Afrotropical, Indomalayan, and Palearctic Regions Figs. 19.1-19.3 Type Genus

Total Page:16

File Type:pdf, Size:1020Kb

Afrotropical, Indomalayan, and Palearctic Regions Figs. 19.1-19.3 Type Genus 19. Tribe OXYRHACHINI Distant 1908 Old World: Afrotropical, Indomalayan, and Palearctic Regions Figs. 19.1-19.3 Type genus: Oxyrhachis Germar, 1833a Oxyrhachisaria Distant, 1908g [new division]: first treated as subfamily Oxyrrhachinae [sic: for Oxyrhachinae] and tribe Oxyrrhachini (Haupt 1929c); tribe Oxyrhachisini [sic: for Oxyrhachini] Goding 1930b; subfamily Oxyrhachinae equals Centrotinae and tribe Oxyrhachini moved to Centrotinae (Dietrich et al. 2001a). Xiphistesini Goding, 1930a [new division]: first treated as tribe Xiphistini and equals Oxyrhachini (Capener 1962a). Diagnostic characters.—Frontoclypeal lobes indistinct, head with large foliate lobes. Posterior pronotal process concealing scutellum. Pleuron with propleural lobe present and mesopleural lobe enlarged. Forewing with Cu1 vein abutting clavus (not marginal vein), with m-cu1 and m-cu2 crossveins in at least one wing, M and Cu veins adjacent at base, base of R2+3 and R4+5 veins truncate. Hind wing with R4+5 and M1+2 veins fused or not (3 or 4 apical cells). Tibiae foliaceous. Mesothoracic and metathoracic femora without ab- and adlateral cucullate setae. Metathoracic tibial rows I and III without cucullate setae (row II without cucullate setae in some species). Female second valvulae short with undulating dorsal margin, narrow near base, not curved, dorsal margin with fine teeth. Male style clasp oriented laterally, apex membranous, cylindrical, angled ventrally. Abdomen with paired 283 dorsal swellings, larger in posterior segments; acanthae distinct, bases not heightened, acanthae without ornamentation. Description.—Length 5-6.3 mm. Color tan to dark brown, or combinations thereof. HEAD (Fig. 19.1 I): frontoclypeal margins parallel or slightly converging ventrally, frontoclypeal lobes indistinct; with large foliate lobes; ocelli about equidistant from each other and eyes; vertex without toothlike projections. THORAX: PRONOTUM (Figs. 19.1 A- H): suprahumeral horns present or absent; posterior process straight at base, appressed against scutellum, significantly extending past m-cu3 crossvein in forewing. SCUTELLUM: emarginate with apices acute, concealed by posterior process; shortened--with abdomen removed, notch and apices not visible. PLEURON: propleural lobe present, mesopleural lobe enlarged. FOREWING (Figs. 19.1 J): hyaline; apical limbus broad; s crossvein distad of r-m2 crossvein; Cu1 vein abutting clavus (not marginal vein); m-cu1 and m-cu2 crossveins present in at least 1 wing; M and Cu veins adjacent at base; R and M veins not confluent preapically; R1 vein not perpendicular to marginal vein; r-m1 crossvein originating anterior to first division of R vein, parallel to longitudinal veins or bent towards R vein; R, M, and Cu veins not parallel apically; R4+5 vein shape prior to s crossvein significantly angled or not; base of R2+3 and R4+5 veins truncate. HIND WING (Fig. 19.1 K): R4+5 and M1+2 veins fused or not (3 or 4 apical cells). PRO- AND MESOTHORACIC LEGS: tibiae foliaceous; mesothoracic tibia without row(s) of cucullate setae; mesothoracic femur without ab- and adlateral cucullate setae. METATHORACIC LEG (Figs. 19.2 A-B): ventral margin of coxa, trochanter, and femur without enlarged setal bases; femur without ab- and adlateral cucullate setae; femur without ablateral cucullate setae ventrolaterally; tibia foliaceous, rows I and III without cucullate setae; row II with or without cucullate setae, if present, in single row; tarsomere I with 1 cucullate seta or 284 none. ABDOMEN: in anterior aspect (abdomen removed) nearly triangular; anterior tergal borders not modified; sternal longitudinal carina absent; paired dorsal swellings present, larger in posterior segments; tergum III ventrolateral margin carinate; abdominal setal bases not enlarged. FEMALE GENITALIA (Figs. 19.3 A-D): second valvulae short with undulating dorsal margin, narrow near base, not curved, dorsal teeth fine in size, acute projections on dorsal margin absent; third valvulae without small ventral conelike projections. MALE GENITALIA (Figs: 19.3 E-K) lateral plate with short dorsoapical lobe extending laterally (Fig. 19.3 J) or vertically, without ventral lobe; subgenital plate without distinct division; style clasp (Fig. 19.3 E-F) oriented laterally, membranous, cylindrical, angled ventrally; style shank arched, apex at midpoint or past midpoint. ABDOMINAL FINE STRUCTURE (Figs. 19.2 C-D): acanthae distinct, bases not heightened, acanthae without ornamentation. Chromosome numbers.—Male 2n= 21 (Table 26.3). Distribution.—The tribe Oxyrhachini is recorded from the Afrotropical, Indomalayan, and Palearctic Regions (McKamey 1998a). Ecology.—Members of the tribe Oxyrhachini are reported from the host plant families Amaranthaceae, Balanitaceae, Bignoniaceae, Buddlejaceae, Casuarinaceae, Compositae, Ebenaceae, Euphorbiaceae, Gramineae, Lauraceae, Leguminosae, Moraceae, Myrtaceae, Proteaceae, Rhamnaceae, Santalaceae, Solanaceae, Sterculiaceae, Tamaricaceae, Ulmaceae, and Verbenaceae. Oxyrhachis is the only centrotine genus reported from the family Balanitaceae (Table 26.2). Oxyrhachis is reported to be tended by ants (Table 26.1). Some species of Oxyrhachis are gregarious intra- and interspecifically as both nymphs and adults (Ananthasubramanian 1996a). In addition, certain species of Oxyrhachis show 285 parental care by guarding egg masses and nymphs from predators and parasitoids (Ananthasubramanian 1996a). Discussion.—The tribe Oxyrhachini, represented by the genus Oxyrhachis, is a very morphologically distinct, geographically widespread, and speciose group. The genus Oxyrhachis is among the four largest membracid genera, with 117 species (McKamey 1998a). Oxyrhachini, although monotypic, is here retained as a valid tribe due to the numerous character changes on the phylogenetic tree (Fig. 24.1) and the size of the lineage. The genus Oxyrhachis is perhaps best known morphologically for its large foliate lobes on the head that closely border the frontoclypeus. Oxyrhachini was historically placed in the Membracinae by many workers including Stål (1866a), Distant (1908g), Goding (1931a), and Metcalf and Wade (1965a). Funkhouser (1951a), however, included the Oxyrhachini within the Centrotinae. Distant’s (1908g) key characteristics are still valuable diagnostic features for the tribe: oxyrachine treehoppers have a long and narrow posterior process, the tibiae are foliaceous, and the pro- and mesosterna have distinct tooth-like processes. Along with these features, all oxyrhachines examined have dorsal abdominal swellings which are larger in the posterior portion of the abdomen. This is in contrast to nessorhinines and gargarines where the dorsal abdominal processes are more distinct in the anterior portion of the abdomen. Unlike other centrotines, the oxyrhachines examined here have Cu1 vein abutting the clavus in the forewing, or the junction between the clavus and the marginal vein, rather than clearly abutting the marginal vein. Additionally, M and Cu veins in the forewing are clearly adjacent in oxyrhachine forewings and m-cu1 and m-cu2 crossveins are present. 286 Although most oxyrhachine species are morphologically homogenous, certain characters vary among species. Some species, including O. carinata and O. sulicornis, have R4+5 and M1+2 veins in the hind wing fused (3 apical cells) while in other species these veins are not fused (4 apical cells). Apparently, according to Capener (1962a), the number of species with 3 apical cells and 4 apical cells in the hind wing is about equal. The presence of cucullate setae in metathoracic tibial row II is also variable among species of Oxyrhachis. Indeed, Oxyrhachis formerly was split into 6 genera to accommodate the differences in hind wing venation and pronotal features, including the presence or absence of suprahumeral horns. Based on a phylogenetic analysis (Fig. 24.12) of three former genera (Gongroneura Jacobi, Kombazana Distant, and Xiphistes Stål) and Oxyrhachis, however, there are too few morphological differences to defend splitting Oxyrhachis into multiple genera at this time. A phylogenetic analysis of Oxyrhachis, using generic morphological characters and molecular methods, is recommended to better determine its taxonomic and phylogenetic limits. The reduction in rank from subfamily Oxyrhachinae to tribe Oxyrhachini (within the Centrotinae) by Dietrich et al. (2001a) based on a morphological phylogenetic analysis is supported by the phylogenetic analysis of the Centrotinae presented here (Fig. 24.1). The Oxyrhachini are closely related to the tribes Ebhuloidesini, Hypsaucheniini, and Terentiini. Apparently, the Oxyrhachini are sister group to the Hypsaucheniini. The Ebhuloidesini, Hypsaucheniini, and Oxyrhachini share similarly shaped female second valvulae and male clasps, and all have enlarged pleural projections. This diagnostic male clasp was described as resembling the “head of a snake” by Capener (1962a). Although the Oxyrhachini are sister group to the Nessorhinini in the phylogenetic analysis of Dietrich et al. (2001a), this relationship was thought to be an artifact of the small number of centrotines sampled. It is 287 critical that future molecular higher level phylogenetic analyses of the Membracidae include the Oxyrhachini in order to investigate further their relationship with the morphologically extreme tribe Hypsaucheniini and predominantly Australian Terentiini. Genera of the tribe Oxyrhachini Oxyrhachis Germar, 1833a (type species: Membracis taranda Fabricius by monotypy). Specimens examined. —Oxyrhachis
Recommended publications
  • Bulletin No. 206-Treehopper Injury in Utah Orchards
    Utah State University DigitalCommons@USU UAES Bulletins Agricultural Experiment Station 6-1928 Bulletin No. 206 - Treehopper Injury in Utah Orchards Charles J. Sorenson Follow this and additional works at: https://digitalcommons.usu.edu/uaes_bulletins Part of the Agricultural Science Commons Recommended Citation Sorenson, Charles J., "Bulletin No. 206 - Treehopper Injury in Utah Orchards" (1928). UAES Bulletins. Paper 178. https://digitalcommons.usu.edu/uaes_bulletins/178 This Full Issue is brought to you for free and open access by the Agricultural Experiment Station at DigitalCommons@USU. It has been accepted for inclusion in UAES Bulletins by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Bulletin 2 06 June, 1928 Treehopper Injury in Utah Orchards By CHARLES J. SORENSON 3 Dorsal and side views of the following species of treehoppers: 1. Ceresa bubalus (Fabr.) ( Buffalo treehopper) 2. Stictocephala inermis (Fabr.) 3. Stictocephala gillettei Godg. (x 10 ) UTAH AGRICULTURAL EXPERIMENT STATION LOGAN. UTAH UTAH AGRICULTURAL EXPERIMENT STATION , BOARD OF TRUSTEES . ANTHONY W. IVINS, President __ _____ ____________________ __ ___________________ Salt Lake City C. G. ADNEY, Vice-President ____ ___ ________________________________ ________________________ Corinne ROY B ULLEN ________ __________________________ _______ _____ _____ ________ ___ ____ ______ ____ Salt Lake City LORENZO N . STOHL ______ ___ ____ ___ ______________________ __ ___ ______ _____ __________ Salt Lake City MRS. LEE CHARLES MILLER ___ ______ ___ _________ ___ _____ ______ ___ ____ ________ Salt Lake City WE S TON V ERN ON, Sr. ________________________ ___ ____ ____ _____ ___ ____ ______ __ __ _______ ________ Loga n FRANK B. STEPHENS _____ ___ __ ____ ____________ ____ ______________ __ ___________ __.___ Salt Lake City MRS.
    [Show full text]
  • (Gramineae) Background Concerned, It
    BLUMEA 31 (1986) 281-307 Generic delimitationof Rottboelliaand related genera (Gramineae) J.F. Veldkamp R. de Koning & M.S.M. Sosef Rijksherbarium,Leiden, The Netherlands Summary Generic delimitations within the Rottboelliastrae Stapf and Coelorachidastrae Clayton (for- mal name) are revised. Coelorachis Brongn., Hackelochloa O. Ktze, Heteropholis C.E. Hubb., in Ratzeburgia Kunth, and Rottboellia formosa R. Br, are to be included Mnesithea Kunth. Heteropholis cochinchinensis (Lour.) Clayton and its variety chenii (Hsu) Sosef & Koning are varieties of Mnesithea laevis (Retz.) Kunth. Robynsiochloa Jacq.-Félix is to be included in Rottboellia L.f. The necessary new combinations, a list of genera and representative species, and a key to the genera are given. In the Appendix a new species of Rottboellia, R. paradoxa Koning & Sosef, is described from the Philippines. The enigmatic species Rottboellia villosa Poir. is transferred to Schizachyrium villosum (Poir.) Veldk., comb. nov. Introduction Historical background The of the within the of taxa delimitation genera group represented by Rottboel- lia L. f. and its closest relatives, here taken in the sense of Clayton (1973), has always posed a considerable problem. former In times Rottboellia contained many species. It was divided up in various the of Hackel seemed most ways, but system 5 subgenera as proposed by (1889) authoritative: Coelorachis (Brongn.) Hack., Hemarthria (R. Br.) Hack., Peltophorus (Desv.) HackPhacelurus (Griseb.) Hack., and Thyrsostachys Hack. When at the end of the last century and in the beginning of the present one many large grass genera were split up, e.g. Andropogon, Panicum, Stapf (1917) raised Hackel's subgenera to generic rank, reviving some old names formerly treated as synonyms, and created several new of the of other unable finish his ones.
    [Show full text]
  • Biology and Control of Tree Hoppers Injurious to Fruit Trees in the Pacific Northwest
    m TECHNICAL BULLETIN NO. 402 FEBRUARY 1934 BIOLOGY AND CONTROL OF TREE HOPPERS INJURIOUS TO FRUIT TREES IN THE PACIFIC NORTHWEST BY M. A. YOTHERS Associate Entomoioftlst Division of Fruit Insects, Bureau of Entomology UNITED STATES DEPARTMENT OF AGRICULTURE, WASHINGTON, D.C. ISi »le by the Superintendent of Documents, Washington, D.C. -------------- Price 10 centl TECHNICAL BULLETIN NO. 402 FEBRUARY 1934 UNITED STATES DEPARTMENT OF AGRICULTURE WASHINGTON. D.C. BIOLOGY AND CONTROL OF TREE HOPPERS INJURIOUS TO FRUIT TREES IN THE PACIFIC NORTHWEST By M. A. YoTHERS, associate entoviologist, Division of Fruit InsectSf Bureau of Entomology CONTENTS Page Page Introduction 1 Ceresa alhidosparsa 8tal .._. 32 Stictocephala inermis Fab -_ 2 Distribution 3;í Distribution 2 History _ -. 33 Synonymy and common name 2 Description of adult _ 33 Food plants 3 Position of eggs 33 Character and importance of injury ;i Hatching , 33 Description of stapes 4 Nymphal instars _ _ _ _ 34 Life history and habits - _ 7 Jieiiria ruhideUa Ball 34 Ceresa basalts Walk -_ 19 Associated species of Membracidae , 35 History and distribution 10 Dissemination 35 Synonymy and common name 20 The relation of ants to nymphs _ 3fi Character and importance of injury 20 Natural control 36 Food plants - - - 21 Parasites 36 Description of instars 21 Other enemies, _ 36 Description of adult 21 Natural protection. _ _ 37 Life history and habits 21 Preventive and control measures 38 Ceresa bubalus Fab :iO Spraying against the eggs - - - - - 38 Distribution ¡iO Spraying against the nymphs _- 41 Synonymy and common name... 31 Clean culture 42 Character and importance of injury HI Other possible control niel hods _ 42 Food plants 31 Summary and conclusions 43 Coniparisoa of ovipositors.
    [Show full text]
  • In Alpinen Wald-Ökosystemen Südtirols Auf Den Dauerbeobachtungsflächen IT01 Ritten Und IT02 Montiggl Im Jahre 2006
    forest observer vol.4 2008 249 - 292 Biomonitoring der Zikadenfauna (Auchenorrhyncha) in alpinen Wald-Ökosystemen Südtirols auf den Dauerbeobachtungsflächen IT01 Ritten und IT02 Montiggl im Jahre 2006 Michael Carl Abstract Ecological assessment in alpine forest ecosystems: Biomonitoring of and bioindication by the leafhopper-fauna (Auchenorrhyncha) at monitoring sites in northern Italy Concerning leafhopper communities the Ritten (IT01) and Montiggl (IT02) have become one of the most intensively explored mountain massifs of South Tyrol. From 1996 to 2006 more than 4900 individuals out of 81 species were collected. The use of leafhoppers as a management tool for monitoring status and change in forest ecosystems is critically evaluated. The fauna of both sites is dominated by a characteristic set of partially strongly specialized species. Species turnover as well as evaluation of precipitation and temperature of the monitoring sites show a strong reaction of the leafhopper communities on effects probably caused by climate change. Keywords: Leafhoppers, Auchenorrhyncha, species communities, mountaineous forests, climate change, Alps, Italy 1 Einleitung 1.1 Veranlassung und Fragestellung Seit einigen Jahren haben durch verschiedenste Individuenzahl in Grünland‑ und Waldhabitaten Forschungsprojekte die Zikaden (Insecta, Auchenor‑ vor und besiedeln deren gesamte dreidimensionale rhyncha) eine wachsende Bedeutung für die Bioin‑ Struktur von der Wurzel bis zur Baumspitze. Zikaden dikation erlangt. Diese Insektenordnung von Pflan‑ sind daher als
    [Show full text]
  • A Synopsis of the Tribe Micrutalini Haupt (Homoptera, Membracidae, Smiliinae) 1
    A synopsis of the tribe Micrutalini Haupt (Homoptera, Membracidae, Smiliinae) 1 Albino M. Sakakibara 2 ABSTRACT. The tribe Micrutalini and its two genera, Trachytalis Fowler and Micrutalis Fowler, are redescribed. The following species are treated and, in some cases, nomenclatural changes introduced: Trachytalis isabellina Fowler, 1895; T distinguenda Fowler, 1895; T retrofasciata (Lethierry, 1890), comb.n.; Micrutalis atrovena Goding, 1930; M balteata (Fairmaire, 1846) = Acutalis lucidus Buckton, 1902, syn.n.; M bella Goding, 1929; M biguttula (Fairmaire, 1846), comb.n.; M binaria (Fairmaire, 1846) = Acutalisflaviventris Lethierry, 1890, syn.n.; M callan­ gensis Goding, 1930; M calva (Say, 1830); M. discalis (Walker, 1858); M dorsalis (Fitch, 1851); M dubia Fowler, 1895 = M zeteki Goding, 1928, syn.n.; M flava Goding, 1929; M jlavozonata (Faitmaire, 1846), comb.n. = Acutalis geniculata Stiil, 1862, syn.n. = Acutalis modesta Stãl, 1862, syn.n.; M godfreyi Sakakibara, 1976; M incerta Sakakibara, 1976; M lata Goding, 1930; M litterata (Fairmaire, 1846), comb.n.;M lugubrina(Stãl, 1862);M malleiferaFowler, 1895=M binariamutabilis Fowler, 1895, syn.n.; M minutus Buckton, 1902; M nigrolineata (Stiil, 1864); M nigromarginata Funkhouser, 1940; M notatipennis Fowler, 1895; M occidentalis (Goding, 1893); M pallens Fowler, 1895; M parva (Goding, 1893); M plagiata (Stãl, 1862) = Acutalis variabilis Berg, 1879, syn.n. = M chapadensis Goding, 1930, syn.n.; M punctifera (Walker, 1858); M semialba (Stãl, 1862); M stipulipennis Buckton, 1902; M tau Goding, 1930; M trifurcata Goding, 1893; M tripunctata (Fairmaire, 1846) = Acutalis moesta Stãl, 1859, syn.n. = M tartaredoides Goding, 1930, syn.n .. New species: Micrutalis diminuta sp.n. (Ecuador, Pichincha); Micrutalis divisa sp.n.
    [Show full text]
  • Peña & Bennett: Annona Arthropods 329 ARTHROPODS ASSOCIATED
    Peña & Bennett: Annona Arthropods 329 ARTHROPODS ASSOCIATED WITH ANNONA SPP. IN THE NEOTROPICS J. E. PEÑA1 AND F. D. BENNETT2 1University of Florida, Tropical Research and Education Center, 18905 S.W. 280th Street, Homestead, FL 33031 2University of Florida, Department of Entomology and Nematology, 970 Hull Road, Gainesville, FL 32611 ABSTRACT Two hundred and ninety-six species of arthropods are associated with Annona spp. The genus Bephratelloides (Hymenoptera: Eurytomidae) and the species Cerconota anonella (Sepp) (Lepidoptera: Oecophoridae) are the most serious pests of Annona spp. Host plant and distribution are given for each pest species. Key Words: Annona, arthropods, Insecta. RESUMEN Doscientas noventa y seis especies de arthrópodos están asociadas con Annona spp. en el Neotrópico. De las especies mencionadas, el género Bephratelloides (Hyme- noptera: Eurytomidae) y la especie Cerconota anonella (Sepp) (Lepidoptera: Oecopho- ridae) sobresalen como las plagas mas importantes de Annona spp. Se mencionan las plantas hospederas y la distribución de cada especie. The genus Annona is confined almost entirely to tropical and subtropical America and the Caribbean region (Safford 1914). Edible species include Annona muricata L. (soursop), A. squamosa L. (sugar apple), A. cherimola Mill. (cherimoya), and A. retic- ulata L. (custard apple). Each geographical region has its own distinctive pest fauna, composed of indigenous and introduced species (Bennett & Alam 1985, Brathwaite et al. 1986, Brunner et al. 1975, D’Araujo et al. 1968, Medina-Gaud et al. 1989, Peña et al. 1984, Posada 1989, Venturi 1966). These reports place emphasis on the broader as- pects of pest species. Some recent regional reviews of the status of important pests and their control have been published in Puerto Rico, U.S.A., Colombia, Venezuela, the Caribbean Region and Chile (Medina-Gaud et al.
    [Show full text]
  • The Art and Science of Describing Nature's Surrealists
    Zootaxa 4281 (1): 001–290 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Table of contents ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4281.1.2 The art and science of describing nature’s surrealists: Festschrift Celebrating the Career of Albino Morimasa Sakakibara OLIVIA EVANGELISTA, DANIELA MAEDA TAKIYA & CHRISTOPHER H. DIETRICH (EDS.) 5 The art and science of describing nature’s surrealists: Foreword from the Editors OLIVIA EVANGELISTA, DANIELA MAEDA TAKIYA & CHRISTOPHER H. DIETRICH 22 New species in the treehopper genus Bocydium Latreille, with description of nymphal stages and observations on their natural history CAMILO FLÓREZ-V & OLIVIA EVANGELISTA 58 A new species of Lycoderes Sakakibara (Hemiptera, Membracidae, Stegaspidinae) from Brazil ANTONIO JOSÉ CREÃO-DUARTE, VALBERTA ALVES CABRAL & ALINE LOURENÇO 63 A New Treehopper Genus and Species from Puerto Rico (Hemiptera: Membracidae: Stegaspidinae) with Notes on other Caribbean Membracidae CHRISTOPHER H. DIETRICH 70 Problematode: an enigmatic new genus of Membracidae (Hemiptera) with two new species from Venezuela MARCO A. GAIANI 77 Two remakable new species of Notocera Amyot and Serville, 1843 (Hemiptera, Membracidae, Hypsoprorini) from the Brazilian Caatinga ANTÔNIO JOSÉ CREÃO-DUARTE, REMBRANDT R. A. D. ROTHÉA, ALINE LOURENÇO, VALBERTA ALVES CABRAL & OLIVIA EVANGELISTA 90 Notes on the genus Sakakibarella Creão-Duarte with description of three new species (Membracidae: Membracinae: Hoplophorionini) LUIS F. CAMACHO, CAMILO FLÓREZ-V & OLIVIA EVANGELISTA 108 Two new species of Darnini (Hemiptera: Membracidae) from Colombia and Peru LAURA GONZALEZ-MOZO, STUART MCKAMEY, JESSICA L. WARE, GEORGE HAMILTON 115 Two new species of unusual Ceresini (Hemiptera: Membracidae: Smiliinae) STUART H.
    [Show full text]
  • Hemiptera, Membracidae, Smiliinae) with a New Synonym, a New Combination, and a New Country Record
    A peer-reviewed open-access journal ZooKeys 557: 85–91 (2016)First Immature of the New World Treehopper tribe Thuridini... 85 doi: 10.3897/zookeys.557.6602 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research First Immature of the New World Treehopper tribe Thuridini (Hemiptera, Membracidae, Smiliinae) with a new synonym, a new combination, and a new country record Stuart H. McKamey1, Mitchell J. Porter2 1 USDA/ARS Systematic Entomology Lab, c/o NMNH MRC-168, Smithsonian Institution, Washington, DC 20560, USA 2 Department of Biology, University of Maryland, College Park, MD 20742 Corresponding author: Stuart H. McKamey ([email protected]) Academic editor: M. Webb | Received 16 September 2015 | Accepted 8 December 2015 | Published 28 January 2016 http://zoobank.org/E3D490F4-5654-47E4-95AA-3407F41648CE Citation: McKamey SH, Porter MJ (2016) First Immature of the New World Treehopper tribe Thuridini (Hemiptera: Membracidae: Smiliinae) with a new synonym, a new combination, and a new country record. ZooKeys 557: 85–91. doi: 10.3897/zookeys.557.6602 Abstract The species Thuris depressus Sakakibara (1975) is proposed as a syn. n. of Thuris binodosus (Goding 1926), comb. n. The distribution of the genus is expanded from Brazil and Peru to include Ecuador and Venezuela, and the immature is described based on 75 characters. Keywords Thuris, Parantonae, nymph, syn. n., comb. n., Ecuador, Venezuela Introduction Adult treehoppers (Membracidae, Aetalionidae, and Melizoderidae) are well known for the expanded,
    [Show full text]
  • The Charm of the Chiltern Hills
    The Charm of the Chiltern Hills Naturetrek Tour Report 16 - 18 May 2018 Man Orchid Burnt Orchid Monkey Orchid Hybrid Monkey x Lady Orchid Report and images compiled by James Harding-Morris Naturetrek Mingledown Barn Wolf's Lane Chawton Alton Hampshire GU34 3HJ UK T: +44 (0)1962 733051 E: [email protected] W: www.naturetrek.co.uk Tour Report The Charm of the Chiltern Hills Tour participants: James Harding-Morris (leader) with three Naturetrek clients Summary This was a three-day tour comprising some of the best orchid and wildflower sites in the Chilterns, a walk along the Thames path from Goring, and a trip to visit RSPB Otmoor for birds. The weather spanned everything from reasonable to excellent, and we certainly made the best of it. Day 1 Wednesday 16th May We met in the bar of the Lambert Arms, introduced ourselves and got down to the business of discussing orchids. This orchid season had been an odd one so far, with several species delayed by the slow start to the year, but others earlier than expected. A couple of these earlier-than-usual species were Burnt Orchid and Man Orchid. As such, we tried something new and headed north to Hoo Bit in Hertfordshire. This patch of woodland and meadow has a lovely mixture of orchids, and it didn’t take us long to spot a number of Fly Orchids – within a few minutes we must have easily seen forty spikes. Twayblades were abundant, as were Common Spotted Orchid rosettes, which hinted at how the meadow must look in high summer.
    [Show full text]
  • EU-Spain Cherry RA.Docx
    Importation of Cherry [Prunus avium United States (L.) L.] from Continental Spain into Department of Agriculture the Continental United States Animal and Plant Health Inspection Service A Qualitative, Pathway-Initiated Pest March 12, 2015 Risk Assessment Version 3 Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology Plant Protection and Quarantine Animal and Plant Health Inspection Service United States Department of Agriculture 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Pest Risk Assessment for Cherries from Continental Spain Executive Summary The Animal and Plant Health Inspection Service (APHIS) of the United States Department of Agriculture (USDA) prepared this risk assessment document to examine plant pest risks associated with importing commercially produced fresh fruit of cherry [Prunus avium (L.) L. (Rosaceae)] for consumption from continental Spain into the continental United States. Based on the scientific literature, port-of-entry pest interception data, and information from the government of Spain, we developed a list of all potential pests with actionable regulatory status for the continental United States that are known to occur in continental Spain and that are known to be associated with the commodity plant species anywhere in the world. From this list, we identified and further analyzed 9 organisms that have a reasonable likelihood of being associated with the commodity following harvesting from the field and prior to any post-harvest processing. Of the pests
    [Show full text]
  • Introduction to the Study of Chromosomal and Reproductive Patterns in Paraneoptera
    Introduction to the study of chromosomal and reproductive patterns in Paraneoptera Ilya A. Gavrilov-Zimin1, Snejana M. Grozeva2, Valentina G. Kuznetsova1, Dmitrii A. Gapon1, Andrei S. Kurochkin3, Katia G. Trencheva4 1Zoological Institute, Russian Academy of Sciences, Universitetskaya emb. 1, St. Petersburg, 199034, Russia; 2Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Blvd Tsar Osvoboditel 1, Sofia 1000, Bulgaria; 3Samara State University named after S.P. Korolev (National Research University), Akademika Pavlova str. 1, Samara 443011, Russia; 4University of Forestry, Blvd Kliment Ochridski 10, Sofia 1756, Bulgaria Corresponding author: Ilya A. Gavrilov-Zimin ([email protected]) Abstract This paper opens the monographic issue “Aberrant cytogenetic and reproductive patterns in evolution of Paraneoptera”, prepared by a Russian-Bulgarian research team on the basis of long- term collaborative studies. In this first part of the monograph, we provide the basic introductory information, describe the material involved and the methods applied, and give terminology and nomenclature of used taxonomic names. Keywords Aphids, cicadas, lice, moss-bugs, psocids, psyllids, scale insects, thrips, true bugs, whiteflies, zorapters Introduction The predominant reproductive strategy in eukaryotic organisms is bisexual reproduction which involves the formation and fusion of gametes, namely sperm from the testes and eggs from the ovaries. This is also true for all major insect groups, in which, however, bisexuality is often combined with numerous aberrant modes of reproduction (White 1973; Ivanova-Kazas 1995; Simon et al., 2003; De Meeûs et al. 2007; Vershinina & Kuznetsova 2016; Leather & Hardie 2017; Gokhman & Kuznetsova 2018). These latter can characterize high-rank taxons or be found in separate genera and species within a group that mainly reproduces bisexually.
    [Show full text]
  • Dellapé Et Al.: Cicadomorpha in Citrus Orchards in Argentina 1125
    Dellapé et al.: Cicadomorpha in Citrus Orchards in Argentina 1125 DIVERSITY OF CICADOMORPHA (HEMIPTERA: AUCHENORRHYNCHA) IN CITRUS ORCHARDS IN NORTHEASTERN ARGENTINA 1* 2 1 GIMENA DELLAPÉ , JUAN P. BOUVET AND SUSANA L. PARADELL 1División Entomología. Facultad de Ciencias Naturales y Museo, UNLP, Paseo del Bosque s/nº (B1900FWA), La Plata, Buenos Aires, Argentina 2Sección Entomología, INTA EEA Concordia, CC 34 (E3200AQK), Entre Ríos, Argentina *Corresponding autor; E-mail: [email protected] ABSTRACT Among phytophagous insects, the Cicadomorpha are important economically because they damage crops by sucking plant sap and by transmitting plant pathogens, such as Spiro- plasma citri and Xylella fastidiosa to citrus. In Argentina little knowledge exists about this subject. The aim of this work was to study the diversity of Cicadomorpha associated with citrus orchards in Entre Ríos province, and their seasonal fluctuation in relation with cli- matic and phenological conditions. A total of 1,554 specimens belonging to 28 species of Cicadomorpha were collected with yellow sticky traps in sweet orange (Citrus × sinensis (L.) Osbeck) and tangerine (Citrus unshiu Marc) orchards. The Shannon index and the Simpson index suggested a similar trend in the distribution of the dominant species in both crops. In the orange orchard, Cicadomorpha populations increased in the summer coincidently with temperature increases. On the other hand, a significant increase in abundance during the winter months was coincident with increase of early sprouts of the citrus plants. Entre Ríos province represents a new distribution record for 13 species. Tangerine is a newly recorded host-plant for 16 species studied, and eight species are reported for the first time on ‘Valen- cia Late’ orange.
    [Show full text]