The Receptors

Total Page:16

File Type:pdf, Size:1020Kb

The Receptors The Receptors Volume 26 Series Editor Giuseppe Di Giovanni Department of Physiology & Biochemistry Faculty of Medicine and Surgery, University of Malta, Malta. The Receptors book Series, founded in the 1980’s, is a broad-based and wellrespected series on all aspects of receptor neurophysiology. The series presents published volumes that comprehensively review neural receptors for a specifi c hormone or neurotransmitter by invited leading specialists. Particular attention is paid to in-depth studies of receptors’ role in health and neuropathological processes. Recent volumes in the series cover chemical, physical, modeling, biological, pharmacological, anatomical aspects and drug discovery regarding different receptors. All books in this series have, with a rigorous editing, a strong reference value and provide essential up-to-date resources for neuroscience researchers, lecturers, students and pharmaceutical research. More information about this series at http://www.springer.com/series/7668 Robin A.J. Lester Editor Nicotinic Receptors Editor Robin A.J. Lester Department of Neurobiology University of Alabama at Birmingham Birmingham , AL , USA ISBN 978-1-4939-1166-0 ISBN 978-1-4939-1167-7 (eBook) DOI 10.1007/978-1-4939-1167-7 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 2014947538 © Springer Science+Business Media New York 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Printed on acid-free paper Humana Press is a brand of Springer Springer is part of Springer Science+Business Media (www.springer.com) Foreword Few molecules in the nervous system have been studied as intensively by so many scientists as the family of nicotinic acetylcholine receptors (nAChRs). From the fi rst description of the “receptive substance” by Langley in 1905 to ongoing develop- ment of medications for smoking cessation, pain, cognitive dysfunction, and other neurological or psychiatric illnesses, studies of nAChRs have served as models for exploration of receptors in the nervous system for more than 100 years. nAChRs were the fi rst receptors to be reconstituted into a lipid bilayer, the fi rst channels to be recorded in a patch clamp preparation, and the fi rst neurotransmitter receptors to be cloned. The presence of nAChRs at the neuromuscular junction and the high conservation of these receptors from Caenorhabditis elegans to Torpedo electricus up to Homo sapiens has made them a model for biophysical and structure- function studies. The ubiquity of the nAChRs in the brain, peripheral nervous sys- tem, and non-neuronal tissues has allowed studies to be performed on complex functions in areas as diverse as homeostasis, motor control, mood, reward, and cognition. The community of nicotinians (scientists studying nAChRs) includes structural biologists, biophysicists, biochemists, cell biologists, physiologists, anatomists, pharmacologists, behavioral scientists, radiologists, clinicians, and more. The nicotinians provide an excellent example of how data obtained at one level of complexity can provide insights into many other levels of biological inquiry. The study of nAChRs provides the ultimate potential for translation of very basic science to studies of therapeutic relevance for human patients. A unique bioassay for the function of nAChRs in a complex system comes from the addiction to tobacco smoking in humans that was imported from the Americas to Europe by Sir Walter Raleigh in the late sixteenth century. Many clues to the behavioral consequences of nAChR function and dysfunction come from human subjects who report the effects of the nicotine in tobacco on their subjective experi- ence. An understanding of the role of nAChRs in nicotine reinforcement and with- drawal, as well as clues about the genetic basis for susceptibility to addiction, has come from studies of these receptors in human smokers. A fundamental understanding of the biophysical properties of nAChRs has been an important tool in medication v vi Foreword development for smoking cessation, and this, in turn, has led the way to develop- ment of potential therapeutics to treat other indications as diverse as myasthenia gravis to schizophrenia. The multiple levels at which studies of nAChR structure, localization, and func- tion have enhanced our understanding of fundamental biological systems are cov- ered in this volume. A historical perspective from Dr. Robin A.J. Lester sets the stage for understanding how pioneering studies of these receptors have paved the way for studies of neurotransmitter receptors of many classes. Several chapters provide an understanding of the nAChR family at the molecular level. Dr. Steen Pedersen discusses structure-function relationships in nAChR gating, Dr. Paul Gardner describes the determinants of transcriptional regulation of the receptor family, and Dr. Michael Marks and Dr. Sharon Grady review the presynaptic func- tion of nAChRs in neurotransmitter release from synaptosomes. Another set of chapters provides a framework for understanding how the electrophysiological properties of these receptors can alter the function of different brain circuits. Dr. John Dani reviews the homomeric α7 nAChR subtype and the effects of nAChR signaling during development are covered by Dr. Darwin Berg. Chapters on the distribution and function of nAChRs by Dr. Jerry Yakel, the presynaptic regulation of network activity by nAChRs from Dr. Lorna Role, and the slow nicotinic responses seen in several brain areas covered by Dr. Rory McQuiston complete the reviews at the electrophysiological level. At the systems level, reviews of the effects of nAChRs in the autonomic ganglia by Dr. Peter Sargent and the spinal cord by Dr. Philippe Ascher show how nAChRs play essential roles in the physiology of critical neurobiological systems that carry out essential homeostatic functions. At the behavioral level, a review of the role of nAChRs in learning and memory by Dr. Tom Gould provides a larger context in which to understand how the modulation of neuronal excitability and brain net- works by this receptor family can alter complex responses to the environment. Numerous levels of nAChR function are critical to understanding smoking behavior, including the role of nAChRs in reward and withdrawal reviewed by Dr. Andrew Tapper and Dr. Mariella De Debiasi, respectively; the genetics of human nAChR variants affecting tobacco addiction discussed by Dr. Jerry Stitzel, Dr. Laura Bierut, and Dr. Inez Ibanez-Tallon; and the interactions with other neurotransmitter systems, such as the serotonin system, outlined by Dr. Giuseppe Di Giovanni. It is fi tting that the volume closes with a number of reviews outlining how dysfunction of various nAChRs can contribute to human illness, such as the neurodegeneration in Alzheimer’s and Parkinson’s disease covered by Dr. Kelly Dineley and the cogni- tive dysfunction in schizophrenia summarized by Dr. Sherry Leonard, and how nAChRs may be therapeutic targets for treatment of human disorders from pain, discussed by Dr. M. Imad Damaj, and other CNS disorders, reviewed by Dr. Stephen Arneric and Dr. Mani Sher. This is a rich volume that ties together the historical context for studies of nAChRs to current-day problems in systems neurobiology and human disease that can be approached only because of the fundamental molecular studies that have provided information on the structure, function, and anatomy of the nAChR Foreword vii family. This book provides optimism about how far the nicotinic fi eld has advanced, and provides guideposts for where we need continued focus to move this knowledge forward to solve fundamental neurobiological problems that are critical to human health. Marina Picciotto [email protected] http://psychiatry.yale.edu/people/marina_picciotto-1.profi l e Pref ace Not so long ago, there was nothing known about receptors, neurotransmitters,
Recommended publications
  • Connections Opportunities
    FY2O11Annual Report e m B r a C i n g opportunities M e M b e r s S e r v i n g t e C h n o l o g i e s o u t r e a c h M e M o r y T r a i n i n g SCIENCE D i s C o v e r y B r a i n R e s e a R c h v a l u e A d v o c A c y S u p p o r t i n g C i r C u i t i nternational m i s s i o n f u t u r e E v o l v i n g D y n a m i c a C tion Potential C o g n i t i o n f o s t e r i n g connections e m B r a C i n g opportunities f o s t e r i n g R e s e a R c h S e r v i n g o u t r e a c h SCIENCE E v o l v i n g B r Technologies v a l u e S u p p o r t i n g D y n a A d v o c A c y m i s s i o n I n t e r n a t I o n a l C i r C u i t f u t u r e M e M o r y C o g n i t i o n t r a i n i n g 2010-2011 Society for Neuroscience Council OFFICERS Susan G.
    [Show full text]
  • Scientists Honored for Research Unveiling Molecular Machines the Month of May Brought the Good Prestigious Honors in Science
    june 2012 volume 8, issue 3 Advancing Biomedical Science, Education, and Health Care Scientists honored for research unveiling molecular machines The month of May brought the good prestigious honors in science. On the Campylobacter, which together cause chains of amino acids are formed into news that two School of Medicine 29th, Arthur L. Horwich, m.d., was most of the world’s food-borne illness. three-dimensional, functional struc- scientists, each of whom have done named a winner of the Shaw Prize Galán’s group has thoroughly tures. Misfolded proteins have been pathbreaking work on molecular ma- in Life Science and Medicine, along characterized the Salmonella “needle implicated in many diseases, including chines involved in human disease, had with his longtime scientific col- complex,” a syringe-like organelle Alzheimer’s disease and amyotrophic received high honors for their research. laborator Franz-Ulrich Hartl, m.d., through which the bacterium injects lateral sclerosis (als). On May 1 Jorge E. Galán, ph.d., dr.med., of the Max Planck Institute bacterial proteins into host cells during In 1989, Horwich’s lab, in collabo- d.v.m., chair and Lucille P. Markey of Biochemistry in Germany. infection, modulating the function ration with Hartl and his postdoctoral Professor of Microbial Pathogenesis Galán is renowned for his research of those cells for its own advantage. mentor Walter Neupert m.d., ph.d., and professor of cell biology, was elect- on the cell biology, biochemistry, im- In 2004, Galán and colleagues used discovered a specialized protein in yeast ed a member of the National Academy munobiology, and structural biology of cryoelectron microscopy to visualize called Hsp60 that acts as a protein- of Sciences (nas), one of the most the bacterial pathogens Salmonella and the three-dimensional structure of the folding machine.
    [Show full text]
  • NRIC 2014 Event Program
    Event Program WEDNESDAY, SEPTEMBER 24 Nebraska EPSCoR: Advancing Nebraska Through Transformative Research & Workforce Development HILTON OMAHA epscor.nebraska.edu nric.nebraska.edu Message from the Nebraska EPSCoR Director Notes: Dear Participants, Welcome to the 2014 Nebraska Neuroscience Symposium. Research in the field of neuroscience continues to make dynamic discoveries, each advance yielding greater understanding of the brain: humanity’s principal resource for addressing the challenges and possibilities we face. Your interactions here are part of what moves this work forward. Nebraska EPSCoR is proud to host this gathering. EPSCoR—the Experimental Program to Stimulate Competitive Research—was created by the U.S. Congress to improve research infrastructure and capacity of a group of states. We work with research and education partners to enhance their capabilities and benefit Nebraska’s workforce development and economic growth. At today’s symposium—our 10th annual event and second devoted to neuroscience—we appreciate National Science Foundation funding in support of these important connections. Our speakers bring expertise from standout careers. We greatly value their presence and hope you enjoy the knowledge transfer and networking opportunities. F. Fred Choobineh, P.E., Ph.D. Director, Nebraska EPSCoR Table of Contents Agenda... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ..1 Morning Session.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .2 Afternoon Session. 5 Poster
    [Show full text]
  • Jean-Pierre G. Changeux
    EDITORIAL ADVISORY COMMITTEE Marina Bentivoglio Larry F. Cahill Stanley Finger Duane E. Haines Louise H. Marshall Thomas A. Woolsey Larry R. Squire (Chairperson) The History of Neuroscience in Autobiography VOLUME 4 Edited by Larry R. Squire ELSEVIER ACADEMIC PRESS Amsterdam Boston Heidelberg London New York Oxford Paris San Diego San Francisco Singapore Sydney Tokyo This book is printed on acid-free paper. (~ Copyright 9 byThe Society for Neuroscience All Rights Reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: [email protected]. You may also complete your request on-line via the Elsevier homepage (http://elsevier.com), by selecting "Customer Support" and then "Obtaining Permissions." Academic Press An imprint of Elsevier 525 B Street, Suite 1900, San Diego, California 92101-4495, USA http ://www.academicpress.com Academic Press 84 Theobald's Road, London WC 1X 8RR, UK http://www.academicpress.com Library of Congress Catalog Card Number: 2003 111249 International Standard Book Number: 0-12-660246-8 PRINTED IN THE UNITED STATES OF AMERICA 04 05 06 07 08 9 8 7 6 5 4 3 2 1 Contents Per Andersen 2 Mary Bartlett Bunge 40 Jan Bures 74 Jean Pierre G. Changeux 116 William Maxwell (Max) Cowan 144 John E. Dowling 210 Oleh Hornykiewicz 240 Andrew F.
    [Show full text]
  • Joshua T. Vogelstein –
    Joshua T. Vogelstein, Ph.D., Assistant Professor, JHU – Curriculum Vitae 2021/09/23 Assistant Professor, Department of Biomedical Engineering Johns Hopkins University B [email protected] Joshua T. Vogelstein Í jovo.me Personal Information Primary Appointment 08/14 – Assistant Professor, Department of Biomedical Engineering, JHU, Baltimore, MD, USA. Joint Appointments 09/19 – Joint Appointment, Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA. 08/15 – Joint Appointment, Department of Applied Mathematics and Statistics, JHU, Baltimore, MD, USA. 08/14 – Joint Appointment, Department of Neuroscience, JHU, Baltimore, MD, USA. 08/14 – Joint Appointment, Department of Computer Science, JHU, Baltimore, MD, USA. Institutional and Center Appointments 08/15 – Steering Committee, Kavli Neuroscience Discovery Institute (KNDI), Baltimore, MD, USA. 08/14 – Core Faculty, Institute for Computational Medicine, JHU, Baltimore, MD, USA. 08/14 – Core Faculty, Center for Imaging Science, JHU, Baltimore, MD, USA. 08/14 – Assistant Research Faculty, Human Language Technology Center of Excellence, JHU, Balti- more, MD, USA. 10/12 – Affiliated Faculty, Institute for Data Intensive Engineering and Sciences, JHU, Baltimore, MD, USA. Education & Training 2003 – 2009 Ph.D in Neuroscience, Johns Hopkins School of Medicine, Advisor: Eric Young, Thesis: OOPSI: a family of optical spike inference algorithms for inferring neural connectivity from population calcium imaging . 2009 – 2009 M.S. in Applied Mathematics & Statistics, Johns Hopkins University. 1998 – 2002 B.A. in Biomedical Engineering, Washington University, St. Louis. Academic Experience 08/18 – Director of Biomedical Data Science Focus Area, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA. 05/16 – Visiting Scientist, Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA.
    [Show full text]
  • 9Th Annual Enhancing Neuroscience Diversity Through Undergraduate Research Education Experiences (ENDURE) Meeting
    9th Annual Enhancing Neuroscience Diversity through Undergraduate Research Education Experiences (ENDURE) Meeting October 19, 2019 | Chicago, IL The NIH Office of the Director and these NIH Institutes and Centers participate in the NIH Blueprint for Neuroscience Research: • NCATS • NIAAA • NIDCR • NINR • NCCIH • NIBIB • NIEHS • OBSSR • NEI • NICHD • NIMH • NIA • NIDA • NINDS TABLE OF CONTENTS ENDURE PROGRAM AND MEETING GOALS .................................................................................. 2 NOTICE OF INTENT TO RE-ISSUE BP-ENDURE FOA ...................................................................... 3 ENDURE MEETING AGENDA ........................................................................................................ 4 NIH BLUEPRINT WELCOME AND SPEAKER BIOGRAPHIES .......................................................... 5 ENDURE PROGRAM INFORMATION AND TRAINEE RESEARCH ABSTRACTS • BP-ENDURE AT HUNTER AND NYU ........................................................................................ 8 • BP-ENDURE AT ST. LOUIS: A NEUROSCIENCE PIPELINE ....................................................... 23 • BRAiN: BUILDING RESEARCH ACHIEVEMENT IN NEUROSCIENCE ......................................... 41 • BRIDGE TO THE PH.D. IN NEUROSCIENCE ............................................................................ 48 • ENHANCING NEUROSCIENCE DIVERSITY WITH TENNESSEE STATE UNIVERSITY – NEUROSCIENCE EDUCATION AND RESEARCH VANDERBILT EXPERIENCE (TSU-NERVE)...... 57 • NEUROSCIENCE RESEARCH OPPORTUNITIES TO
    [Show full text]
  • Eisch CV 083119 Webpage
    Amelia J. Eisch, Ph.D. Curriculum Vitae, 31 August 2019 Tenured Professor Mail address: Abramson Research Center University of Pennsylvania Perelman School of Medicine (PennMed) and Room 402F Children's Hospital of Philadelphia (CHOP) Research Institute 3615 Civic Center Blvd. Email: [email protected], [email protected], Philadelphia, PA 19104-4318 or [email protected] Physical address: 68 Osler Circle Office telephone: (215) 590-1931 Philadelphia, PA 19104 EDUCATION Yale University, New Haven, CT 1986-1990 Bachelor of Arts in Psychology with Biology Track, cum laude University of California at Irvine, Irvine, CA 1990-1997 Doctor of Philosophy in Biological Sciences, received June 1997 Department of Psychobiology Yale University Medical School, New Haven, CT 1997-2000 Department of Psychiatry Postdoctoral Fellowship RESEARCH EXPERIENCE AND EMPLOYMENT UnderGraduate Research, Advisor, Dr. Richard J. Gerrig 1988-1989 Department of Psychology, Yale University: Memory retrieval during language comprehension UnderGraduate Research, Advisor, Dr. J. Steve Reznick 1988-1989 Department of Psychology, Yale University: Shyness in infant twins UnderGraduate Honors Research Thesis, Advisor, Dr. Mark A. Riddle 1989-1990 Child Study Center, Yale University Medical Center Socioeconomic impact on symptomatology in Gilles de la Tourette’s syndrome Doctoral Thesis, Research, and TeachinG Assistant, Advisor, Dr. John F. Marshall 1990-1997 Department of Psychobiology, University of California at Irvine Neuronal consequences of repeated administration of
    [Show full text]
  • Marina Picciotto/ Tristan Mcclure-Begley
    Defining the high affinity nicotinic receptor-associated proteome Marina Picciotto Depts. of Psychiatry, Neurobiology & Pharmacology Yale University School of Medicine Structure of nicotinic ACh receptors α 7 α 7 α 7 α 7 α 7 α1 α3 α 6 γ β1 β 4 α 3 β 2 β 3 α1 δ α 3 β 4 α 4 β 2 muscle type neuronal type nicotinic receptor nicotinic receptors Structure of nicotinic ACh receptors Xie et al, Biol Psych, 2010 Nicotine does not stimulate dopamine release in β2 knockout mice WT Nicotine 10 µM -/ - 200 * * 150 100 % basal DA level DA basal % 50 0.03 0.125 0.5 Nicotine mg/kg i.p. Picciotto et al, Nature, 1998 Grady et al, J Neurochem, 2001 …and does not support behaviors related to addiction WT + n i c o t i n e WT + s a l i n e 100 Mu t + n i c o t i n e 200 90 10min 150 8 0 100 7 0 * * 6 0 50 % active nose nose pokes/hr % active 50 * mean beam breaks/ 0 * * β2 +/+ β2 -/- 4 0 Ba s e l i n e 1 2 3 4 5 Se l f - a d m i n i s t r a t i o n s e s s i o n s Locomotion Place preference Self-administration King et al, Neuropharm. 2004 Brunzell et al, NPP. 2009 Picciotto et al, Nature, 1998 Transgenic expression of β2 in VTA rescues nicotine-induced locomotion (Mineur et al). Viral-vector rescue of β2 in VTA rescues nicotine self administration (Maskos, et al).
    [Show full text]
  • Controlling Prefrontal Attention Circuits: Neuromodulation of Cortical Layer 6 and Its Local Outputs
    Controlling Prefrontal Attention Circuits: Neuromodulation of Cortical Layer 6 and its Local Outputs Michael Kexin Tian A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Physiology University of Toronto © Copyright by Michael Kexin Tian 2017 Controlling Prefrontal Attention Circuits: Neuromodulation of Cortical Layer 6 and its Local Outputs Michael Kexin Tian Doctor of Philosophy Department of Physiology University of Toronto 2017 Abstract The prefrontal cortex is critical for mediating attention. Neuromodulation by acetylcholine and serotonin exerts opposing effects on attention. Layer 6 of prefrontal cortex is an important source of cortico-thalamic and cortico-cortical output, and this layer expresses both cholinergic and serotonergic receptors. The capacity of prefrontal layer 6 to influence attention through its cortical and thalamic connections highlights the necessity to understand its neuromodulation and the underlying cellular mechanisms involved. This thesis examines the modulation of prefrontal layer 6 by acetylcholine and serotonin, and the consequences of layer 6 activity on its downstream cortical targets. Is the cholinergic modulation of layer 6 in medial prefrontal cortex distinct? Contrasting layer 6 neurons of associative and primary regions of cortex, I find significant differences in the receptor composition and strength of cholinergic responses. The stronger cholinergic response in medial prefrontal layer 6 appears driven by high affinity nicotinic receptors of the α4β2α5 subtype with a modest contribution by muscarinic receptors. Functional disruptions in specific nicotinic receptor subunits are linked to attentional disruption, but what are their consequences for cholinergic modulation of layer 6? In mice with genetic deletion of key nicotinic receptor subunits, I demonstrate a compensatory upregulation in ii the muscarinic response, inversely proportional to the impairment of nicotinic receptor function.
    [Show full text]
  • Annual Report Fy 2016
    ANNUAL REPORT 2016 ANNUAL REPORT FY2016 REPORT ANNUAL APRIL 2016-MARCH 2017 HUMAN FRONTIER SCIENCE PROGRAM The Human Frontier Science Program is unique, supporting international collaboration to undertake innovative, risky, basic research at the frontier of the life sciences. Special emphasis is given to the support and training of independent young investigators, beginning at the postdoctoral level. The Program is implemented by an international organisation, supported financially by Australia, Canada, France, Germany, India, Italy, Japan, the Republic of Korea, New Zealand, Norway, Singapore, Switzerland, the United Kingdom, the United States of America, and the European Union. Since 1990, over 7000 researchers from more than 70 countries have been supported. Of these, 26 HFSP awardees have gone on to receive the Nobel Prize. APRIL 2016 - MARCH 2017 ANNUAL REPORT — 3 — Table of contents The following documents are available on the HFSP website www.hfsp.org: Joint Communiqués (Tokyo 1992, Washington 1997, Berlin 2002, Bern 2004, Ottawa 2007, Canberra 2010, Brussels 2013, London 2016): http://www.hfsp.org/about-us/governance/intergovernmental-conference Statutes of the International Human Frontier Science Program Organization: http://www.hfsp.org/about-us/governance/statutes Guidelines for the participation of new members in HFSPO: http://www.hfsp.org/about-us/new-membership General reviews of the HFSP (1996, 2001, 2006-2007, 2010): http://www.hfsp.org/about-us/reviews-hfsp Updated and previous lists of awards, including titles and abstracts:
    [Show full text]
  • Program San Diego | November 12–16 2 | NEUROSCIENCE 2016
    Neuroscience GENERAL INFORMATION 2016 Program San Diego | November 12–16 2 | NEUROSCIENCE 2016 Information at a Glance Note: The themes have been updated for Important Phone Numbers Neuroscience 2016 Annual Meeting Headquarters Office Exhibit Management Logistics and Programming San Diego Convention Center: Lobby D Logistics (619) 525-6240 San Diego Convention Center: Sails Pavilion Key to Poster Floor by Themes First Aid, Hospital and Urgent (619) 525-6200 Theme Care Numbers A. Development Programming First Aid Station B. Neural Excitability, Synapses, and Glia San Diego Convention Center: Sails Pavilion San Diego Convention Center: C. Neurodegenerative Disorders and Injury (619) 525-6205 Box Office G D. Sensory Systems ( 619 ) 525-6211 Volunteer Leadership Lounge E. Motor Systems San Diego Convention Center: Room 14A Scripps Mercy Hospital F. Integrative Physiology and Behavior (619) 525-6235 4077 Fifth Avenue G. Motivation and Emotion San Diego, CA 92103 H. Cognition General Information Booths ( 619 ) 294-8111 I. Techniques San Diego Convention Center J. History and Education Front of Box Office A, (619) 525-6224 Sharp Rees – Stealy Downtown Lobby D, (619) 525-6225 San Diego Urgent Care NOTE: Theme J Posters will be located in Hall Sails Pavilion, (619) 525-6226 300 Fir Street B beginning at 1 p.m. on Saturday, November San Diego, CA 92101 12, and will remain posted until 5 p.m., Sunday, Press Office (858) 499-2600 November 13. Press Room San Diego Convention Center: Room 15B (619) 525-6230 Code of Conduct at SfN Events positive environment. At the convention center, designated Human Resources Officer in the onsite medical and security personnel are available SfN headquarters office at each meeting SfN is committed to supporting discovery and directly or through the SfN headquarters office.
    [Show full text]
  • Sfn Announces 2010 Election Results Spotlight on Neuroscience
    Spotlight on Neuroscience Education “Since science has become and Training of such importance in society, Education and training in neuroscience — like neuroscience itself — reflects an scientists should become more ever-changing landscape of challenges and opportunities in funding, recruitment, curricula development, and program models. To discuss emerging trends and topics engaged in public life and in affecting neuroscience education, nearly 80 chairs, directors, faculty, and students turn their role should from graduate and undergraduate neuroscience departments and programs across the United States came together on March 26 in Washington, DC. be acknowledged by society at large.” This year’s annual spring conference, The Future of Higher Education and Training in Neuroscience: Challenges and Opportunities, was the first since SfN’s consolidation with the Association of Neuroscience Departments and Programs (ANDP) in 2009 and was organized by SfN’s Committee on Neuroscience Departments and Programs (CNDP). — Rita Levi-Montalcini, The conference offered ample opportunity for interactive discussion and participation, Neurologist and Nobel Laureate and received overwhelmingly positive feedback from participants. KEYN O TE SPEA K ER O N SCIENTIFIC WO R K F O RCE Richard Freeman, economics professor at Harvard University and American Association for the Advancement of Science fellow, opened the conference with a keynote address. IN THIS ISSUE Freeman spoke about the globalization of higher education and implications for graduate programs in science, engineering, and the scientific workforce. Spotlight on Neuroscience Continued on page 10 … Education and Training ........................................ 1 SfN Announces 2010 Election Results .................. 1 SfN Announces 2010 Election Results Message from the President ................................ 2 Supplemental Data Policy Change ......................
    [Show full text]