback
    ARTICLE IN PRESS Hook, Line and Infection: A Guide to Culturing Parasites, Establishing Infections and Assessing Immune Responses in the Three-Spined Stickleback Alexander Stewart*, Joseph Jacksonx, Iain Barber{, Christophe Eizaguirrejj, Rachel Paterson*, Pieter van West#, Chris Williams** and Joanne Cable*,1 *Cardiff University, Cardiff, United Kingdom x University of Salford, Salford, United Kingdom { University of Leicester, Leicester, United Kingdom jj Queen Mary University of London, London, United Kingdom #Institute of Medical Sciences, Aberdeen, United Kingdom **National Fisheries Service, Cambridgeshire, United Kingdom 1Corresponding author: E-mail: [email protected] Contents 1. Introduction 3 2. Stickleback Husbandry 7 2.1 Ethics 7 2.2 Collection 7 2.3 Maintenance 9 2.4 Breeding sticklebacks in vivo and in vitro 10 2.5 Hatchery 15 3. Common Stickleback Parasite Cultures 16 3.1 Argulus foliaceus 17 3.1.1 Introduction 17 3.1.2 Source, culture and infection 18 3.1.3 Immunology 22 3.2 Camallanus lacustris 22 3.2.1 Introduction 22 3.2.2 Source, culture and infection 23 3.2.3 Immunology 25 3.3 Diplostomum Species 26 3.3.1 Introduction 26 3.3.2 Source, culture and infection 27 3.3.3 Immunology 28 Advances in Parasitology, Volume 98 ISSN 0065-308X © 2017 Elsevier Ltd. http://dx.doi.org/10.1016/bs.apar.2017.07.001 All rights reserved. 1 j ARTICLE IN PRESS 2 Alexander Stewart et al. 3.4 Glugea anomala 30 3.4.1 Introduction 30 3.4.2 Source, culture and infection 30 3.4.3 Immunology 31 3.5 Gyrodactylus Species 31 3.5.1 Introduction 31 3.5.2 Source, culture and infection 32 3.5.3 Immunology 34 3.6 Saprolegnia parasitica 35 3.6.1 Introduction 35 3.6.2 Source, culture and infection 36 3.6.3 Immunology 37 3.7 Schistocephalus solidus 38 3.7.1 Introduction 38 3.7.2 Source, culture and infection 39 3.7.3 Immunology 43 4.
    [Show full text]
  • Review and Meta-Analysis of the Environmental Biology and Potential Invasiveness of a Poorly-Studied Cyprinid, the Ide Leuciscus Idus
    REVIEWS IN FISHERIES SCIENCE & AQUACULTURE https://doi.org/10.1080/23308249.2020.1822280 REVIEW Review and Meta-Analysis of the Environmental Biology and Potential Invasiveness of a Poorly-Studied Cyprinid, the Ide Leuciscus idus Mehis Rohtlaa,b, Lorenzo Vilizzic, Vladimır Kovacd, David Almeidae, Bernice Brewsterf, J. Robert Brittong, Łukasz Głowackic, Michael J. Godardh,i, Ruth Kirkf, Sarah Nienhuisj, Karin H. Olssonh,k, Jan Simonsenl, Michał E. Skora m, Saulius Stakenas_ n, Ali Serhan Tarkanc,o, Nildeniz Topo, Hugo Verreyckenp, Grzegorz ZieRbac, and Gordon H. Coppc,h,q aEstonian Marine Institute, University of Tartu, Tartu, Estonia; bInstitute of Marine Research, Austevoll Research Station, Storebø, Norway; cDepartment of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Łod z, Poland; dDepartment of Ecology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; eDepartment of Basic Medical Sciences, USP-CEU University, Madrid, Spain; fMolecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston-upon-Thames, Surrey, UK; gDepartment of Life and Environmental Sciences, Bournemouth University, Dorset, UK; hCentre for Environment, Fisheries & Aquaculture Science, Lowestoft, Suffolk, UK; iAECOM, Kitchener, Ontario, Canada; jOntario Ministry of Natural Resources and Forestry, Peterborough, Ontario, Canada; kDepartment of Zoology, Tel Aviv University and Inter-University Institute for Marine Sciences in Eilat, Tel Aviv,
    [Show full text]
  • Esox Lucius) Ecological Risk Screening Summary
    Northern Pike (Esox lucius) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, February 2019 Web Version, 8/26/2019 Photo: Ryan Hagerty/USFWS. Public Domain – Government Work. Available: https://digitalmedia.fws.gov/digital/collection/natdiglib/id/26990/rec/22. (February 1, 2019). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2019a): “Circumpolar in fresh water. North America: Atlantic, Arctic, Pacific, Great Lakes, and Mississippi River basins from Labrador to Alaska and south to Pennsylvania and Nebraska, USA [Page and Burr 2011]. Eurasia: Caspian, Black, Baltic, White, Barents, Arctic, North and Aral Seas and Atlantic basins, southwest to Adour drainage; Mediterranean basin in Rhône drainage and northern Italy. Widely distributed in central Asia and Siberia easward [sic] to Anadyr drainage (Bering Sea basin). Historically absent from Iberian Peninsula, Mediterranean France, central Italy, southern and western Greece, eastern Adriatic basin, Iceland, western Norway and northern Scotland.” Froese and Pauly (2019a) list Esox lucius as native in Armenia, Azerbaijan, China, Georgia, Iran, Kazakhstan, Mongolia, Turkey, Turkmenistan, Uzbekistan, Albania, Austria, Belgium, Bosnia Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Macedonia, Moldova, Monaco, 1 Netherlands, Norway, Poland, Romania, Russia, Serbia, Slovakia, Slovenia, Sweden, Switzerland, United Kingdom, Ukraine, Canada, and the United States (including Alaska). From Froese and Pauly (2019a): “Occurs in Erqishi river and Ulungur lake [in China].” “Known from the Selenge drainage [in Mongolia] [Kottelat 2006].” “[In Turkey:] Known from the European Black Sea watersheds, Anatolian Black Sea watersheds, Central and Western Anatolian lake watersheds, and Gulf watersheds (Firat Nehri, Dicle Nehri).
    [Show full text]
  • Characterization of Vertically and Cross-Species Transmitted Viruses in the Cestode Parasite 2 Schistocephalus Solidus
    bioRxiv preprint doi: https://doi.org/10.1101/803247; this version posted October 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Characterization of vertically and cross-species transmitted viruses in the cestode parasite 2 Schistocephalus solidus 3 Megan A Hahna, Karyna Rosariob, Pierrick Lucasc, Nolwenn M Dheilly a# 4 5 a School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook NY, USA 6 b College of Marine Science, University of South Florida, Saint Petersburg, FL, USA 7 c ANSES, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du 8 Travail - Laboratoire de Ploufragan-Plouzané, Unité Génétique Virale de Biosécurité, 9 Ploufragan, France 10 11 # Address correspondence to Nolwenn M Dheilly: [email protected] 12 1 bioRxiv preprint doi: https://doi.org/10.1101/803247; this version posted October 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 13 Abstract 14 Parasitic flatworms (Neodermata) represent a public health and economic burden due to associated 15 debilitating diseases and limited therapeutic treatments available. Despite their importance, there 16 is scarce information regarding flatworm-associated microbes. We report the discovery of six RNA 17 viruses in the cestode Schistocephalus solidus.
    [Show full text]
  • Parasites of the Common Carp Cyprinus Carpio L., 1758 (Teleostei: Cyprinidae) from Water Bodies of Turkey: Updated Checklist and Review for the 1964–2014 Period
    Turkish Journal of Zoology Turk J Zool (2015) 39: 545-554 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1401-42 Parasites of the common carp Cyprinus carpio L., 1758 (Teleostei: Cyprinidae) from water bodies of Turkey: updated checklist and review for the 1964–2014 period 1, 1 2 Lorenzo VILIZZI *, Ali Serhan TARKAN , Fitnat Güler EKMEKÇİ 1 Faculty of Fisheries, Muğla Sıtkı Koçman University, Kötekli, Muğla, Turkey 2 Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey Received: 18.01.2014 Accepted/Published Online: 14.11.2014 Printed: 30.07.2015 Abstract: A synopsis is provided of the parasites of common carp Cyprinus carpio L. from water bodies of Turkey based on literature data from 1964 to 2014. In total, 45 studies were included in the review and these provided data from 41 water bodies, comprising 12 man-made reservoirs, 21 natural lakes, and 8 water courses. Forty-one different taxa (including molluscan Glochidium sp.) in total were recorded. Of these taxa, 2 had not been previously reviewed for Turkey, and 4 were excluded from the list because of dubious identification. The Turkish parasite fauna of common carp living under natural conditions was dominated by ciliates (Ciliophora) among the protozoans and by flatworms (Platyhelminthes) among the metazoans, and this was both in terms of occurrence on fish and across water bodies. The absence of 7 taxa from both the European and North American checklists can be explained by the location of Turkey at the frontier between Asia and Europe. Additionally, the parasite fauna of the common carp in Turkey was consistently different from that of the far eastern species’ specimens.
    [Show full text]
  • Assessment of the Potential Effects of Diseases Present in Salmonid
    July 2011 technical report 1A Assessment of the potential effects of diseases present in salmonid enhancement facilities The Cohen Commission of Inquiry on Fraser River sockeye salmon into the Decline of Sockeye Salmon in the Fraser River Craig Stephen, Tyler Stitt, Jennifer Dawson-Coates and Anne McCarthy Assessment of the potential effects of diseases present in salmonid enhancement facilities on Fraser River sockeye salmon Craig Stephen, Tyler Stitt, Jennifer Dawson-Coates and Anne McCarthy Centre for Coastal Health 900 5th Street, Nanaimo, BC V6B 4N7 www.centreforcoastalhealth.ca Technical Report 1A July 2011 Recommended citation for this report: Stephen, C., T. Stitt, J. Dawson-Coates and A. McCarthy. 2011. Assessment of the potential effects of diseases present in salmonid enhancement facilities on Fraser River sockeye salmon. Cohen Commission Tech. Rept. 1A: 180p. Vancouver, B.C. www.cohencommission.ca Preface Fraser River sockeye salmon are vitally important for Canadians. Aboriginal and non-Aboriginal communities depend on sockeye for their food, social, and ceremonial purposes; recreational pursuits; and livelihood needs. They are key components of freshwater and marine aquatic ecosystems. Events over the past century have shown that the Fraser sockeye resource is fragile and vulnerable to human impacts such as rock slides, industrial activities, climatic change, fisheries policies and fishing. Fraser sockeye are also subject to natural environmental variations and population cycles that strongly influence survival and production. In 2009, the decline of sockeye salmon stocks in the Fraser River in British Columbia led to the closure of the fishery for the third consecutive year, despite favourable pre-season estimates of the number of sockeye salmon expected to return to the river.
    [Show full text]
  • Scorpion Phylogeography in the North American Aridlands
    UNLV Theses, Dissertations, Professional Papers, and Capstones 8-1-2012 Scorpion Phylogeography in the North American Aridlands Matthew Ryan Graham University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Biology Commons, Desert Ecology Commons, and the Population Biology Commons Repository Citation Graham, Matthew Ryan, "Scorpion Phylogeography in the North American Aridlands" (2012). UNLV Theses, Dissertations, Professional Papers, and Capstones. 1668. http://dx.doi.org/10.34917/4332649 This Dissertation is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Dissertation has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. SCORPION PHYLOGEOGRAPHY IN THE NORTH AMERICAN ARIDLANDS by Matthew Ryan Graham Bachelor of Science Marshall University 2004 Master of Science Marshall University 2007 A dissertation submitted in partial fulfillment of the requirements for the Doctor of Philosophy in Biological Sciences School of Life Sciences College of Sciences The Graduate College University of Nevada, Las Vegas August 2012 Copyright by Matthew R. Graham, 2012 All Rights Reserved THE GRADUATE COLLEGE We recommend the thesis prepared under our supervision by Matthew R.
    [Show full text]
  • Risk Assessment and the Effects of Refuge Availability on the Defensive Behaviors of the Southern Unstriped Scorpion (Vaejovis Carolinianus)
    Southern Adventist University KnowledgeExchange@Southern Faculty Works Biology and Allied Health Departments 8-20-2020 Risk Assessment and the Effects of Refuge Availability on the Defensive Behaviors of the Southern Unstriped Scorpion (Vaejovis carolinianus) David R. Nelsen Emily M. David Chad N. Harty Joseph B. Hector Aaron G. Corbit Follow this and additional works at: https://knowledge.e.southern.edu/facworks_bio Part of the Behavior and Ethology Commons, and the Biology Commons toxins Article Risk Assessment and the Effects of Refuge Availability on the Defensive Behaviors of the Southern Unstriped Scorpion (Vaejovis carolinianus) , , David R. Nelsen * y , Emily M. David, Chad N. Harty, Joseph B. Hector and Aaron G. Corbit * y Department of Biology and Allied Health, Southern Adventist University, 4881 Taylor Cir, Collegedale, TN 37315, USA; [email protected] (E.M.D.); [email protected] (C.N.H.); [email protected] (J.B.H.) * Correspondence: [email protected] (D.R.N.); [email protected] (A.G.C.) Equal contribution. y Received: 13 July 2020; Accepted: 18 August 2020; Published: 20 August 2020 Abstract: Selection should favor individuals that acquire, process, and act on relevant environmental signals to avoid predation. Studies have found that scorpions control their use of venom: both when it is released and the total volume expelled. However, this research has not included how a scorpion’s awareness of environmental features influences these decisions. The current study tested 18 Vaejovis carolinianus scorpions (nine females and nine males) by placing them in circular arenas supplied with varying numbers (zero, two, or four) of square refuges and by tracking their movements overnight.
    [Show full text]
  • Host Behavior Alteration by Its Parasite: from Brain Gene Expression to 2 Functional Test
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.084764; this version posted September 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Host behavior alteration by its parasite: from brain gene expression to 2 functional test 3 4 Running head: Brain transcriptome of parasitized host 5 6 Lucie Grecias1, Francois Olivier Hebert1, Verônica Angelica Alves1, Iain Barber2, 7 Nadia Aubin-Horth1 8 9 1Département de Biologie et Institut de Biologie Intégrative et des Systèmes 10 (IBIS), Université Laval, Québec, Canada 11 12 2 School of Animal, Rural and Environmental Sciences, Nottingham Trent 13 University, Nottingham, United Kingdom 14 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.084764; this version posted September 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 15 ABSTRACT 16 Many parasites with complex life cycles modify their intermediate hosts’ 17 behaviour, presumably to increase transmission to their final host. The threespine 18 stickleback (Gasterosteus aculeatus) is an intermediate host in the cestode 19 Schistocephalus solidus life cycle, which ends in an avian host, and shows 20 increased risky behaviours when infected. We studied brain gene expression 21 profiles of sticklebacks infected with S.solidus to determine the proximal causes 22 of these behavioural alterations.
    [Show full text]
  • The Application of Epidemiology in Aquatic Animal Health -Opportunities and Challenges Edmund J Peeler* and Nicholas GH Taylor
    Peeler and Taylor Veterinary Research 2011, 42:94 http://www.veterinaryresearch.org/content/42/1/94 VETERINARY RESEARCH REVIEW Open Access The application of epidemiology in aquatic animal health -opportunities and challenges Edmund J Peeler* and Nicholas GH Taylor Abstract Over recent years the growth in aquaculture, accompanied by the emergence of new and transboundary diseases, has stimulated epidemiological studies of aquatic animal diseases. Great potential exists for both observational and theoretical approaches to investigate the processes driving emergence but, to date, compared to terrestrial systems, relatively few studies exist in aquatic animals. Research using risk methods has assessed routes of introduction of aquatic animal pathogens to facilitate safe trade (e.g. import risk analyses) and support biosecurity. Epidemiological studies of risk factors for disease in aquaculture (most notably Atlantic salmon farming) have effectively supported control measures. Methods developed for terrestrial livestock diseases (e.g. risk-based surveillance) could improve the capacity of aquatic animal surveillance systems to detect disease incursions and emergence. The study of disease in wild populations presents many challenges and the judicious use of theoretical models offers some solutions. Models, parameterised from observational studies of host pathogen interactions, have been used to extrapolate estimates of impacts on the individual to the population level. These have proved effective in estimating the likely impact of parasite infections on wild salmonid populations in Switzerland and Canada (where the importance of farmed salmon as a reservoir of infection was investigated). A lack of data is often the key constraint in the application of new approaches to surveillance and modelling. The need for epidemiological approaches to protect aquatic animal health will inevitably increase in the face of the combined challenges of climate change, increasing anthropogenic pressures, limited water sources and the growth in aquaculture.
    [Show full text]
  • Permian Scorpions from the Petrified Forest of Chemnitz, Germany Jason A
    Dunlop et al. BMC Evolutionary Biology (2016) 16:72 DOI 10.1186/s12862-016-0634-z RESEARCH ARTICLE Open Access Permian scorpions from the Petrified Forest of Chemnitz, Germany Jason A. Dunlop1*, David A. Legg2, Paul A. Selden3,4, Victor Fet5, Joerg W. Schneider6,7 and Ronny Rößler6,8 Abstract Background: Paleozoic scorpions (Arachnida: Scorpiones) have been widely documented from the Carboniferous Period; which hosts a remarkable assemblage of more than sixty species including both putative stem- and crown- group fossils. By contrast the succeeding Permian Period is almost completely devoid of records, which are currently restricted to a trace fossil from the early Permian of New Mexico, USA and some limb fragments from the late Permian of the Vologda Region, Russia. Results: ?Opsieobuthus tungeri sp. nov. from the Petrified Forest of Chemnitz, Germany represents the first complete body fossils of scorpions from the Permian. Explosive volcanism preserved these remarkable specimens in situ as part of the palaeosol horizon and bedrock of the Petrified Forest, immediately beneath the Zeisigwald tuff horizon. This dates to the early Permian (Sakmarian) or ca. 291 Ma. Intriguingly, the specimens were obtained from a palaeosol horizon with a compacted network of different-sized woody roots and thus have been preserved in situ in their likely life position, even within their original burrows. Differences in the structure of the comb-like pectines in the two fossils offer evidence for sexual dimorphism, and permit further inferences about the ecology and perhaps even the reproductive biology of these animals. Conclusions: As putative members of a Coal Measures genus, these fossils suggest that at least some Carboniferous scorpion lineages extended their range further into the Permian.
    [Show full text]
  • Chapter 1 Fish Diseases and Parasites
    Advances in Fish Diseases and Disorders Diagnosis and Treatment Steve C Singer Editor ANMOL PUBLICATIONS PVT. LTD. NEW DELHI-110 002 (INDIA) ANMOL PUBLICATIONS PVT. LTD. Regd. Office: 4360/4, Ansari Road, Daryaganj, New Delhi-110002 (India) Tel.: 23278000, 23261597, 23286875, 23255577 Fax: 91-11-23280289 Email: [email protected] Visit us at: www.anmolpublications.com Branch Office: No. 1015, Ist Main Road, BSK IIIrd Stage IIIrd Phase, IIIrd Block, Bengaluru-560 085 (India) Tel.: 080-41723429 • Fax: 080-26723604 Email: [email protected] Advances in Fish Diseases and Disorders: Diagnosis and Treatment © 2013 ISBN: 978-81-261-5160-8 Editor: Steve C Singer No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise without prior written permission of the publisher. Reasonable efforts have been made to publish reliable data and information, but the authors, editors, and the publisher cannot assume responsibility for the legality of all materials or the consequences of their use. The authors, editors, and the publisher have attempted to trace the copyright holders of all materials in this publication and express regret to copyright holders if permission to publish has not been obtained. If any copyright material has not been acknowledged, let us know so we may rectify in any future reprint. PRINTED IN INDIA Printed at Avantika Printers Private Limited, New Delhi Contents Preface vii 1. Fish Diseases and Parasites 1 Disease • Parasites • Mass Die Offs • Cleaner Fish • Wild Salmon • Farmed Salmon • Aquarium Fish • Spreading Disease and Parasites • Eating Raw Fish • Aeromonas Salmonicida • Columnaris • Enteric Redmouth Disease • Fin Rot 2.
    [Show full text]