19. Tribe OXYRHACHINI Distant 1908

Old World: Afrotropical, Indomalayan, and Palearctic Regions

Figs. 19.1-19.3

Type : Oxyrhachis Germar, 1833a

Oxyrhachisaria Distant, 1908g [new division]: first treated as subfamily Oxyrrhachinae

[sic: for Oxyrhachinae] and tribe Oxyrrhachini (Haupt 1929c); tribe Oxyrhachisini [sic:

for Oxyrhachini] Goding 1930b; subfamily Oxyrhachinae equals Centrotinae and tribe

Oxyrhachini moved to Centrotinae (Dietrich et al. 2001a).

Xiphistesini Goding, 1930a [new division]: first treated as tribe Xiphistini and equals

Oxyrhachini (Capener 1962a).

Diagnostic characters.—Frontoclypeal lobes indistinct, head with large foliate lobes.

Posterior pronotal process concealing scutellum. Pleuron with propleural lobe present and

mesopleural lobe enlarged. Forewing with Cu1 vein abutting clavus (not marginal vein), with

m-cu1 and m-cu2 crossveins in at least one wing, M and Cu veins adjacent at base, base of

R2+3 and R4+5 veins truncate. Hind wing with R4+5 and M1+2 veins fused or not (3 or 4 apical

cells). Tibiae foliaceous. Mesothoracic and metathoracic femora without ab- and adlateral cucullate setae. Metathoracic tibial rows I and III without cucullate setae (row II without

cucullate setae in some species). Female second valvulae short with undulating dorsal

margin, narrow near base, not curved, dorsal margin with fine teeth. Male style clasp

oriented laterally, apex membranous, cylindrical, angled ventrally. Abdomen with paired

283 dorsal swellings, larger in posterior segments; acanthae distinct, bases not heightened, acanthae without ornamentation.

Description.—Length 5-6.3 mm. Color tan to dark brown, or combinations thereof.

HEAD (Fig. 19.1 I): frontoclypeal margins parallel or slightly converging ventrally, frontoclypeal lobes indistinct; with large foliate lobes; ocelli about equidistant from each other and eyes; vertex without toothlike projections. THORAX: PRONOTUM (Figs. 19.1 A-

H): suprahumeral horns present or absent; posterior process straight at base, appressed

against scutellum, significantly extending past m-cu3 crossvein in forewing. SCUTELLUM:

emarginate with apices acute, concealed by posterior process; shortened--with abdomen

removed, notch and apices not visible. PLEURON: propleural lobe present, mesopleural lobe enlarged. FOREWING (Figs. 19.1 J): hyaline; apical limbus broad; s crossvein distad of r-m2

crossvein; Cu1 vein abutting clavus (not marginal vein); m-cu1 and m-cu2 crossveins present in at least 1 wing; M and Cu veins adjacent at base; R and M veins not confluent preapically;

R1 vein not perpendicular to marginal vein; r-m1 crossvein originating anterior to first

division of R vein, parallel to longitudinal veins or bent towards R vein; R, M, and Cu veins

not parallel apically; R4+5 vein shape prior to s crossvein significantly angled or not; base of

R2+3 and R4+5 veins truncate. HIND WING (Fig. 19.1 K): R4+5 and M1+2 veins fused or not (3 or

4 apical cells). PRO- AND MESOTHORACIC LEGS: tibiae foliaceous; mesothoracic tibia without

row(s) of cucullate setae; mesothoracic femur without ab- and adlateral cucullate setae.

METATHORACIC LEG (Figs. 19.2 A-B): ventral margin of coxa, trochanter, and femur without

enlarged setal bases; femur without ab- and adlateral cucullate setae; femur without ablateral

cucullate setae ventrolaterally; tibia foliaceous, rows I and III without cucullate setae; row II

with or without cucullate setae, if present, in single row; tarsomere I with 1 cucullate seta or

284 none. ABDOMEN: in anterior aspect (abdomen removed) nearly triangular; anterior tergal

borders not modified; sternal longitudinal carina absent; paired dorsal swellings present,

larger in posterior segments; tergum III ventrolateral margin carinate; abdominal setal bases not enlarged. FEMALE GENITALIA (Figs. 19.3 A-D): second valvulae short with undulating

dorsal margin, narrow near base, not curved, dorsal teeth fine in size, acute projections on

dorsal margin absent; third valvulae without small ventral conelike projections. MALE

GENITALIA (Figs: 19.3 E-K) lateral plate with short dorsoapical lobe extending laterally (Fig.

19.3 J) or vertically, without ventral lobe; subgenital plate without distinct division; style clasp (Fig. 19.3 E-F) oriented laterally, membranous, cylindrical, angled ventrally; style shank arched, apex at midpoint or past midpoint. ABDOMINAL FINE STRUCTURE (Figs. 19.2

C-D): acanthae distinct, bases not heightened, acanthae without ornamentation.

Chromosome numbers.—Male 2n= 21 (Table 26.3).

Distribution.—The tribe Oxyrhachini is recorded from the Afrotropical,

Indomalayan, and Palearctic Regions (McKamey 1998a).

Ecology.—Members of the tribe Oxyrhachini are reported from the host families Amaranthaceae, Balanitaceae, Bignoniaceae, Buddlejaceae, Casuarinaceae,

Compositae, Ebenaceae, Euphorbiaceae, Gramineae, Lauraceae, Leguminosae, Moraceae,

Myrtaceae, Proteaceae, Rhamnaceae, Santalaceae, Solanaceae, Sterculiaceae, Tamaricaceae,

Ulmaceae, and Verbenaceae. Oxyrhachis is the only centrotine genus reported from the

family Balanitaceae (Table 26.2). Oxyrhachis is reported to be tended by ants (Table 26.1).

Some species of Oxyrhachis are gregarious intra- and interspecifically as both nymphs and adults (Ananthasubramanian 1996a). In addition, certain species of Oxyrhachis show

285 parental care by guarding egg masses and nymphs from predators and parasitoids

(Ananthasubramanian 1996a).

Discussion.—The tribe Oxyrhachini, represented by the genus Oxyrhachis, is a very

morphologically distinct, geographically widespread, and speciose group. The genus

Oxyrhachis is among the four largest membracid genera, with 117 species (McKamey

1998a). Oxyrhachini, although monotypic, is here retained as a valid tribe due to the

numerous character changes on the phylogenetic tree (Fig. 24.1) and the size of the lineage.

The genus Oxyrhachis is perhaps best known morphologically for its large foliate lobes on

the head that closely border the frontoclypeus. Oxyrhachini was historically placed in the

Membracinae by many workers including Stål (1866a), Distant (1908g), Goding (1931a), and

Metcalf and Wade (1965a). Funkhouser (1951a), however, included the Oxyrhachini within

the Centrotinae.

Distant’s (1908g) key characteristics are still valuable diagnostic features for the

tribe: oxyrachine have a long and narrow posterior process, the tibiae are foliaceous, and the pro- and mesosterna have distinct tooth-like processes. Along with these features, all oxyrhachines examined have dorsal abdominal swellings which are larger in the posterior portion of the abdomen. This is in contrast to nessorhinines and gargarines where the dorsal abdominal processes are more distinct in the anterior portion of the abdomen.

Unlike other centrotines, the oxyrhachines examined here have Cu1 vein abutting the clavus

in the forewing, or the junction between the clavus and the marginal vein, rather than clearly

abutting the marginal vein. Additionally, M and Cu veins in the forewing are clearly

adjacent in oxyrhachine forewings and m-cu1 and m-cu2 crossveins are present.

286 Although most oxyrhachine species are morphologically homogenous, certain

characters vary among species. Some species, including O. carinata and O. sulicornis, have

R4+5 and M1+2 veins in the hind wing fused (3 apical cells) while in other species these veins

are not fused (4 apical cells). Apparently, according to Capener (1962a), the number of

species with 3 apical cells and 4 apical cells in the hind wing is about equal. The presence of

cucullate setae in metathoracic tibial row II is also variable among species of Oxyrhachis.

Indeed, Oxyrhachis formerly was split into 6 genera to accommodate the differences in hind

wing venation and pronotal features, including the presence or absence of suprahumeral

horns. Based on a phylogenetic analysis (Fig. 24.12) of three former genera (Gongroneura

Jacobi, Kombazana Distant, and Xiphistes Stål) and Oxyrhachis, however, there are too few

morphological differences to defend splitting Oxyrhachis into multiple genera at this time. A

phylogenetic analysis of Oxyrhachis, using generic morphological characters and molecular

methods, is recommended to better determine its taxonomic and phylogenetic limits.

The reduction in rank from subfamily Oxyrhachinae to tribe Oxyrhachini (within the

Centrotinae) by Dietrich et al. (2001a) based on a morphological phylogenetic analysis is

supported by the phylogenetic analysis of the Centrotinae presented here (Fig. 24.1). The

Oxyrhachini are closely related to the tribes Ebhuloidesini, Hypsaucheniini, and Terentiini.

Apparently, the Oxyrhachini are sister group to the Hypsaucheniini. The Ebhuloidesini,

Hypsaucheniini, and Oxyrhachini share similarly shaped female second valvulae and male clasps, and all have enlarged pleural projections. This diagnostic male clasp was described as resembling the “head of a snake” by Capener (1962a). Although the Oxyrhachini are sister group to the Nessorhinini in the phylogenetic analysis of Dietrich et al. (2001a), this

relationship was thought to be an artifact of the small number of centrotines sampled. It is

287 critical that future molecular higher level phylogenetic analyses of the Membracidae include

the Oxyrhachini in order to investigate further their relationship with the morphologically

extreme tribe Hypsaucheniini and predominantly Australian Terentiini.

Genera of the tribe Oxyrhachini

Oxyrhachis Germar, 1833a (type species: Membracis taranda Fabricius by monotypy).

Specimens examined. —Oxyrhachis carinata (Funkhouser), det. A.L. Capener,

AMNH, #00-175b%, #00-175c&; O. delalendei Fairmaire, det. A.L. Capener, AMNH, #00-

175d%, #00-175e&; O. sulcicornis (Thunberg), det. A.L. Capener, NCSU, #81-48a%, #81-

48b&; O. taranda (Fabricius), det. Z.P. Metcalf, NCSU, #99-82a&, #99-97a%, #99-97b&,

#01-260a& —as det. in NCSU, #99-82b%—as det. in USNM, #01-54c%.

288 Fig. 19.1. Oxyrhachini: pronota (lateral aspects, A-D; and anterior aspects, E-H), heads (I), and wings (J-K). Bars = 3 mm. A, Oxyrhachis carinata (Funkhouser), #00-175c&. B, O. delalendei Fairmaire, #00-175d%. C, O. sulcicornis (Thunberg), #81-48a%. D, O. taranda (Fabricius), #99- 97a%. E, O. carinata (Funkhouser), #00-175c&. F, O. delalendei Fairmaire, #00-175d%. G, O. sulcicornis (Thunberg), #81-48a%. H, O. taranda (Fabricius), #99-82a&. I, O. taranda (Fabricius), #99-82a&. J, O. taranda (Fabricius), #99-82b%, right forewing. K, O. taranda (Fabricius), #99-82b%, left hind wing (inverted). fo, foliate lobes.

289 Fig. 19.2. Oxyrhachini: metathoracic legs (A-B) and maximum development of abdominal fine-structure (C-D). All scanning electron micrographs near tergum III. A, Oxyrhachis delalendei Fairmaire, #00-175e&. B, O. taranda (Fabricius), #99-82a&. C-D, O. taranda (Fabricius), #01-54c%. i, inornate pit. l, lateral seta.

290 Fig. 19.3. Oxyrhachini: female second valvulae (A-D, lateral aspects and closeup of apex), and male styles (E-F, lateral aspects), aedeagi (G-H, lateral aspects), lateral plates (I-J, lateral aspects), and subgenital plate (K, ventral aspect). A, Oxyrhachis carinata (Funkhouser), #00-175c&. B, O. delalendei Fairmaire, #00-175e&. C-D, O. taranda (Fabricius), #99-82a&. E, O. carinata (Funkhouser), #00-175b%. F, O. taranda (Fabricius), #99-82b%. G, O. carinata (Funkhouser), #00-175b%. H, O. taranda (Fabricius), #99-82b%. I, O. carinata (Funkhouser), #00-175b%. J, O. taranda (Fabricius), #99-82b%. K, O. carinata (Funkhouser), #00-175b%. c, clasp. dl, dorsoapical lobe.

291 20. Tribe PIELTAINELLINI, new tribe

New World: Neotropical Region

Figs. 20.1-20.2

Type genus: Pieltainellus Peláez, 1970a

Diagnostic characters.— Frontoclypeal lobes indistinct and not extending to apex of

frontoclypeus. Posterior pronotal process not appressed against scutellum, not significantly

extending past or not reaching m-cu3 crossvein in forewing. Scutellum not shortened--with

abdomen removed, notch and apices visible. Forewing with R1 vein perpendicular to

marginal vein. Hind wing with R4+5 and M1+2 veins not fused (4 apical cells). Mesothoracic femur without ab- and adlateral cucullate setae. Metathoracic femur with ab- and adlateral cucullate setae; tibia with cucullate setal row II single. Female second valvulae not broadened, narrow near base, curved, with many fine dorsal teeth extending to apex, acute projections present. Abdominal acanthae (Pieltainellus) distinct, bases heightened, acanthae multidentate. Anterior tergal borders modified into irregular ridges.

Description.—Length 4.3-5.4 mm. Color tan to dark brown, or combinations thereof. HEAD (Figs. 20.1 E-F): frontoclypeal margins parallel or slightly converging ventrally, frontoclypeal lobes indistinct and not extending to apex of frontoclypeus; ocelli about equidistant from each other and eyes; vertex without toothlike projections. THORAX:

PRONOTUM (Figs. 20.1 A-D): suprahumeral horns present in Spathocentrus (Fig. 20.1 D) and

polymorphic in Pieltainellus; posterior process straight (Fig. 20.1 A) or curved at base (Fig.

20.1 B), not appressed against scutellum, not significantly extending past or not reaching m-

cu3 crossvein in forewing. SCUTELLUM: emarginate with apices acute, not concealed by

292 posterior process, 1 lateral apex or none visible from dorsolateral view; not shortened--with abdomen removed, notch and apices visible, only slightly extending beyond thorax.

PLEURON: propleural lobe absent, mesopleural lobe not enlarged. FOREWING (Figs. 20.1 G-

H): hyaline or opaque; apical limbus broad; s crossvein distad of r-m2 crossvein; m-cu1 and

m-cu2 crossveins absent; M and Cu veins fused at base; R and M veins not confluent

preapically; R1 vein perpendicular to marginal vein; forewing without pterostigma; r-m1

crossvein originating near or distad of first division of R vein, bent towards R vein; R, M,

and Cu veins not parallel apically; discoidal cells similar in length; R4+5 vein shape prior to s

crossvein significantly angled or not; base of R2+3 and R4+5 veins truncate. HIND WING: R4+5

and M1+2 veins not fused (4 apical cells). PRO- AND MESOTHORACIC LEGS: tibiae not

foliaceous; mesothoracic tibia without row(s) of cucullate setae; mesothoracic femur without

ab- and adlateral cucullate setae. METATHORACIC LEG (Fig 20.1 I): ventral margin of coxa,

trochanter, and femur without enlarged setal bases; femur with ab- and adlateral cucullate

setae, adlateral cucullate seta preapical; femur without ablateral cucullate seta ventrolaterally;

tibial row I with 19-26 cucullate setae, row II with 16-25 cucullate setae in single row, row

III with 23-32 cucullate setae; tarsomere I with 2 or more cucullate setae (usually 2).

ABDOMEN: in anterior aspect (abdomen removed) nearly triangular or flattened; anterior

tergal borders modified into irregular ridges; sternal longitudinal carina absent; paired dorsal

swellings absent; tergum III ventrolateral margin carinate; abdominal setal bases at anterior

tergal borders not enlarged. FEMALE GENITALIA (Figs. 20.2 A-D): second valvulae not

broadened, narrow near base, curved, with many fine dorsal teeth extending to apex, acute

projections present; third valvulae without ventral projections. MALE GENITALIA

(Pieltainellus, Figs. 20.2 E-J): lateral plate with short dorsoapical lobe extending laterally,

293 without ventral lobe; subgenital plate without distinct division; style clasp oriented laterally,

thickened, elliptical, not angled; style shank without significant arch. ABDOMINAL FINE

STRUCTURE (Pieltainellus) (Fig. 20.2 K): acanthae distinct, bases heightened, acanthae

multidentate.

Chromosome numbers.—Unknown.

Distribution.—The tribe Pieltainellini is recorded from the Neotropical Region

(Maes 1998a, McKamey 1998a).

Ecology.— Host plant information for the tribe Pieltainellini is unknown.

Discussion.—The new tribe Pieltainellini is a monophyletic group in the

phylogenetic analysis (Fig. 24.1) and is closely related to the tribes Beaufortianini

Nessorhinini, and Platycentrini. The females of Pieltainellus and Spathocentrus both have

curved second valvulae with acute projections on the dorsal margin and have R1 vein perpendicular to the marginal vein in the forewing. Moreover, unlike many of their relatives, the scutellum is fully exposed and is not appressed by the posterior process. In his description of Pieltainellus, Peláez (1970a) remarked on the morphological similarities between Pieltainellus and Spathocentrus. The genus Pieltainellus was chosen as the type genus because both female and male specimens were examined.

Both Pieltainellus and Spathocentrus were placed in the Boocerini by Deitz (1975a).

The Pieltainellini lack extra m-cu crossveins and have an exposed scutellum, characteristics

Deitz used to define the Boocerini. The Pieltainellini, however, lack other boocerini features including mesothoracic ablateral cucullate setae on the femur and the long ventral lobe of the male lateral plate.

294 Genera of the tribe Pieltainellini

Pieltainellus Peláez, 1970a (type species: P. boneti Peláez by original designation)

[previously placed in Boocerini (McKamey 1998a)].

Spathocentrus Fowler, 1896d (type species: S. intermedius Fowler by monotypy) [previously

placed in Boocerini (McKamey 1998a)].

Specimens examined.—Pieltainellus sp., det. S.H. McKamey, SHMC, #01-235f&;

P. boneti Peláez, det. L.L. Deitz, AMNH, #72-97c&, #72-129a%; Spathocentrus intermedius

Fowler, holotype, OXUM, #72-296a&—det. S.H. McKamey, SHMC, #00-195a&—as det. in

CNCI, #01-39b&.

295 Fig. 20.1. Pieltainellini: pronota (lateral aspects, A-B; and anterior aspects, C-D), heads (E-F), wings (G-H), and metathoracic leg (I). Bars = 3 mm. A, Pieltainellus boneti Peláez, #72-97c&. B, Spathocentrus intermedius Fowler, #00-195a&. C, P. boneti, #72-129a%. D, S. intermedius, #00-195a&. E, P. boneti, #72-97c&. F, S. intermedius, #00-195a&. G, P. boneti, #72-129a%, left forewing (inverted). H, S. intermedius, #00-195a&, left forewing (inverted). I, P. boneti, #72-97c&, left metathoracic leg. fc, frontoclypeus.

296 Fig. 20.2. Pieltainellini: female second valvulae (lateral aspects and closeup of apex, A-D), and male styles (lateral aspect, E; dorsal aspect, F; and posterior aspect, G), aedeagus (lateral aspect, H), lateral plate (lateral aspect, I), and subgenital plate (ventral aspect, J), and maximum development of abdominal fine-structure (K). Scanning electron micrograph near tergum III. A-B, Pieltainellus boneti Peláez, #72-97c&. C-D, Spathocentrus intermedius Fowler, #00-195a&. E-J, P. boneti, #72-129a%. K, P. boneti, #01-235f&. c, clasp. a, acanthus. d, dorsoapical lobe. i, inornate pit. l, lateral seta.

297 21. Tribe PLATYCENTRINI Haupt, 1929

New World: Nearctic and Neotropical Regions

Figs. 21.1-21.3

Type genus: Platycentrus Stål, 1869

Platycentrini Haupt, 1929c [new tribe]: equals Hebesini (Peláez 1970a)[error]; reinstated

as tribe Platycentrini, within subfamily Centrotinae (Deitz 1975a); move to

Membracinae (Kosztarab 1982a)[error]; returned to Centrotinae (Deitz and Dietrich

1993a).

Diagnostic characters.—Frontoclypeal lobes indistinct and not extending to apex of

frontoclypeus. Posterior pronotal process appressed against scutellum, not significantly

extending past or not reaching m-cu3 crossvein in forewing. Scutellum not concealed by

posterior process, shortened--with abdomen removed, at most scutellar apices visible.

Forewing hyaline, with m-cu2 crossvein present and base of R2+3 and R4+5 veins truncate.

Hind wing with R4+5 and M1+2 veins not fused (4 apical cells). Mesothoracic femur with

ablateral cucullate setae. Female second valvulae with gradual broadening before midpoint

and gently tapering after midpoint; narrow near base, not curved, dorsal teeth fine and not

extending to apex. Abdominal acanthae distinct, bases heightened, acanthae multidentate.

Description.—Length 4.5-6 mm. Color brown, tan, mottled or combinations thereof.

HEAD (Fig. 21.1): frontoclypeal margins parallel or slightly converging ventrally, frontoclypeal lobes indistinct and not extending to apex of frontoclypeus; ocelli about equidistant from each other and eyes; vertex without toothlike projections. THORAX:

298 PRONOTUM (Figs. 21.1 A-E): suprahumeral horns present or absent; posterior process straight

at base, appressed against scutellum, not significantly extending past or not reaching m-cu3

crossvein in forewing. SCUTELLUM: emarginate with apices acute, not concealed by posterior

process, 1 lateral apex visible from dorsolateral view; shortened--with abdomen removed, at

most only apices visible. PLEURON: propleural lobe absent, mesopleural lobe not enlarged.

FOREWING (Figs. 21.1 H, 21.2 A): hyaline; apical limbus broad; s crossvein distad of r-m2

crossvein; m-cu1 crossvein present (Fig. 21.2 A) or absent; m-cu2 crossvein present; M and

Cu veins fused at base; R and M veins not confluent preapically; veins reticulate in

Tylocentrus (Fig. 21.2 A); R1 vein perpendicular to marginal vein (Tylocentrus, Fig. 21.2 A)

or not (Platycentrus, Fig. 21.1 H), never parallel to longitudinal veins; forewing without

pterostigma; r-m1 crossvein originating anterior to first division of R vein, bent towards R

vein; R, M, and Cu veins parallel apically (Fig. 21.1 H) or not (Fig. 21.2 A); discoidal cells

similar in length (Fig. 21.1 H) or not (Fig. 21.2 A); R4+5 vein shape prior to s crossvein

significantly angled (Fig. 21.1 H) or not (Fig. 21.2 A); base of R2+3 and R4+5 veins truncate.

HIND WING (Fig. 21.1 I): R4+5 and M1+2 veins not fused (4 apical cells). PRO- AND

MESOTHORACIC LEGS: tibiae not foliaceous; mesothoracic tibia without row(s) of cucullate

setae; mesothoracic femur with ablateral cucullate setae, adlateral cucullate setae present in

Tylocentrus but absent in Platycentrus. METATHORACIC LEG (Fig. 21.2 B): ventral margin of

coxa, trochanter, and femur without enlarged setal bases; femur with ab- and adlateral cucullate setae; femur with ablateral cucullate setae ventrolaterally in Platycentrus; tibia not foliaceous, row I with 15-21 cucullate setae, row II with 15-36 cucullate setae in single

(Tylocentrus) or irregular or double row (Platycentrus), row III with 17-33 cucullate setae

(irregular in Platycentrus); tarsomere I with 1 cucullate seta in Platycentrus, 2 or more

299 cucullate setae (usually 2) in Tylocentrus. ABDOMEN: in anterior aspect (abdomen

removed) nearly triangular (Tylocentrus) or dorsoventrally flattened (Platycentrus); anterior

tergal borders modified into irregular ridges in Platycentrus; sternal longitudinal carina

absent; paired dorsal swellings absent; tergum III ventrolateral margin carinate; abdominal

setal bases at anterior tergal borders not enlarged. FEMALE GENITALIA (Figs. 21.2 C-F): second valvulae with gradual broadening before midpoint and gently tapering after midpoint; narrow near base, not curved, dorsal teeth fine and not extending to apex, acute projections absent; third valvulae without ventral projections. MALE GENITALIA (Figs. 21.3 A-I): lateral

plate with (Platycentrus, Fig. 21.3 G) or without (Tylocentrus, Fig. 21.3 H) short dorsoapical

lobe extending dorsally, without ventral lobe; subgenital plate (Fig. 21.3 I) without distinct

division; style clasp oriented laterally, thickened, expanding dorsally and laterally with a

sclerotized ridge (Platycentrus) or truncate with an acuminate projection (Tylocentrus), not

angled, without basal thickening; style shank without significant arch. ABDOMINAL FINE

STRUCTURE (Fig. 21.3 J-K): acanthae distinct, bases heightened, acanthae multidentate.

Chromosome numbers.—Unknown.

Distribution.—The tribe Platycentrini is recorded from the Nearctic and Neotropical

Regions (McKamey 1998a), with all members recorded from the Northern Hemisphere.

Ecology.—Members of the tribe Platycentrini are reported only from the host plant

family Leguminosae (Table 26.2). Platycentrus acuticornis is listed as subsocial by Hinton

(1977a).

Discussion.— Haupt (1929c) originally placed the Platycentrini within the subfamily

Stegaspinae (sic: for Stegaspidinae) but misidentified the type genus Platycentrus. Metcalf

and Wade (1965a), Evans (1948b), and Deitz (1975a) assigned the Platycentrini to the

300 Centrotinae. Deitz (1975a) included those genera with multiple m-cu crossveins in the forewing and with the posterior process abutting a laterally exposed scutellum in the tribe

Platycentrini. Here, these features are also considered diagnostic. A monophyletic

Platycentrini (Figs. 24.1, 24.3), as defined here, is supported by the synapomorphy of the female second valvulae broadening gradually at midpoint and tapering gently towards the apex. A phylogenetic analysis of the family Membracidae using two nuclear genes also resulted in a monophyletic Platycentrini (Platycentrus and Tylocentrus) with high bootstrap and Bremer support (Cryan et al. 2000a). The Platycentrini are closely related to the New

World tribes Nessorhinini and Pieltainellini and the Old World tribe Beaufortianini.

Two genera formerly placed in the Platycentrini are here referred to the tribes

Monobelini (Monobelus) and Nessorhinini (Orthobelus). See the discussions of these tribes for evidence supporting the new placement.

Genera of the tribe Platycentrini

Platycentrus Stål, 1869c (type species: P. acuticornis Stål by subsequent designation).

Tylocentrus Van Duzee, 1908a (type species: T. reticulatus Van Duzee by monotypy).

Specimens examined.— Platycentrus acuticornis Stål, as det. in USNM, #71-82e&,

#71-82f%, #99-167e%—det. W.D. Funkhouser, USNM, #71-299a%, #01-221b%—det. L.M.

Russell, USNM, #99-167d&; Tylocentrus quadricornis Funkhouser, as det. in USNM, #01-

232b&; T. reticulatus Van Duzee, as det. in USNM, #00-195b&, #00-195c%—det. L.M.

Russell, USNM, #00-195k[n].

301 Fig. 21.1. Platycentrini: pronota (lateral aspects, A-B; anterior aspects, C-E), heads (F-G), and wings (H-I). Bars = 3 mm. A, Platycentrus acuticornis Stål, #71-82f%. B, Tylocentrus reticulatus Van Duzee, #00-195b&. C, P. acuticornis, #71-82f%. D, T. reticulatus, #00-195b&. E, T. reticulatus, #00-195c%. F, P. acuticornis, #71-82f%. G, T. reticulatus, #00-195b&. H, P. acuticornis, #99- 167d&, right forewing. I, P. acuticornis, #99-167d&, left hind wing (inverted). fcl, frontoclypeal lobes.

302 Fig. 21.2. Platycentrini: wings (A), metathoracic leg (B), and female second valvulae (lateral aspect and closeup of apex, C-F). A, Tylocentrus reticulatus Van Duzee, #00-195b&, left forewing (inverted). B, Platycentrus acuticornis Stål, #71-82f%, right metathoracic leg (inverted). C-D, P. acuticornis, #99-167d&. E-F, T. reticulatus, #00-195b&.

303 Fig. 21.3. Platycentrini: male styles (lateral aspects, A-B; and dorsal aspects, C-D), aedeagi (lateral aspects, E-F), lateral plates (lateral aspects, G-H), and subgenital plate (ventral aspect, I), and maximum development of abdominal fine-structure (J-K). All scanning electron micrographs near tergum III. A, Platycentrus acuticornis Stål, #99-167e%. B, Tylocentrus reticulatus Van Duzee, #00-195c%. C, P. acuticornis, #99-167e%. D, T. reticulatus, #00-195c%. E, P. acuticornis, #99-167e%. F, T. reticulatus, #00-195c%. G, P. acuticornis, #99-167e%. H, T. reticulatus, #00-195c%. I, T. reticulatus, #00-195c%. J, P. acuticornis #01-221b%. K, T. quadricornis Funkhouser, #01-232b&. a, acanthus. dl, dorsoapical lobe. i, inornate pit. c, clasp.

304 22. Tribe TERENTIINI Haupt, 1929

Old World: Australasian and Oceanian, Indomalayan, and Palearctic Regions

Figs. 22.1-22.24

Type genus: Terentius Stål 1866a

Terentiinae Haupt, 1929c [new subfamily] and Terentiini Haupt, 1929c [new tribe]:

subfamily Terentiinae equals Centrotinae and tribe Terentiini moved to Centrotinae

(Metcalf and Wade 1965a); elevated to subfamily Terentiinae (Evans 1966a) [error];

equals Centrotinae (Evans 1966a).

Bulbaucheniini Goding, 1931a [new tribe]: herein equals Terentiini, NEW SYNONYMY.

Funkhouserellini Yuan and Zhang, in Yuan and Chou 2002a [new tribe]: herein equals

Terentiini, NEW SYNONYMY.

Diagnostic characters.—Frontoclypeal margins parallel or slightly converging ventrally. Frontoclypeal lobes distinct. Posterior pronotal process straight at base, appressed against scutellum and significantly extending past m-cu3 crossvein in forewing (exception: posterior process not extending past m-cu3 crossvein in Pyrgonota). Scutellum shortened-- with abdomen removed, at most only scutellar apices visible. Forewing with or without m- cu1 and m-cu2 crossveins; r-m1 crossvein originating anterior to first split of R vein, parallel to longitudinal veins (exception: r-m1 crossvein bent strongly towards R vein in Alocebes); base of R2+3 and R4+5 veins truncate (exceptions: base of R2+3 and R4+5 veins truncate or acute in Sextius and some species of Bulbauchenia). Hind wing with R4+5 and M1+2 veins not fused

(4 apical cells) (exceptions: R4+5 and M1+2 veins fused in Bucktoniella). Mesothoracic femur

305 without ab- and adlateral cucullate setae. Metathoracic tibial row I cucullate or not; row II in

single row (exceptions: row II irregular or double in Otinotoides, Sertorius and Yangupia).

Male style clasp laterally oriented, thickened dorsally and membranous ventrally, quadrate

(with acuminate apex in Bulbauchenia and Pyrgonota), angled ventrally; style shank with significant arch following midpoint, and with ventral preapical broadening.

Description.—Length 2.6-8.0 mm. Color black, dark brown, light green, light yellow, or combinations thereof. HEAD (Figs. 22.5-22.7): frontoclypeal margins parallel or slightly converging ventrally, frontoclypeal lobes distinct, not extending to apex of frontoclypeus (exceptions: frontoclypeal lobes extending nearly to apex in Bulbauchenia,

Fig. 22.5 O, Funkhouserella, Figs. 22.6 I-J, and Pyrgonota, Fig. 22.7 C); ocelli about equidistant from each other and eyes (exception: ocelli closer to eyes than each other in

Pyrgonota, Fig. 22.7 C); vertex without toothlike projections. THORAX: PRONOTUM (Figs.

22.1-22.5): suprahumeral horns present dorsolaterally, absent, or present at apex of median

anterior horn; median anterior horn present in Bulbauchenia (Fig. 22.3 L), Eutryonia (Fig.

22.4 E), Funkhouserella (Figs. 22.4 G-H), and Pyrgonota (Fig. 22.5 A); posterior process

straight at base, appressed against scutellum, signficantly extending past m-cu3 crossvein

(exception: posterior process not extending past m-cu3 crossvein in Pyrgonota). SCUTELLUM

(Fig. 22.23 B): emarginate with apices acute, not concealed by posterior process (exceptions:

scutellum concealed by posterior process in Bulbauchenia, Fig. 22.1 H, and polymorphic in

Sextius); 1 lateral apex visible from dorsolateral view; shortened--with abdomen removed, at most only apices visible, only slightly extending beyond thorax. PLEURON: propleural lobe

present or absent, mesopleural lobe enlarged or not. FOREWING (Figs. 22.8-22.11): hyaline

or opaque; apical limbus broad (exceptions: apical limbus narrow in Anzac, Fig. 22.9 C, and

306 some species of Funkhouserella, Fig. 22.10 F, and Neosextius); R vein initial division R1+2+3

and R4+5 in Cebes (Fig. 22.9 G), Ceraon (Fig. 22.9 H), Matumuia, and Sarantus (Fig. 22.11

E); s crossvein distad of r-m2 crossvein; m-cu1 and m-cu2 crossveins present or absent; M and

Cu veins fused, adjacent, or separate at base; R and M veins not confluent preapically; R1

perpendicular to marginal vein or not; forewing without pterostigma; r-m1 crossvein

originating anterior to first split of R vein, parallel to longitudinal veins (exception: r-m1

crossvein bent strongly towards R in Alocebes); R, M, and Cu veins parallel apically or not;

R4+5 vein shape prior to s crossvein variable; base of R2+3 and R4+5 veins truncate (exceptions:

base of R2+3 and R4+5 veins truncate or acute in Sextius and some species of Bulbauchenia).

HIND WING (Fig. 22.8 B): R4+5 and M1+2 veins not fused (4 apical cells) (exception: hind wing

with R4+5 and M1+2 fused in Bucktoniella, 3 apical cells). PRO- AND MESOTHORACIC LEGS:

tibiae foliaceous or not; mesothoracic tibia without row(s) of cucullate setae; mesothoracic femur without ab- and adlateral cucullate setae. METATHORACIC LEGS (Fig. 22.12): ventral

margin of coxa, trochanter, and femur without enlarged setal bases; femur with ab- and adlateral cucullate setae (exceptions: femur without ab- and adlateral cucullate setae in

Anzac, Goddefroyinella, Pogonotypellus, Sextius; adlateral cucullate setae absent in Cebes, some species of Funkhouserella, and Pyrgonota, Fig. 22.12 B); femur with or without ablateral cucullate setae ventrolaterally; tibiae foliaceous or not, row I with 13-40 cucullate setae or without cucullate setae, row II with 4-56 cucullate setae in single row (exceptions: row II irregular or double in Otinotoides, Sertorius, and Yangupia), row III with 5-30 cucullate setae; tarsomere I with 1 cucullate seta or none. ABDOMEN: in anterior aspect

(abdomen removed) nearly triangular; anterior tergal borders not modified; sternal longitudinal carina present or absent; paired dorsal swellings absent; tergum III ventrolateral

307 margin carinate or shelflike; abdominal setal bases at anterior tergal borders enlarged in

Terentius, not dispersed on terga. FEMALE GENITALIA (Figs. 22.13-22.17): second valvulae shape variable; narrow or broadening near base, curved or not, dorsal teeth variable in size, acute projections on dorsal margin present or absent, third valvulae without ventral projections. MALE GENITALIA (Figs. 22.17-22.21): lateral plate with or without (Fig. 22.20

D) short (Fig. 22.20 F) or long (Fig. 22.20 E) dorsoapical lobe extending dorsally or laterally,

without ventral lobe; subgenital plate without distinct division; style clasp laterally oriented,

thickened dorsally and membranous ventrally, quadrate (with acuminate apex in

Bulbauchenia Figs. 22.17 I-J, and Pyrgonota, Fig. 22.18 F), angled ventrally; style shank

with significant arch following midpoint, and with ventral preapical broadening.

ABDOMINAL FINE STRUCTURE (Figs. 22.21-22.24): inornate pits with lateral setae present

(exceptions: inornate pits indistinct in Bulbauchenia, Fig. 22.22 B-D, Funkhouserella, Figs

22.23 C-D, and Pyrgonota, Fig. 22.23 H), acanthae distinct or not; bases heightened or not; acanthae multidentate or divided into threadlike microtrichia.

Chromosome numbers.—Male 2n= 21 (Table 26.3).

Distribution.—The tribe Terentiini is recorded from the Australasian and Oceanian,

Indomalayan, and Palearctic Regions, although they are primarily Australasian in distribution

(McKamey 1998a). Melichar’s (1905a) records of Acanthuchus trispinifer (Fairmaire) [as

Ophicentrus trispinifex Fairmaire] in needs to be verified and is not here included in the distribution of Acanthuchus.

Ecology.—Members of the tribe Terentiini are reported from the host plant families

Casuarinaceae, Chenopodiaceae, Euphorbiaceae, Gramineae, Lauraceae, Lecythidaceae,

Leguminosae, Malvaceae, Moraceae, Myrtaceae, Plumbaginaceae, Polygonaceae, Proteaceae,

308 Rosaceae, Rutaceae, Solanaceae (Table 26.2). The genus Sextius and the nymphs of

Australian treehoppers are reported to be tended by ants (Table 26.1). In addition, Terentius

and Pyrgonota have been observed providing maternal care in the form of egg guarding

(Stegmann and Linsenmair 2002a).

Discussion.—Haupt (1929c) divided the Old World Membracidae into three subfamilies: the Terentiinae, Centrotinae, and Oxyrhachinae (as Oxyrrhachinae). He originally included the tribes Hypsaucheniini and Terentiini within his subfamily Terentiinae.

Haupt defined the Terentiinae as treehoppers with M and Cu veins in the forewing usually

connected for a short distance and sometimes united by crossveins, and with the forewing

often net-like. The tribe Terentiini, as defined here, is monophyletic in the phylogenetic

analysis (Figs. 24.1, 24.14). All terentiine males observed to this point have a quadrate style clasp, a synapomorphy for the tribe. Day (1999a) also commented on the homogenous nature of the male genitalia in Australian membracids. Additionally, all terentiines have the

posterior process appressed against a shortened scutellum, similar to the Gargarini. As seen

in some Gargarini, a few terentiines, including Bulbauchenia and some Sextius species, have

the scutellum concealed by the posterior process. The Terentiini are closely related to the

Ebhuloidesini, Oxyrhachini, and Hypsaucheniiini, and are primarily distributed in Australia.

The classification presented here largely confirms previous studies on the Australian fauna. Both Evans (1966a) and Day (1999a) examined the Australian genera and

believed they represent a distinctive group, long isolated from other membracids. Day cited

the distinctive frontoclypeal lobes, the similar shapes in the male and female genitalia, and uniform wing venation, among other features, as evidence for the monophyly of Australian genera. A phylogeny of treehoppers based on two nuclear genes (Cryan et al. 2000a)

309 supported the grouping of the Australian genera Ceraon, Eufairmairia, and Sextius (although

included in the analysis, Pyrgonota was not part of this group) using both parsimony and

maximum likelihood methods.

The names Bulbaucheniini Goding, 1931a and Funkhouserellini Yuan and Zhang, in

Yuan Chou, 2002a, are here considered junior synonyms of Terentiini Haupt, 1929c, NEW

SYNONYMIES, based on the phylogenetic analysis (Fig. 24.1). The tribe Bulbaucheniini

was originally placed in the subfamily Membracinae by Goding (1931a) because of the

concealed scutellum and folicaeous tibiae of the type genus Bulbauchenia. Goding

characterized the tribe, consisting only of the type genus, based on the broadly elevated

pronotum with suprahumeral horns at the apex. Strümpel (1972a) believed the

Bulbaucheniini belonged in the subfamily Centrotinae, where it was subsequently placed,

although he was not explicit in his justification. Due to the quadrate shape of the male style

clasp, Bulbauchenia is here placed in the Terentiini.

Yuan and Zhang, in Yuan and Chou (2002a) erected the Funkhouserellini, including

the genera Funkhouserella and Hybandoides, for those treehoppers with the median pronotal

horn inclined anteriorly and without teeth on the mesonotum Hybandoides is here referred back to the tribe Hypsaucheniini, based on the phylogenetic analysis (Fig. 24.12). Although no males of Funkhouserella were examined, according to the phylogenetic analysis (Fig.

24.1) this genus is closely related to Bulbauchenia and Pyrgonota based on several morphological features, including the indistinct abdominal inornate pits and absence of metathoracic tibia cucullate setal row I. The male style clasp of Pyrgonota, similar to

Bulbauchenia, is quadrate with an acuminate apex. This shape differs significantly from the cylindrical style clasp of the hypsaucheniines where Pyrgonota was previously placed. In

310 addition, Pyrgonota has cucullate setae in rows II and III of the metathoracic tibia.

Conversely, these rows are non-cucullate in the Hypsaucheniini.

The genera Crito and Otinotoides were formerly placed in the Centrotypini for

reasons that are not clear. They differ from centrotypines, nonetheless, in the style clasp

shape and leg chaetotaxy. Arimanes, Polonius, and Sarantus were previously placed in the

Leptocentrini. The male style clasp of Sarantus is distinctly quadrate and not triangular.

Although males of Arimanes and Polonius were not examined, characteristics of the head,

pronotum, and leg chaetotaxy differentiate them from leptocentrine genera. The remaining

terentiini genera were previously assigned to Centrotinae, incertae sedis (McKamey 1998a,

Day 1999a).

Four NEW COMBINATIONS are proposed here, all referred from the genus

Emphusis Buckton: Bulbauchenia bakeri (Funkhouser), B. rugosa (Funkhouser), B. globosa

(Funkhouser), and B. kurosawai (Hayashi and Endo). These species were originally placed

in Emphusis (Centrotinae: Centrotypini) based on the elevated pronotum and shape of the

posterior process. The genus Emphusis, however, has ab- and adlateral cucullate setae on the

mesothoracic femur and an elliptical clasp as opposed to the characteristic terentiine quadrate

clasp.

311 Genera of the tribe Terentiini

† no specimen examined

* placement based on morphological similarity

Acanthucalis Evans, 1966a (type species: A. macalpini Evans by original designation)

[previously incertae sedis (McKamey 1998a)].*

Acanthuchus Stål, 1866c (type species: trispinifer Fairmaire by subsequent

designation) [previously incertae sedis (McKamey 1998a)].

Alocanthella Evans, 1966a (type species: A. fulva Evans by original designation) [previously

incertae sedis (McKamey 1998a)].

Alocebes Evans, 1966a (type species: A. dixoni Evans by original designation), see figs. 72-

74, 196 of Day (1999a: 649, 733) [previously incertae sedis (McKamey 1998a)].†*

Alosextius Evans, 1966a (type species: Acanthuchus carinatus Funkhouser by original

designation) [previously incertae sedis (McKamey 1998a)].

Anzac Distant, 1916d (type species: Membracis bipunctata Fabricius by original designation)

[previously incertae sedis (McKamey 1998a)].

Arimanes Distant, 1916e (type species: A. doryensis Distant by monotypy) [previously

placed in the Leptocentrini (McKamey 1998a)].*

Bucktoniella Evans, 1966a (type species: Acanthuchus pyramidatus Funkhouser by original

designation) [previously incertae sedis (McKamey 1998a)].

Bulbauchenia Schumacher, 1915b (type species: B. taiwanensis Schumacher by original

designation) [previously placed in Bulbaucheniini (McKamey 1998a)].

312 Bunyella Day, 1999a (type species: Acanthuchus dromedarius Kirkaldy by original

designation), see figs. 23, 84-86, 200 of Day (1999a: 633, 657, 734) [previously incertae

sedis (Day 1999a)]. †*

Cebes Distant, 1916d (type species: Centrotus transiens Walker by subsequent designation)

[previously incertae sedis (McKamey 1998a)].

Ceraon Buckton, 1903a (type species: Centrotus tasmaniae Fairmaire by subsequent

designation) [previously incertae sedis McKamey 1998a)].

Crito Distant, 1916d (type species: C. festivum Distant by monotypy) [previously placed in

Centrotypini (McKamey 1998a)].*

Dingkana Goding, 1903a (type species: D. borealis Goding by original designation)

[previously incertae sedis (McKamey 1998a)].

Eufairmairia Distant, 1916d (type species: Centrotus decisus Walker by original designation)

[previously incertae sedis (McKamey 1998a)].*

Eufairmairiella Evans, 1966a (type species: Sertorius curvicaudus Goding by original

designation) [previously incertae sedis (McKamey 1998a)].*

Eufrenchia Goding, 1903a (type species: Centrotus falcatus Walker by original designation)

[previously incertae sedis (McKamey 1998a)].

Eutryonia Goding, 1903a (type species: Centrotus monstrifer Walker by monotypy)

[previously incertae sedis (McKamey 1998a)].

Evansiana McKamey, 1994a (type species: Acanthuchus iasis Kirkaldy by original

designation) [previously incertae sedis (McKamey 1998a)].*

Funkhouserella Schmidt, 1926d (type species: Pyrgonota pinguiturris Funkhouser by

original designation) [previously placed in Funkhouserellini (Yuan and Chou 2002a)].

313 Goddefroyinella Distant, 1916d (type species: G. indicans Distant by monotypy, junior

synonym of G. neglecta (Buckton)) [previously incertae sedis (McKamey 1998a)].

Lubra Goding, 1903a (type species: Oxyrhachis spinicornis Walker by subsequent

designation) [previously incertae sedis (McKamey 1998a)].

Matumuia Day, 1999a (type species: M. laura Day by original designation), see figs. 24, 36,

123-125, 213 of Day (1999a: 633, 684, 736) [previously incertae sedis (Day 1999a)]. †*

Neocanthuchus Day, 1999a (type species: N. tropicus Day by original designation)

[previously incertae sedis (Day 1999a)].*

Neosextius Day, 1999a (type species: N. longinotum Day by original designation), see figs.

26, 30, 43, 132-137, 215 of Day (1999a: 633, 634, 691-692, 736) [previously incertae

sedis (Day 1999a)].†

Otinotoides Distant, 1916c (type species: Centrotus pallipes Walker by original designation)

[previously placed in Centrotypini (McKamey 1998a)].*

Pogonella Evans, 1966a (type species: Centrotypus minutus Goding by original designation)

[previously incertae sedis (McKamey 1998a)].*

Pogonotypellus Evans, 1966a (type species: Pogontypus australis Goding by original

designation) [previously incertae sedis (McKamey 1998a)].*

Polonius Distant, 1916e (type species: P. biseratensis Distant by monotypy) [previously

placed in Leptocentrini (McKamey 1998a)].*

Protinotus Day, 1999a (type species: Otinotus doddi Distant by original designation), see

figs. 12, 150-152, 219 of Day (1999a: 632, 703, 737) [previously incertae sedis (Day

1999a)].†*

314 Pyrgonota Stål, 1870c (type species: Centrotus bifoliatus Westwood by subsequent

designation) [previously placed in Hypsaucheniini (Yuan and Chou 2002a)].

Rentzia Day, 1999a (type species: R. yarla Day by original designation), see figs. 10, 26, 32,

42, 153-158, 220 of Day (1999a: 632-634, 704, 707, 737) [previously incertae sedis (Day

1999a)].†*

Rigula Day, 1999a (type species: R. calperum Day by original designation), see figs. 18, 34,

40, 159-164, 221 of Day (1999a: 633-634, 708, 710-711, 737) [previously incertae sedis

(Day 1999a)].†*

Sarantus Stål, 1863c (type species: Sarantus wallacei Stål by monotypy) [previously placed

in Leptocentrini (McKamey 1998a)].

Sertorius Stål, 1866a (type species: Centrotus australis Fairmaire by subsequent designation)

[previously incertae sedis (McKamey 1998a)].

Sextius Stål, 1866c (type species: Centrotus virescens Fairmaire by subsequent designation)

[previously incertae sedis (McKamey 1998a)].

Strzeleckia Day, 1999a (type species: S. montanus Day by original designation), see figs. 26,

30, 41, 174-176, 224 of Day (1999a: 633-634, 719, 738) [previously incertae sedis (Day

1999a)].†*

Terentius Stål, 1866a (type species: T. convexus Stål by subsequent designation).

Undarella Day, 1999a (type species: U. storeyi Day by original designation) [previously

incertae sedis (Day 1999a)].*

Yangupia Day, 1999a (type species: Centrotypus occidentalis Goding by original

designation) [previously incertae sedis (Day 1999a)].*

315 Specimens examined.—Acanthucalis macalpini Evans as det. in ANIC, #00-136i&;

Acanthuchus trispinifer (Fairmaire), as det. in USNM, #00-80g&, #00-80h%—as det. in

ANIC, #00-181o%, #01-43a&; Alocanthella fulva Evans, as det. in ANIC, #01-225b%;

Alosextius carinatus (Funkhouser), as det. in AMSA, #00-136a&; Anzac bipunctatum

(Fabricius), as det. in ANIC, #00-136d&, #00-136e%; Arimanes doryensis Distant, as det. in

USNM, #83-334a&; Bucktoniella pyramidatus (Funkhouser), as det. in CNCI, #01-39a%;

Bulbauchenia sp. (probably mirablis), det. M.S. Wallace, USNM, #00-230g♂; B. bakeri

(Funkhouser), [holotype of Emphusis bakeri Funkhouser], USNM—det. D. Flynn, NCSU,

#02-67b(sex?) —det. Z.P. Metcalf, NCSU, #00-221m♀, #02-67a♀, #02-67f♀ —as det. in

NCSU, #01-277a♂, #01-278a♀, #02-67c♀, #02-67d♂, #02-67e(sex?), #02-67g♀, #02-

67h♀, #02-67i♂, #02-67j(sex?)—as det. in USNM, #01-232c%; B. globosa (Funkhouser),

[holotype of Emphusis globosus Funkhouser], USNM; B. mirabilis (Funkhouser), [holotype of Clonauchenia mirablis Funkhouser], USNM, #01-54a♂; B. rugosa (Funkhouser),

[holotype of Emphusis rugosus Funkhouser], USNM; Cebes transiens (Walker), as det. in

ANIC, #00-80c%, #00-80d&; Ceraon tasmaniae (Fairmaire), det. W.D. Funkhouser, USNM,

#00-80a&—as det. in USNM, #00-80b%, #01-232e%; Crito festivum Distant, holotype [as

Crito festivus Distant], BMNH; Dingkana borealis Goding, det. W.D. Funkhouser, USNM,

#00-87d&, #00-87e%—as det. in USNM, #01-219c&; Eufairmairia decisa (Walker), as det. in USNM, #83-333c%, #83-333d&; E. fraterna Distant, as det. in ANIC, #00-87k&—as det. in USNM, #01-22b&; Eufairmairiella sp, as det. in ANIC, #00-87j%; E. curvicauda

(Goding), as det. in USNM, #00-87g%; Eufrenchia falcata (Walker), as det. in ANIC, #00-

87h%, #00-87i&; Eutryonia monstrifera (Walker), as det. in USNM, #00-87a%, #00-87b&,

316 #01-219b&; Evansiana iasis (Kirkaldy), as det. in ANIC, #01-225a&; Funkhouserella

arborea (Funkhouser), [holotype of Pyrgonota arborea Funkhouser], USNM; F. binodis

(Funkhouser), [holotype of Pyrgonota binodis Funkhouser], USNM; F. brevifurca

(Funkhouser), [holotype of Pyrgonota brevifurca Funkhouser], USNM, #01-089e& —as det.

in USNM, #00-228c&; F. bulbiturris (Funkhouser), [holotype of Pyrgonota bulbiturris

Funkhouser], USNM; F. pinguiturris (Funkhouser), [holotype of Pyrgonota pinguiturris

Funkhouser], USNM, #01-89f&; F. sinuata (Funkhouser), [holotype of Pyrgonota sinuata

Funkhouser], USNM; Goddefroyinella neglecta (Buckton), paralectotype, BMNH, #01-69e&

—as det. in ANIC, #01-3b%; Lubra spinicornis (Walker), as det. in ANIC, #00-181l&—as

det. in AMSA, #00-122f%—as det. in USNM, #00-122e&—det. M.S. Wallace, USNM, #00-

122j%; Neocanthuchus tropicus Day, paratype, #01-225c&; Otinotoides sp., as det. in ANIC,

#00-122k&, #00-122l%; O. pallipes (Walker), det. W.D. Funkhouser, AMSA, #00-122g%,

#00-122h&; Pogonella minutus (Goding), as det. in ANIC, #00-136f&, #00-136j%—as det. in

USNM, #00-136g%; Pogonotypellus australis (Goding), as det. in ANIC, #00-136h&;

Polonius froggatti Goding, holotype, USNM, #01-89j&; Pyrgonota sp., USNM, #01-

47b(sex?)—det. M.S. Wallace, USNM, #01-47 (sex?); P. bifoliata (Westwood), as det. in

USNM, #00-230a&, #00-230b%—det. D. Flynn, DJFC, #00-230j&; Sarantus nobilus

Kirkaldy, as det. in ANIC, #00-136b&, #00-136c&; S. wallacei Stål, as det. W.D.

Funkhouser, USNM, #00-122c&—as det. in USNM, #00-122d%, #01-247b&; Sertorius sp.,

as det. in ANIC, #00-122m%; S. australis (Fairmaire), as det. in USNM, #00-122a&—det.

F.W. Goding, USNM, #00-122b%; Sextius kurandae Kirkaldy, as det. in USNM, #01-235b%;

S. virescens (Fairmaire), det. W.D. Funkhouser, USNM, #00-80e%—as det. in USNM, #00-

80f&—as det. in ANIC, #00-80i%; Terentius convexus Stål, as det. in USNM, #99-100h&,

317 #99-100i%, #01-29a%—as det. in ANIC, 00-12a&, 00-12b%; Undarella storeyi Day, holotype, QMBA—paratype, QMBA, #01-250a&; Yangupia occidentalis (Goding), as det. in

BMNH, #01-296a%, #01-296b%.

318 Fig. 22.1. Terentiini: pronota (lateral aspects). Bars = 3 mm. A, Acanthucalis macalpini Evans, #00-136i&, reversed from right lateral aspect. B, Acanthuchus trispinifer (Fairmaire), #00-181o%. C, Alocanthella fulva Evans, #01-225b%. D, Alosextius carinatus (Funkhouser), #00-136a&. E, Anzac bipunctatum (Fabricius), #00-136e%. F, Arimanes doryensis Distant, #83-334a&. G, Bucktoniella pyramidatus (Funkhouser), #01-39a%. H, Bulbauchenia sp., #00-230g%. I, B. bakeri (Funkhouser), #00-221m&. J, Cebes transiens (Walker), #00-80d&. K, Ceraon tasmaniae (Fairmaire), #00-80a&. L, Dingkana borealis Goding, #00-87d&. M, Eufairmairia fraterna Distant, #00-87k&. N, Eufairmairiella sp., #00-87j%. O, Eufrenchia falcata (Walker), #00-87i&.

319 Fig. 22.2. Terentiini: pronota (lateral aspects). Bars = 3 mm. A, Eutryonia monstrifera (Walker), #00- 87a%. B, Evansiana iasis (Kirkaldy), #01-225a&. C, Funkhouserella brevifurca (Funkhouser), #00- 228c&. D, F. pinguiturris (Funkhouser), holotype, #01-89f&. E, Goddefroyinella neglecta (Buckton), #01-3b%. F, Lubra spinicornis (Walker), #01-122e&. G, Neocanthuchus tropicus Day, paratype, #01- 225c&. H, Otinotoides pallipes (Walker), #00-122h&. I, Pogonella minutus (Goding), #00-136f&. J, Pogonotypellus australis (Goding), #00-136h&. K, Polonius froggatti Goding, holotype, #01-89j&. L, Pyrgonota bifoliata (Westwood), #00-230j&. M, Sarantus nobilus Kirkaldy, #00-136c&. N, S. wallacei Stål, #00-122c&. O, Sertorius australis (Fairmaire), #00-122a&.

320 Fig. 22.3. Terentiini: pronota (lateral aspects A-D, and anterior aspects, E-O). Bars = 3 mm. A, Sextius virescens (Fairmaire), #00-80f&. B, Terentius convexus Stål, #00-12b%. C, Undarella storeyi Day, holotype. D, Yangupia occidentalis (Goding), #01-296a%. E, Acanthucalis macalpini Evans, #00-136i&. F, Acanthuchus trispinifer (Fairmaire), #00-181o%. G, Alocanthella fulva Evans, #01- 225b%. H, Alosextius carinatus (Funkhouser), #00-136a&. I, Anzac bipunctatum (Fabricius), #00- 136e%. J, Arimanes doryensis Distant, #83-334a&. K, Bucktoniella pyramidatus (Funkhouser), #01- 39a%. L, Bulbauchenia sp., #00-230g%. M, B. bakeri (Funkhouser), #00-221m&. N, Cebes transiens (Walker), #00-80d&. O, Ceraon tasmaniae (Fairmaire), #00-80a&. Copyrights: D © 2003, The Natural History Museum, London. 321 Fig. 22.4. Terentiini: pronota (anterior aspects). A, Dingkana borealis Goding, #00- 87d&. B, Eufairmairia fraterna Distant, #00-87k&. C, Eufairmairiella sp., #00-87j%. D, Eufrenchia falcata (Walker), #00-87i&. E, Eutryonia monstrifera (Walker), #00- 87a%. F, Evansiana iasis (Kirkaldy), #01-225a&. G, Funkhouserella brevifurca (Funkhouser), #00-228c&. H, F. pinguiturris (Funkhouser), holotype, #01-89f&. I, Goddefroyinella neglecta (Buckton), #01-3b%. J, Lubra spinicornis (Walker), #01- 122e&. K, Neocanthuchus tropicus Day, paratype, #01-225c&. L, Otinotoides pallipes (Walker), #00-122h&. M, Pogonella minutus (Goding), #00-136f&. N, Pogonotypellus australis (Goding), #00-136h&. O, Polonius froggatti Goding, holotype, #01-89j&. 322 Fig. 22.5. Terentiini: pronota (anterior aspects, A-H) and heads (I-O). A, Pyrgonota bifoliata (Westwood), #00-230j&. B, Sarantus nobilus Kirkaldy, #00-136c&. C, S. wallacei Stål, #00-122c&. D, Sertorius australis (Fairmaire), #00-122a&. E, Sextius virescens (Fairmaire), #00-80f&. F, Terentius convexus Stål, #99-100h&. G, Undarella storeyi Day, holotype. H, Yangupia occidentalis (Goding), #01-296a%. I, Acanthuchus trispinifer (Fairmaire), #00-181o%. J, Alocanthella fulva Evans, #01-225b%. K, Alosextius carinatus (Funkhouser), #00-136a&. L, Anzac bipunctatum (Fabricius), #00- 136d&. M, Arimanes doryensis Distant, #83-334a&. N, Bucktoniella pyramidatus (Funkhouser), #01- 39a%. O, Bulbauchenia sp., #00-230g%. Copyrights: H © 2003, The Natural History Museum, London. fcl, frontoclypeal lobes. 323 Fig. 22.6. Terentiini: heads. A, Cebes transiens (Walker), #00-80c%. B, Ceraon tasmaniae (Fairmaire), #00-80a&. C, Dingkana borealis Goding, #00-87d&. D, Eufairmairia fraterna Distant, #00-87k&. E, Eufairmairiella sp., #00-87j%. F, Eufrenchia falcata (Walker), #00-87i&. G, Eutryonia monstrifera (Walker), #00-87a%. H, Evansiana iasis (Kirkaldy), #01-225a&. I, Funkhouserella brevifurca (Funkhouser), #00-228c&. J, F. pinguiturris (Funkhouser), holotype, #01-89f&. K, Goddefroyinella neglecta (Buckton), #01-3b%. L, Lubra spinicornis (Walker), #01- 122e&. M, Neocanthuchus tropicus Day, paratype, #01-225c&. N, Otinotoides pallipes (Walker), #00-122h&. O, Pogonella minutus (Goding), #00-136f&. fcl, frontoclypeal lobes.

324 Fig. 22.7. Terentiini: heads. A, Pogonotypellus australis (Goding), #00- 136h&. B, Polonius froggatti Goding, holotype, #01-89j&. C, Pyrgonota bifoliata (Westwood), #00-230j&. D, Sarantus nobilus Kirkaldy, #00-136c&. E, S. wallacei Stål, #00-122c&. F, Sertorius australis (Fairmaire), #00-122a&. G, Sextius virescens (Fairmaire), #00- 80f&. H, Terentius convexus Stål, #99-100h&. I, Undarella storeyi Day, holotype. fcl, frontoclypeal lobes.

325 Fig. 22.8. Terentiini: wings. A, Terentius convexus Stål, #99-100h&, left forewing (inverted). B, T. convexus, #99-100h&, left hind wing (inverted). C, Bulbauchenia sp., #00-230g%. D, Acanthucalis macalpini Evans, #00-136i&, left forewing (inverted). E, Acanthuchus trispinifer (Fairmaire), #00-80g&.

326 Fig. 22.9. Terentiini: wings. A, Alocanthella fulva Evans, #01-225b%. B, Alosextius carinatus (Funkhouser), #00-136a&. C, Anzac bipunctatum (Fabricius), #00-136d&. D, Arimanes doryensis Distant, #83-334a&. E, Bucktoniella pyramidatus (Funkhouser), #01-39a%, left forewing (inverted). F, Bulbauchenia bakeri (Funkhouser), #00-221m&. G, Cebes transiens (Walker), #00-80dc%. H, Ceraon tasmaniae (Fairmaire), #00-80a&, left forewing (inverted). I, Dingkana borealis Goding, #00-87d&. J, Eufairmairia decisa (Walker), #83-333d&, left forewing (inverted).

327 Fig. 22.10. Terentiini: wings. A, Eufairmairiella sp., #00-87g%. B, Eufrenchia falcata (Walker), #00-87h%. C, Eutryonia monstrifera (Walker), #00-87b&. D, Evansiana iasis (Kirkaldy), #01-225a&, left forewing (inverted). E, Funkhouserella brevifurca (Funkhouser), #00-228c&. F, F. pinguiturris (Funkhouser), holotype, #01-89f&. G, Goddefroyinella neglecta (Buckton), paralectotype, #01-69e&, left forewing (inverted). H, Lubra spinicornis (Walker), #01-122e&, left forewing (inverted). I, Neocanthuchus tropicus Day, paratype, #01-225c&. J, Otinotoides pallipes (Walker), #00-122h&.

328 Fig. 22.11. Terentiini: wings. A, Pogonella minutus (Goding), #00-136f&. B, Pogonotypellus australis (Goding), #00-136h&. C, Polonius froggatti Goding, holotype, #01-89j&, left forewing (inverted). D, Pyrgonota bifoliata (Westwood), #00-230a&. E, S. wallacei Stål, #00-122c&. F, Sertorius australis (Fairmaire), #00-122a&. G, Sextius virescens (Fairmaire), #00-80f&. H, Undarella storeyi Day, holotype, left forewing (inverted). I, Yangupia occidentalis (Goding), #01-296a%.

329 Fig. 22.12. Terentiini: metathoracic legs. A, Bulbauchenia bakeri (Funkhouser), #00-221m&. B, Pyrgonota bifoliata (Westwood), #00-230a&. C, Terentius convexus Stål, #99-100h&, reversed from right lateral aspect.

330 Fig. 22.13. Terentiini: female second valvulae (lateral aspects and closeup of apex). A, Acanthucalis macalpini Evans, #00-136i&. B, Anzac bipunctatum (Fabricius), #00-136d&. C-D, Acanthuchus trispinifer (Fairmaire), #00-80g&. E-F, Alosextius carinatus (Funkhouser), #00-136a&. G-H, Bulbauchenia bakeri (Funkhouser), #00-221m&. I-J, Cebes transiens (Walker), #00-80d&.

331 Fig. 22.14. Terentiini: female second valvulae (lateral aspects and closeup of apex). A-B, Ceraon tasmaniae (Fairmaire), #00-80a&. C- D, Dingkana borealis Goding, #00-87d&. E, Eufairmairia decisa (Walker), #83-333d&. F, Pogonella minutus (Goding), #00-136f&. G- H, Eufrenchia falcata (Walker), #00-87i&. I-J, Eutryonia monstrifera (Walker), #00-87b&.

332 Fig. 22.15. Terentiini: female second valvulae (lateral aspects and closeup of apex). A-B, Funkhouserella brevifurca (Funkhouser), #00- 228c&. C, F. pinguiturris (Funkhouser), holotype, #01-89f&. D-E, Goddefroyinella neglecta (Buckton), paralectotype, #01-69e&. F-G, Lubra spinicornis (Walker), #00-122e&. H-I, Otinotoides pallipes (Walker), #00-122h&. Copyrights: D-E © 2003, The Natural History Museum, London.

333 Fig. 22.16. Terentiini: female second valvulae (lateral aspects and closeup of apex). A-B, Pogonotypellus australis (Goding), #00-136h&. C-D, Pyrgonota bifoliata (Westwood), #00-230a&. E-F, Sarantus nobilus Kirkaldy, #00-136b&. G-H, S. wallacei Stål, #00-122c&. I-J, Sertorius australis (Fairmaire), #00-122a&.

334 Fig. 22.17. Terentiini: female second valvulae (lateral aspects and closeup of apex, A-D) and male styles (lateral aspects, E-P). A-B, Sextius virescens (Fairmaire), #00-80f&. C-D, Terentius convexus Stål, #99-100h&. E, Acanthuchus trispinifer (Fairmaire), #00-80h%. F, Alocanthella fulva Evans, #01-225b%. G, Anzac bipunctatum (Fabricius), #00-136e%. H, Bucktoniella pyramidatus (Funkhouser), #01-39a%. I, Bulbauchenia sp., #00-230g%. J, B. bakeri (Funkhouser), #00-277a%. K, Cebes transiens (Walker), #00-80c%. L, Ceraon tasmaniae (Fairmaire), #00-80b%. M, Dingkana borealis Goding, #00-87e%. N, Eufairmairia decisa (Walker), #83-333c%. O, Eufairmairiella curvicauda (Goding), #00-87g%. P, Eufrenchia falcata (Walker), #00-87h%. c, clasp.

335 Fig. 22.18. Terentiini: male styles (lateral aspects, A-K) and aedeagi (lateral aspects, L-Q). A, Eutryonia monstrifera (Walker), #00-87a%. B, Goddefroyinella neglecta (Buckton), #01-3b%. C, Lubra spinicornis (Walker), #01-122j%. D, Otinotoides pallipes (Walker), #00-122g%. E, Pogonella minutus (Goding), #00-136g%. F, Pyrgonota bifoliata (Westwood), #00-230b%. G, Sarantus wallacei Stål, #00-122d%. H, Sertorius australis (Fairmaire), #00-122b%. I, Sextius virescens (Fairmaire), #00-80e%. J, Terentius convexus Stål, #99-100i%. K, Yangupia occidentalis (Goding), #01-296a%. L, Alocanthella fulva Evans, #01-225b%. M, Bucktoniella pyramidatus (Funkhouser), #01-39a%. N, Bulbauchenia bakeri (Funkhouser), #00-277a%. O, Eufairmairiella curvicauda (Goding), #00-87g%. P, Eutryonia monstrifera, #00-87a%. Q, L. spinicornis, #01-122j%. Copyrights: K © 2003, The Natural History Museum, London. c, clasp.

336 Fig. 22.19. Terentiini: male aedeagi (lateral aspects, A-F) and lateral plates (lateral aspects, G-L). A, Otinotoides pallipes (Walker), #00- 122g%. B, Pyrgonota bifoliata (Westwood), #00-230b%, reversed from right lateral aspect. C, Sarantus wallacei Stål, #00-122d%. D, Sextius virescens (Fairmaire), #00-80e%. E, Terentius convexus Stål, #99- 100i%. F, Yangupia occidentalis (Goding), #01-296a%. G, Bucktoniella pyramidatus (Funkhouser), #01-39a%. H, Bulbauchenia sp., #00-230g%. I, Bulbauchenia bakeri (Funkhouser), #00-277a%. J, Cebes transiens (Walker), #00-80c%. K, Ceraon tasmaniae (Fairmaire), #00-80b%. L, Dingkana borealis Goding, #00-87e%. Copyrights: F © 2003, The Natural History Museum, London. dl, dorsoapical lobe.

337 Fig. 22.20. Terentiini: male lateral plates (lateral aspects). A, Eufairmairia decisa (Walker), #83-333c%. B, Eufairmairiella curvicauda (Goding), #00-87g%. C, Eufrenchia falcata (Walker), #00-87h%. D, Eutryonia monstrifera (Walker), #00-87a%. E, Goddefroyinella neglecta (Buckton), #01-3b%. F, Lubra spinicornis (Walker), #01-122j%. G, Otinotoides pallipes (Walker), #00-122g%. H, Sarantus wallacei Stål, #00-122d%. I, Sertorius australis (Fairmaire), #00-122b%. J, Sextius virescens (Fairmaire), #00-80e%. K, Terentius convexus Stål, #99-100i%. L, Yangupia occidentalis (Goding), #01-296a%. Copyrights: L © 2003, The Natural History Museum, London. dl, dorsoapical lobe.

338 Fig. 22.21. Terentiini: male subgenital plates (ventral aspects, A- D) and maximum development of abdominal fine-structure (E-H). All scanning electron micrographs near tergum III. A, Bucktoniella pyramidatus (Funkhouser), #01-39a%. B, Cebes transiens (Walker), #00-80c%. C, Eufrenchia falcata (Walker), #00-87h%. D, Otinotoides pallipes (Walker), #00-122g%. E-F, Acanthuchus trispinifer (Fairmaire), #01-43&. G-H, Anzac bipunctatum (Fabricius), #00-136e%. a, acanthae. i, inornate pit. l, lateral seta. m, microtrichia.

339 Fig. 22.22. Terentiini: maximum development of abdominal fine- structure. All scanning electron micrographs near tergum III. A, Bucktoniella pyramidatus (Funkhouser), #01-39a%. B, Bulbauchenia mirabilis (Funkhouser), holotype, #01-54a%. C-D, B. bakeri (Funkhouser), #01-278a&. E, Ceraon tasmaniae (Fairmaire), #01- 232e%. F, Dingkana borealis Goding, #01-219c&. G-H, Eufairmairia fraterna Distant, #01-22b&. i, inornate pit. m, microtrichia.

340 Fig. 22.23. Terentiini: maximum development of abdominal and pronotal (B) fine-structure. All scanning electron micrographs near tergum III. A, Eutryonia monstrifera (Walker), #01-219b&. B-D, Funkhouserella brevifurca (Funkhouser), #01-89e&. E, Lubra spinicornis (Walker), 00-181l&. F, Otinotoides sp., 00-122k&. G, Pogonella minutus (Goding), #00-136j%. H, Pyrgonota sp., #01- 47b(sex?). i, inornate pit. m, microtrichia. sc, scutellum.

341 Fig. 22.24. Terentiini: maximum development of abdominal fine- structure. All scanning electron micrographs near tergum III. A, Sarantus wallacei Stål, #01-247b&. B, Sertorius sp., #00-122m%. C, Sextius kurandae Kirkaldy, #01-235b%. D, Terentius convexus Stål, #01-29a%. i, inornate pit. m, microtrichia.

342 23. Tribe XIPHOPOEINI Capener, 1966

Old World: Afrotropical Region

Figs. 23.1-23.3

Type genus: Xiphopoeus Stål, 1866c

Xiphopoeini Capener, 1966a [new tribe].

Diagnostic characters.—Frontoclypeal lobes distinct, not extending to apex of

frontoclypeus; vertex with toothlike projections. Pronotum with numerous acute projections

(spines). Mesopleural lobe enlarged. Forewing with m-cu2 crossvein present, discoidal cells

similar in length, r-m1 crossvein originating anterior to first division of R vein, with

pterostigma at or near R1 vein, base of R2+3 and R4+5 veins truncate. Hind wing with R4+5 and

M1+2 veins not fused (4 apical cells). Mesothoracic femur with ab- and adlateral cucullate

setae. Male lateral plate without dorsoapical lobe; clasp of style oriented laterally, apex

membranous, elliptical or circular, angled dorsally. Abdominal tergum III ventrolateral

margin with upcurved groove, abdominal setal bases enlarged, numerous, and dispersed on

terga.

Description.—Length 4.7-6.3 mm. Color brown to dark brown. HEAD (Figs. 23.1

E-F): frontoclypeal margins parallel or slightly converging ventrally, frontoclypeal lobes

distinct and not extending to apex of frontoclypeus; ocelli about equidistant from each other and eyes; vertex with toothlike projections. THORAX: PRONOTUM (Figs. 23.1 A-D):

pronotum with numerous acute projections (spines); suprahumeral horns present; posterior

process curving dorsally (Xiphopoeus) or straight at base (Negus), appressed against

343 scutellum (Negus) or not (Xiphopoeus), significantly extending past m-cu3 vein in forewing.

SCUTELLUM: emarginate with apices acute, not concealed by posterior process, 2 lateral

apices or 1 visible from dorsolateral view; not shortened--with abdomen removed, notch and

apices visible, only slightly extending beyond thorax or posterior half extending past thorax.

Pleuron: propleural lobe present or absent, mesopleural lobe enlarged. FOREWING (Figs.

23.1 G, I): sub-opaque; apical limbus broad; s crossvein distad of r-m2 crossvein; m-cu1

crossvein absent and m-cu2 crossvein present in at least one wing; M and Cu veins fused at

base; R and M veins not confluent preapically; forewing with pterostigma near R1 vein; R1

vein not perpendicular to marginal vein; r-m1 crossvein originating anterior to first split of R vein, parallel to longitudinal veins or bent towards R vein; R, M, and Cu veins not parallel apically; discoidal cells similar in length; base of R2+3 and R4+5 veins truncate. HIND WING

(Fig. 23.1 H): R4+5 and M1+2 veins not fused (4 apical cells). PRO- AND MESOTHORACIC LEGS:

tibiae not foliaceous; mesothoracic tibia without rows of cucullate; mesothoracic femur with

ab- and adlateral cucullate setae. METATHORACIC LEG (Fig. 23.1 J): ventral margin of coxa,

trochanter, and femur without enlarged setal bases; femur with ab- and adlateral cucullate

setae; femur without ablateral cucullate setae ventrolaterally; tibia not foliaceous, row I with

7-18 cucullate setae, row II with 19-33 cucullate setae in irregular or double row, row III

with 13-23 cucullate setae; tarsomere I with 2 or more cucullate setae (usually 2).

ABDOMEN: in anterior aspect (abdomen removed) nearly triangular; anterior tergal borders

not modified; sternal transverse carina present in Negus; paired dorsal swellings absent;

tergum III ventrolateral margin with upcurved groove, abdominal setal bases enlarged,

numerous, and dispersed on terga. FEMALE GENITALIA (Figs. 23.2 A-D): second valvulae

broadened slightly, tapering unevenly to apex, curved or not, dorsal teeth fine, acute

344 projections on dorsal margin present or absent; third valvulae without ventral projections.

MALE GENITALIA (Figs. 23.2 E-K): lateral plate without dorsoapical lobe (Figs. 23.2 I-K),

without ventral lobe; subgenital plate without distinct division; style clasp (Figs. 23.2 E-F) oriented laterally, membranous, elliptical or circular, angled dorsally; style shank without significant arch. ABDOMINAL FINE STRUCTURE (Figs. 23.3 B): acanthae indistinct, bases not heightened, acanthae divided into threadlike microtrichia.

Chromosome numbers.—Unknown.

Distribution.—The tribe Xiphopoeini is recorded from numerous Afrotropical

countries (McKamey 1998a).

Ecology.—Members of the tribe Xiphopoeini are reported from the host plant

families Euphorbiaceae, Gramineae, and Leguminosae (Table 26.2).

Discussion.—Capener (1966a) placed those African treehoppers with toothlike projections on the lower margins of the vertex and enlarged mesopleural lobes in the tribe

Xiphopoeini. This tribe is monophyletic in the phylogenetic analysis (Figs. 24.1, 24.7) and is characterized by Capener’s diagnostic features as well as the presence of numerous enlarged setal bases dispersed on the abdominal terga. The Xiphopeoini are closely related to the

predominantly Afrotropical tribes Leptocentrini and Centrotini, and the Micreunini. The

Centrotini, like the Xiphopoeini, also have enlarged setal bases dispersed on the abdominal

terga although they are less numerous. In addition, both xiphopoeines and centrotines have

an elliptical, dorsally angled, male clasp.

345 Genera of the tribe Xiphopoeini

Negus Jacobi, 1910b (type species: N. asper Jacobi by original designation).

Xiphopoeus Stål, 1866a (type species: Centrotus phantasma Signoret by subsequent

designation).

Specimens examined.—Negus asper Jacobi, det. A.L. Capener, USNM, #99-93c&— det. A.L. Capener, AMNH, #00-175a%, #00-175j[n]—det. A.L. Capener, PPRI, #01-256e%;

Xiphopoeus sp., det. M.S. Wallace, USNM, #01-61a&, #02-10e[n]; X. erectus Distant, det.

W.D. Funkhouser, USNM, #83-333h%; X phantasma Signoret, det. A.L. Capener, PPRI,

#99-315c%, #99-315d&.

346 Fig. 23.1. Xiphopoeini: pronota (lateral aspects, A-B; and anterior aspects, C-D), heads (E-F), wings (G-I), and metathoracic leg (J). Bars = 3 mm. A, Negus asper Jacobi, #99-93c&. B, Xiphopoeus phantasma Signoret, #99-315c%. C, N. asper, #99-93c&. D, X. phantasma, #99-315c%. E, N. asper, #99-93c&. F, X. phantasma, #99-315c%. G, X. phantasma, #99-315d&, right forewing. H, X. phantasma, #99- 315d&, right hind wing. I, N. asper, #99-93c&, right forewing. J, X. phantasma, #99-315d&. tp, toothlike processes. 347 Fig. 23.2. Xiphopoeini: female second valvulae (lateral aspects and closeup of apex, A-D), and male styles (lateral aspects, E-F), aedeagi (lateral aspects, G-H), lateral plates (lateral aspects, I-J), and subgenital plate (ventral aspect, K). A-B, Negus asper Jacobi, #99-93c&. C-D, Xiphopoeus phantasma Signoret, #99-315d&. E, N. asper, #00-175a%. F, X. phantasma, #99-315c%. G, N. asper, #00-175a%. H, X. phantasma, #99-315c%. I, N. asper, #00-175a%. J, X. phantasma, #99- 315c%. K, N. asper, #00-175a%. c, clasp.

348 Fig. 23.3 Xiphopoeini: maximum development of pronotal (A) and abdominal fine structure (B). All abdominal scanning electron micrographs near tergum III. A-B, Xiphopoeus sp., #01-61a&. l, lateral seta. m, microtrichia.

349 24: PHYLOGENETIC RELATIONSHIPS WITHIN THE SUBFAMILY

CENTROTINAE

Introduction

The treehopper subfamily Centrotinae accounts for roughly half of the worldwide membracid diversity at the species and higher-levels. It is the only subfamily with genera distributed in the Old World (the Afrotropical, Palearctic, Indomalayan, and Australasian/

Oceanian Regions) and New World (Nearctic and Neotropical Regions), but no centrotine tribe (or genus) occurs in both the Old and New Worlds. Historically, workers have focused on taxonomic revisions of centrotines within a particular geographic region (for example,

Capener 1962a, 1968a; Evans 1966a; Ananthasubramanian 1996a; Day 1999a; Yuan and

Chou 2002a). Furthermore, relatively few workers have justified centrotine classifications at

any taxonomic level with quantitative phylogenetic analyses (Strümpel 1972a; Ahmad

1988a; Dietrich and Deitz 1993a; Cryan et al. 2000a; Dietrich et al. 2001a; Yuan and Chou

2002a). Consequently, a large number of centrotine tribes, many described in the early

1900’s, are based largely on symplesiomorphies, and thus, the monophyly of the subfamily

and tribes has not been tested.

These disparities have impeded the development of a stable higher classification and

taxonomic studies of centrotines at the generic and species levels. In addition, the lack of

information on the evolutionary relationships between the Old and New World centrotines

has hindered investigations on biogeographic patterns within the Membracidae and in determining the geographic origins of the Membracidae and the Centrotinae. The lack of common taxa between the New World and Old World has long fueled a debate concerning the geographic origin of the Membracidae (Dietrich and Deitz 1993a, Wood 1993a, Dietrich

350 et al. 2001a). The first comprehensive phylogenetic analysis of generic representatives from all 24 centrotine tribes (20 Old World, 4 New World), (sensu McKamey 1998a and Yuan and

Chou 2002a) using morphological characters is presented here.

The objectives of this study are to establish the phylogenetic limits of the Centrotinae and its included tribes and to determine the evolutionary relationships among these tribes in order to provide a comprehensive classification and to aid in the investigation of biogeographical patterns and life history traits. The great number of centrotine genera-- together with the limited morphological data for many--precluded a single comprehensive phylogenetic analysis. To circumvent this problem, 10 analyses were performed on subsets of taxa as follows: (1) an overall phylogenetic analysis based on genera representing overall tribal diversity within Centrotinae; (2-8) phylogenetic analyses based on genera representing larger tribes; and (9-10) phenetic analyses based on all scorable genera representing larger tribes.

Methods

Taxon sampling. Overall, 222 taxa representing 213 genera (Table 24.13) were coded for their morphological characters in the taxonomic database DELTA (DEscription Language for ) version 1.03e (Dallwitz 1980a; Dallwitz et al. 1993a, 1999a). Ingroup taxa included 208 genera (178 centrotines and 4 centrodontines coded from specimens; 26 centrotine genera coded from published descriptions and illustrations). Taxa in Table 24.13 labeled with only a generic name are represented by more than one species. Knowledge of 8 centrotine genera was insufficient for coding: Aspasiana, Centrobelus, Insitor, Insitoroides,

Megalocentrus, Megaloschema, Saudaraba, and Sinocentrus (all but Saudaraba placed as

351 incertae sedis). Outgroup taxa included the New World genera: Nicomia and Tolania

(Nicomiinae), Microcentrus Stål (Stegaspidinae), and Centronodus Funkhouser and

Paracentronodus Sakakibara (Centronodini). The only possible Old World outgroup is the

genus Darthula Kirkaldy, in the family Aetalionidae (sister group to the Membracidae).

Darthula, however, is not useful for polarizing because it is too distantly related to

centrotines. Generic representatives from 23 of the 24 valid tribes were examined; only the tribe Choucentrini (Choucentrus) was coded entirely from the literature. In order to lessen over-generalization of character data, an effort was made to examine the type species of each

available genus. The type species (at least one sex) was examined in 164 of the 178

centrotine genera coded.

Analyses. The number of taxa and characters included and the characters excluded in each analysis are shown in Table 24.2. In relatively few cases where only one sex of the type species was available for examination, or where significant morphological diversity occurred within a genus, another species was coded in addition to the type species and included in the dataset. With three exceptions, the type species in these instances was used in all of the phylogenetic analyses. In the Boocerini/Centrodontini analysis, Campylocentrus hamifer

was used as the generic representative. In the Choucentrini/Leptocentrini/Maarbarini

analysis, Otinotus bantuantus and Nilautama minutaspina were chosen as the generic

representatives.

Question marks (?) in the data matrix indicate missing data, inapplicable character

states, and cases where character scoring was ambiguous. With some characters,

polymorphism (sexual, interspecific, or intraspecific) was designated as a hypothesized

intermediate character state. Characters listed in the “other” column of Table 24.2 were

352 excluded because they were highly homoplasious and not informative as tribal or generic characters for the analyzed taxa. In the analysis of the entire subfamily Centrotinae, six autapomorphic characters that helped define monotypic tribes or tribes represented by one genus were retained in the analysis.

In the first analysis, generic representatives of 22 of the 24 valid tribes plus the New

World subfamily Centrodontinae were included in an overall phylogenetic analysis of the subfamily Centrotinae. Where possible, at least two genera from each valid tribe were included in this analysis. The generic representatives and institutional acronyms used in the subfamily analysis are given in Table 24.5.

All of the centrotine genera could not be included in this overall analysis due to the large number of taxa and limited morphological data for some genera (often only one sex was available). Therefore, separate phylogenetic analyses (2-8) were also completed for several large tribes and for the generic representatives of the 2 remaining tribes not included in the overall phylogenetic analysis of the Centrotinae. Thus, many of the remaining centrotine genera could be confidently placed into tribes. The phylogenetic trees from these analyses were intended to indicate the monophyly of the tribes and preliminary relationships among their genera. It should be noted, however, that many of the characters used in the analyses were selected to delineate tribes and infer relationships among them, rather than infer generic relationships. Therefore, the addition of further morphological characters that vary among genera would likely provide even better resolution of generic relationships.

Analyses 2-3 (Table 24.2) investigated the relationships among several basal centrotine tribes, mostly from the New World. The closely related tribes Beaufortianini (new tribe), Nessorhinini, Pieltainellini (new tribe), and Platycentrini were studied in Analysis 2.

353 All of these tribes except the Beaufortianini are found in the New World. The generic

relationships of Boocerini and Centrodontini, two New World tribes, were examined in

Analysis 3.

The remaining phylogenetic analyses examined relationships of Old World

centrotines: Analysis 4, included two primarily Afrotropical tribes, the Centrotini and

Xiphopoeini; 5, the predominantly Palearctic and Indomalayan tribes Choucentrini,

Leptocentrini, and Maarbarini (new tribe); 6, the Gargarini; 7 the Oxyrhachini and

Hypsaucheniini; and 8, Terentiini (Table 24.2).

DELTA datasets were converted to NEXUS files in DELTA. Phylogenetic analyses

(analyses 1-8) were performed using PAUP* (Phylogenetic Analysis Using Parsimony)

version 4.0b10 for Windows (Swofford 2002a). Character change lists and apomorphy lists

were generated using PAUP*. Due to the size of all the analyses, heuristic analyses were

performed using the tree-bisection-reconnection routine (TBR) with 50 random addition

replicates. Five trees were held at each step of cladogram construction. The number of

changes assigned per branch under ACCTRAN optimization was determined by PAUP*.

Branch lengths are proportional to the number of changes per branch and are used here as

measure of node support.

Two similarity analyses (Analyses 9-10) of several larger tribes using UPGMA were

performed to show overall morphological similarity among genera in a tribe, including those in which data were too limited for inclusion in the phylogenetic studies. UPGMA was performed in PAUP*. The distance measure or branch lengths for the UPGMA trees are proportional to the mean character distance.

354 Morphological Characters. The dataset for the phylogenetic and phenetic analyses consists of 116 morphological characters (82 binary and 34 multistate) (Table 24.1). Only adult males and females were coded because too few nymphal specimens were examined to include characters from the immatures. Many of the characters, especially those of the forewings, are based on those in Dietrich et al. (2001a). For all analyses, characters were treated as unordered because polarizations were ambiguous. Characters were assigned equal weight in all analyses. See the “Introduction” section for a discussion of morphological characters.

Results and Discussion

Phylogeny of the Centrotinae and character evolution. The results presented here represent the first comprehensive morphological phylogenetic analysis of the subfamily

Centrotinae. The overall phylogenetic analysis (Analysis 1) resulted in a single most parsimonious tree (Fig. 24.1) of 665 steps, consistency index (CI) of 0.23, and retention index (RI) of 0.60. Table 24.3 gives descriptive tree statistics of the other phylogenetic analyses (Analyses 2-8). In many cases, nodes defining tribes and relationships among tribes were well supported with numerous character changes-- for example: node 79 (Terentiini), nodes 82-83 (Ebhuloidesini, Oxyrhachini, Hypsaucheniini, and Terentiini), node 91

(Choucentrini + Maarbarini), node 102 (Leptocentrini), and node 116 (Nessorhinini).

Nevertheless, although only 1 most parsimonious tree was found, in basal portions of the tree branch support was either low (i.e., nodes 113 and 111) or nodes were supported by mostly homoplasious characters (i.e., node 118). Indeed, in general, homoplasy was high (CI=0.23) in this analysis, as one might expect with 69 taxa (Sanderson and Donoghue 1989a). Certain

355 characters, however, such as the shape of the female second valvulae, were homoplasious in some tribes (i.e., Centrotini) but consistent and informative in others (i.e., Hypsaucheniini).

In a separate analysis using the dataset of Analysis 1, all of the Old World genera were constrained for monophyly to determine the extra number of steps needed for a monophyletic Old World fauna. Analysis parameters were equal to the above unconstrained studies. Constraining a monophyletic Old World centrotine fauna resulted in 65 equally most parsimonious trees with 671 steps, 6 steps longer than the most parsimonious tree without the constraint. According to a winning-sites test between the most parsimonious tree

(unconstrained for Old World monophyly) and the 65 equally parsimonious trees

(constrained for Old World monophyly), the data did not provide significantly less support for the constrained analysis compared to the unconstrained analysis (p-values ranged from

0.42-0.09). Despite this result, the unconstrained analysis is favored here not only because it is more parsimonious, but also because most of the Old World phylogeny was unresolved in the constrained study.

As a result of these analyses, 23 centrotine tribes are recognized, including 6 new tribes; 11 tribal synonymies and 1 subfamily synonymy are proposed, and the tribal placements of 108 genera are changed. Based on the present phylogeny, Fig. 24.2 and Table

24.14 contrast the existing centrotine tribal classification (sensu Ananthasubramanian 1996a,

McKamey 1998a, and Yuan and Chou 2002a) with the revised classification. The tribal descriptions give detailed morphological descriptions and updated placements of each centrotine genus, while the tribal synonymies and discussions give details on the taxonomic status of each tribal name.

356 The Centrotinae, as defined here, are a monophyletic group based on the phylogenetic analysis (Fig. 24.1), supporting the findings of Dietrich and Deitz (1993a) and Dietrich et al.

(2001a). All centrotines have abdominal inornate pits, each with an associated lateral seta.

This feature is independently derived in three other treehopper genera: Nicomia

(Nicomiinae), Endoiastus Fowler (Endoiastinae), and Eunusa Conseca (Membracini).

Dietrich et al. (2001a) also listed these pits as a synapomorphy for centrotines. Moreover, with the exception of the centrodontines, centrotines have a truncate clavus while R, M, and

Cu forewing veins lack “extra” branches. The remaining apomorphies of the Centrotinae

(Table 24.4) are not as reliable due to the limited number of outgroups presented and the homoplastic nature of these characters. These include r-m1 crossvein bent towards R vein in the forewing, cucullate setae on dorsal femur absent, and abdominal shape in cross-section nearly triangular.

Additional apomorphies of Centrotinae listed by Dietrich et al. (2001a) were not retrieved in the present analyses. Although the initial division of R vein in the forewing as

R1 and Rs and the presence of r-m1 crossvein are diagnostic centrotine characters, they appear to be plesiomorphic based on the outgroups used here. Of these however, only Microcentrus has R1 and Rs as the initial division of R vein in the forewing like most centrotines--this character state is ambiguous for the remaining outgroup taxa.

The Centrotinae topology presented by Dietrich et al. (2001a: Fig. 10) roughly resembles the tree presented here (Fig. 24.1). In both analyses, the Boocerini, as defined here, and Tricentrus, are basal to the remaining centrotines. With the exceptions of the placements of Oxyrhachini and Gargarini in Dietrich et al. (2001a), the two phylogenies are very similar. The Nessorhinini and Platycentrini form a monophyletic group in both analyses

357 and are the sister group to the Leptocentrini and Centrotini, two closely related tribes in both trees.

In contrast to morphological studies, a molecular analysis of the Membracidae using nuclear genes did not consistently result in a monophyletic Centrotinae (Cryan et al. 2000a).

The Centrodontinae (here considered a tribe within Centrotini) and Stegaspidinae often

grouped with the Centrotinae into one of two major membracid lineages. In a combined analysis with EF-1" and 28S rDNA, the New World centrotines arose from the Old World centrotines, contradictory to the results presented here. Moreover, many of the relevant nodes were not highly supported based on the molecular data (Cryan et al. 2000a).

Suprahumeral horns are gained and lost numerous times in the Centrotinae. Although these pronotal horns are sometimes diagnostic at lower levels, they are rarely useful in defining tribes. This is not surprising considering the polymorphic nature of these horns in many species. Nevertheless, several centrotine genera have interesting modifications of the suprahumeral horns. For example, certain genera in the Centrotini (Euceropsila,

Eumocentrulus, Eumonocentrus, Flatyperphyma, Foliatrotus, Mitranotus, Monocentrus, and

Zanzia), Nessorhinini (Nessorhinus and Orekthophora), and Terentiini (Neosextius) have suprahumeral horns partially fused into a median anterior pronotal horn. These partially united horns appear to be an intermediate state between separate suprahumeral horns situated dorsolaterally on the pronotum (as in Centrotus) and a single median anterior pronotal horn

(as in Micreune). Despite these modifications, the current phylogenetic analysis provides little to confirm this hypothesis. One would expect taxa with the intermediate state to be found basally on the phylogenetic tree with respect to taxa with a median anterior horn, but this apparently is never the case. This hypothesized intermediate state arose multiple times

358 in the Centrotinae and even within the tribe Centrotini (Fig. 24.7), but no genera of the

Centrotini have the fully developed median anterior horn. The terentiine genera Eutyronia,

Bulbauchenia, Funkhouserella, and Pyrgonota have a median anterior horn but they are not

closely related to Neosextius (Fig. 24.14). In constrast, the presence of a median anterior horn is a synapomorphy of the tribes Hypsaucheniini, Micreunini, and Leptobelini, and there is no evidence of the intermediate state.

An exposed scutellum has long helped to distinguish centrotines from other membracids, however, Dietrich et al. (2001a) found this condition to be plesiomorphic for the subfamily. The present study supports this finding and indicates that pronotal

concealment of the scutellum was independently derived in the tribes Centrodontini,

Oxyrhachini, and most Nessorhinini, and also in Insitor (incertae sedis), Monobeloides

(Monobelini), Bulbauchenia and Neosextius (Terentiini), and several gargarine genera

(Cryptaspidia, Gargarina, Madlinus, Mesocentrina). The condition is polymorphic in

Orthobelus (Nessorhinini), Centrotypus (Centrotypini), and Sextius (Terentiini).

Centrotinae tribal relationships. Several suites of characters proved especially

significant in determining centrotine phylogeny. Characters important in elucidating tribal

relationships include the characteristics, especially shape, of the male style clasp; shape of

the female second valvulae; forewing and hind wing characteristics; features of the

scutellum; leg chaetotaxy; and abdominal characteristics.

The centrotines are arranged in two major clades plus the basal tribe Centrodontini

(Fig. 24.1). The New World subfamily Centrodontini is the first lineage of the Centrotinae

(Figs. 24.1, 24.5). Thus, Centrodontinae is here considered a junior synonym of the

Centrotinae. Cryan et al.’s (2000a) recent molecular analyses using nuclear data consistently

359 placed centrodontines near centrotine genera in the phylogenetic tree and recovered the

Centrodontini clade consistently with 98-100% bootstrap support. Nevertheless, the

Centrodontini are here tentatively placed within the Centrotinae. Although the centrodontines have inornate pits, each with an associated lateral seta (the synapomorphy for

the Centrotinae), they differ significantly from other centrotines in forewing venation and leg

chaetotaxy. Relationships within the Centrodontini are well resolved (Fig. 24.5).

Apparently, Nodonica, the only centrodontine found in South America, is the sister group to

the North American centrodontines, differing significantly from the latter in leg chaetotaxy

and features of the male and female genitalia. Character 113 (abdominal inornate pits with lateral setae) was coded as ambiguous (?) for Nodonica because a specimen was not examined, and it is appropriate to score this character with a high power dissecting scope or scanning electron microscope.

The next higher clade following the Centrodontini (Figs. 24.1-24.2) contains genera most recently placed in the Abelini, Antialcidini, Boocerini, Coccosterphini, Gargarini,

Platycentrini, Nessorhinini, Leptocentrini, Madlinini, and Tricentrini (Ananthasubramanian

1996a, McKamey 1998a, and Yuan and Chou 2002a). Based on the present results, the existing classification is clearly unacceptable, with numerous polyphyletic and paraphyletic tribes, forcing the placement of many genera into different tribes and the creation of new taxa and new synonymies. In most of the genera of this clade, the male subgenital plate has a distinct division near the base.

The new tribe Monobelini contains genera previously placed in Boocerini and

Nessorhinini (both sensu McKamey 1998a) (Figs. 24.1-24.2). The tribe Monobelini is the basal lineage of this first major centrotine clade and is one of two tribes confined to the

360 Caribbean Islands. Monobelus and Monobeloides both have extra cucullate setae at the distal end of the femur and are more similar morphologically to each other than to

Brachycentrotus. Brachycentrotus, the sister group to Monobelus and Monobeloides, lacks extra cucullate setae at the end of the hind femur. The Abelini Goding, 1930a, and Boocerini

Goding, 1892a (sensu McKamey 1998a, in part), together form a monophyletic group (Figs.

24.1-24.2, 24.5), rendering Abelini a junior synonym of Boocerini. The boocerines are defined by the long ventral lobe of the male lateral plate. A similar relationship, with Bremer support of 2, was recovered in the morphological analysis of Dietrich et al (2001a).

However, phylogenetic analyses using nuclear data (Cryan et al. 2000a) did not result in a monophyletic Abelini and Boocerini sensu McKamey (1998a). Although generic relationships are well resolved, the strict consensus tree (Fig. 24.5) of the Boocerini indicates a basal polytomy. This lack of resolution may be due to missing data, because no males of

Centriculus were available. Amblycentrus and Brachybelus, a monophyletic group, differ from other boocerines in hind wing venation, features of the male genitalia, and leg chaetotaxy.

The monophyletic group of genera forming a sister group to the Boocerini (Fig. 24.1) includes a large number of tribes under the existing classification (Ananthasubramanian

1996a, McKamey 1998a, and Yuan and Chou 2002a), but with the exceptions of the monotypic tribes Aleptocentrini and Madlinini, none of these are monophyletic (Figs 24.1-

24.2). Therefore, based on the phylogenetic analyses (Figs. 24.1-24.2, 24.10), five tribes--

Antialcidini Yuan and Zhang, in Yuan and Chou, 2002a; Aleptocentrini Thirumalai and

Ananthasubramanian, 1985a; Madlinini Boulard, 1995d; Tricentrini Ahmad and Yasmeen,

1972a; and Coccosterphini Distant, 1908g--are all junior synonyms of Gargarini Distant,

361 1908g. Molecular analyses of the Membracidae (Cryan et al. 2000a) consistently resulted in a monophyletic relationship between Gargara and Tricentrus with high bootstrap support. In contrast, Dietrich et al.’s (2001a) morphological analysis did not produce a monophyletic

Gargara and Tricentrus. A UPGMA analysis including the remaining genera placed in the

Gargarini (Fig. 24.16) also produced a single gargarine group based on overall similarity.

Many of the generic relationships of the Gargarini are still unresolved (Fig. 24.10).

Three morphologically distinct gargarines, however, Aleptocentrus, Yasa, and Parayasa, are consistently positioned at the base of the tree. The Gargarini, although morphologically heterogenous in some features, are united based on the expanding frontoclypeus, by the posterior process appressed against the scutellum, and the shortened scutellum (Figs. 24.1-

24.2, 24.10). In the hind wing, R4+5 and M1+2 veins are fused (3 apical cells) in all genera except Aleptocentrus and Yasa. The Gargarini include the two largest centrotine genera,

Tricentrus with 223 species, and Gargara with 184 (McKamey 1998a). Primarily distributed in the Indomalayan and Palearctic regions, the Gargarini are the descendants of one of the two major invasions of centrotines from the New World to the Old World. See the

“Biogeography” chapter for a more detailed discussion of this dispersal.

The next major clade accounts for most of the centrotine diversity at the tribal and generic levels. Similar to the other major clade, many of the tribes based on McKamey

(1998a) and Yuan and Chou (2002a) are para- or polyphyletic resulting in new synonymies and the reassignment of genera. Furthermore, the recognition of several monotypic tribes is supported from the analysis in this major clade. The Centrocharesini, Oxyrhachini,

Leptobelini, Ebhuloidesini, and Micreunini all have strong support based on convincing synapomorphies justifying their retainment as tribes (see the relevant tribal descriptions).

362 As in its sister clade, the basal lineage of this second large assembly of tribes is a

New World clade. The phylogenetic analyses agree with the recent placement of the

Nessorhinini (formerly a subfamily) as a tribe within Centrotinae (Dietrich et al. 2001a).

Furthermore, Callicentrus and Nessorhinus were monophyletic in the molecular phylogenetic

analysis of the Membracidae using two nuclear genes (Cryan et al. 2000). Here, the

nessorhinines (sensu McKamey 1998a) are polyphyletic (Fig. 24.1-24.2), with several genera

formerly placed in the Platycentrini and Boocerini forming a monophyletic group with the

type genus Nessorhinus and several other genera previously placed in the Nessorhinini (Fig.

24.3). All of these genera, along with the Monobelini, are restricted to the Caribbean Islands.

The internal phylogeny of the Nessorhinini is well resolved (Fig. 24.3) and is split

into two groups. A morphologically homogenous group is represented by Nessorhinus and

Goniolomus while a more heterogenous group is represented by Callicentrus and Orthobelus

(Figs. 24.1, 24.3). These two groups differ in forewing characteristics and shape of the male and female genitalia. Despite the two clades, all nessorhines have anterior dorsal swellings on the abdomen and long blade-shaped female second valvulae with large dorsal teeth. A

UPGMA analysis (Fig. 24.17) including the genus Spathenotus resulted in the same two groupings. The Platycentrini sensu McKamey (1998a) are also polyphyletic but Platycentrus and Tylocentrus (Fig. 24.3) form a monophyletic group supported by the shape of the female ovipositor, and are the sister group to the Nessorhinini. This grouping of Platycentrus and

Tylocentrus is also supported by molecular phylogenetic analysis (Cryan et al. 2000a). The

Pieltainellini, a new tribe proposed to accommodate elements of the Boocerini sensu

McKamey (1998a), are found in Mexico and are the sister group to a majority of the Old

World centrotines.

363 The first Old World lineage in the second major centrotine clade are a group of genera formerly placed in the Leptocentrini sensu McKamey (1998a) (Fig. 24.2), here considered polyphyletic. This group of genera form the Beaufortianini (Figs. 24.2-24.3), a new tribe based on the phylogenetic analysis. Imporcitor, distributed in the Palearctic and

Indomalayan Regions, is basal to Centrolobus, Centruchus, Beaufortiana, Mabokiana, and

Dukeobelus, a clade primarily distributed in the Afrotropical Region but with a few

Indomalayan and Palearctic components. Beaufortianines have a long dorsoapical lobe on the male lateral plate, although the lobe is lost in the genus Centruchus. Many of the characters of this group are intermediate between features found in the New World tribes and a majority of the Old World centrotines. A UPGMA analysis (Fig. 24.16) that included the genus Centrotusoides grouped the beaufortianines together based on overall similarity.

A substantial clade of genera including the Centrocharesini, Ebhuloidesini,

Oxyrhachini, Hypsaucheninii, and the Terentiini (Fig. 24.1) all lack mesothoracic ab- and adlateral cucullate setae on the femur, and with the exception of the Centrocharesini, they all have a reduced number (0 or 1) of cucullate setae on the first metathoracic tarsomere. The

Centrocharesini is a highly derived tribe with numerous autapomorphies, including acute projections on the pronotum and abdomen, and foliaceous tibiae. The monophyly of the clade Oxyrhachini + Ebhuloidesini + Hypsaucheniini is strongly supported by a number of characters. The female second valvulae are all short and broad with an undulating dorsal margin, the male style clasp is cylindrical in most genera, they lack metathoracic ab- and adlateral cucullate setae on the hind femur, and their mesopleural lobes are enlarged.

The tribe Ebhuloidesini Goding, 1931a, senior synonym of Ebhulini Yuan, in Yuan and Chou 2002a, consists of only its nominative genus Ebhul. Sister group to the

364 Oxyrhachini + Hypsaucheniini (Fig. 24.1), this tribe has the first division of R vein in the forewing as R1+2+3 and R4+5 rather than R1 and Rs. The Ebhuloidesini are a distinct lineage in

the phylogenetic analysis (Fig. 24.1), supporting Yuan and Chou’s (2002a) findings. The

placement of Oxyrhachini as a monotypic tribe within the Centrotinae is consistent with the findings of Dietrich et al. (2001a) (Fig 24.1). Oxyrhachines have paired dorsal swellings on

the abdomen that are larger on the posterior segments and have Cu1 vein abutting the clavus

in the forewing, not the marginal vein. Several Oxyrhachis species, representatives of

generic synonyms of Oxyrhachis, form a monophyletic group (Fig. 24.12) in the analysis,

partly justifying these synonymies.

The Hypsaucheniini, as defined here, are monophyletic in the phylogenetic analysis,

and largely correspond to McKamey’s (1998a) catalog with the exception of Pyrgonota, here

placed in the Terentiini. Yuan and Chou (2002a) placed the genus Hybandoides in the

Funkhouserellini (here a synonym of Terentiini) but here it is referred back to the

Hypsaucheniini (McKamey 1998a). All hypsaucheniines have a median anterior pronotal

horn. With the exception of Gigantorhabdus, hypsaucheniines have an anomalous

longitudinal vein in the forewing that may represent a distinct branch of R vein. The generic

relationships of the Hypsaucheniini are largely unresolved (Fig. 24.12) with the exception of

the clade including Hybanda, Gigantorhabdus, and Pyrgauchenia. This group of genera has

conelike projections on the female third valvulae and have the m-cu3 crossvein in the

forewing basad of the fork of M vein.

Bulbaucheniini Goding, 1931a, and Funkhouserellini Yuan and Zhang, in Yuan and

Chou 2002a, are junior synonyms of Terentiini Haupt, 1929c, based on the phylogenetic

analysis (Figs. 24.1-24.2, 24.14). The type genera of the two former tribes form a

365 monophyletic group with Terentius (Figs. 24.1, 24.14). Other genera here placed in

Terentiini were previously incertae sedis or placed in the tribes Centrotypini or

Leptocentrini, which in the sense of McKamey (1998a) are here considered polyphyletic

(Fig. 24.2). The Terentiini, as defined here, form a sister group to the Ebhuloidesini +

Oxyrhachini + Hypsaucheniini (Fig. 24.1). The Australasian genera Eufairmairia, Ceraon, and Sextius were a monophyletic group in a molecular analysis of the Membracidae (Cryan et al. 2000a). A UPGMA analysis (Fig. 24.17) grouped all of the genera here listed within

Terentiini together based on morphological similarity. Day’s (1999a) WPGMA analysis grouped the Australian membracids into 3 clusters plus the genus Goddefroyinella. Many of the genera from the present UPGMA analysis cluster in a similar manner.

Terentiines have the posterior pronotal process appressed against the scutellum and all males have a quadrate style clasp, a unique clasp shape among all centrotines. Although many of the the basal relationships of the Terentiini are unresolved (Fig. 24.14), some terminal generic relationships are well defined. Anzac, Neosextius, Goddefroyinella, and

Sextius are a closely related group of genera with reticulate wing venation. Cebes, Sarantus, and Ceraon all have the first division of R vein as R1+2+3 and R4+5 rather than R1 and Rs in the

forewing and lack cucullate setae in row I of the metathoracic tibia. The inornate abdominal

pits of Bulbauchenia, Funkhouserella, and Pyrgonota are not distinct and the apex of their male style clasp is acuminate.

The next large monophyletic clade contains the tribes (as defined here) Boccharini,

Leptobelini, Choucentrini, Leptocentrini, Lobocentrini, Xiphopoeini, Micreunini,

Centrotypini, and Centrotini. With the exception of some Centrotini genera, all the members

366 of this clade have indistinct abdominal acanthae with their bases not significantly heightened.

All of these tribes, in addition, except the Lobocentrini, have membranous male style clasps.

Four genera previously placed in the Leptocentrini sensu McKamey (1998a) (Fig.

24.2), form the new tribe Lobocentrini. Three of these genera, Lobocentrus, Arcuatocornum,

and Truncatocornum, form a monophyletic group in the phylogenetic analysis (Fig. 24.1-

24.2) and Amphilobocentrus grouped with these genera based on morphological similarity in a UPGMA analysis (Fig. 24.17). Lobocentrines have numerous cucullate setae, arranged irregularly, in row II of the metathoracic tibia and have a dorsoventrally oriented male style clasp that is rounded with an acuminate projection. Elaphiceps and Tyrannotus, here placed

Centrotinae, incertae sedis, form a monophyletic assemblage with the Lobocentrini (Figs.

24.1-24.2) because their clasps are similar, but are not included in the Lobocentrini because they differ significantly in leg chaetotaxy and features of the female genitalia.

The new tribe Boccharini consists of two genera, Bocchar and Lanceonotus, formerly of Leptocentrini sensu McKamey (1998a) (Fig. 24.2). The monophyly of the Boccarhini

(Figs. 24.1-24.2) is supported by a unique male clasp that is elliptical or circular with a preapical ventral extension. The sister group of the Boccharini is composed of a large number of genera (8 tribes), all with ab- and adlateral cucullate setae on the metathoracic femur. The Leptobelini, a monotypic tribe (Figs. 24.1-24.2), are a distinct lineage with a cucullate setal row on the mesothoracic tibia and an acuminate scutellum. Choucentrus,

Evanchon, and Dograna comprise the Choucentrini, a monophyletic assemblage (Fig. 24.9) of centrotines lacking crossvein s in the forewing. They are closely related to the Maarbarini,

a new tribe consisting of genera formerly incertae sedis or placed in the Centrotini,

Centrotypini, or Leptocentrini (Fig. 24.2). Males of Dograna (no other choucentrine males

367 were examined) and the Maarbarini have a triangular style clasp with a basal thickening.

Most maarbarines have a long acuminate scutellum and parallel, curving longitudinal veins in the forewing. The phylogeny of this monophyletic group of genera (Figs. 24.1-24.2, 24.9) is well resolved. The most basal genus, Telingana, differs from other maarbarines in scutellar characteristics and forewing venation.

Members of the tribes Leptocentrini, Xiphopoeini, Micreunini, Centrotypini, and

Centrotini, as defined here, have: a scutellum that extends only slightly beyond the thorax, metathoracic tibia with cucullate setal row II double or irregular in most genera, abdominal tergal borders not modified into irregular ridges, and the abdominal setal bases are usually enlarged. Indeed, previous molecular (Cryan et al. 2000a) and morphological analyses

(Dietrich et al. 2001a) of the Membracidae also indicated a close relationship between the

Leptocentrini and Centrotini.

As mentioned previously, Leptocentrini sensu McKamey (1998a) is polyphyletic in the present analysis (Fig. 24.2). The Leptocentrini defined here, however, are a monophyletic group of genera (Figs. 24.1-24.2, 24.9). Included in this tribe is the genus

Demanga, type genus of the Demangini Yuan and Zhang, in Yuan and Chou, 2002a, here considered a junior synonym of the Leptocentrini Distant, 1908g. The UPGMA analysis

(Fig. 24.17) produced a single leptocentrine group based on overall morphological similarity.

Leptocentrines have a triangular style clasp (except Periaman) and broadened second valvulae.

Members of the monophyletic group of tribes including the Xiphopoeini, Micreunini,

Centrotypini, and Centrotini, all have elliptical or circular male style clasps. The

Xiphopoeini, found only in the Afrotropical Region, are a monophyletic group (Fig. 24.7),

368 characterized by the presence of toothlike projections on the lower margin of the vertex and enlarged setal bases dispersed on the abdominal terga. The Micreunini, a monotypic tribe

(Fig. 24.1), have a long median anterior pronotal horn with suprahumeral horns at its tip.

The Centrotypini, a polyphyletic group sensu McKamey (1998a), consists here of two genera, Centrotypus and Emphusis. Their monophyly is supported by rounded or blunt scutellar apices, a condition unique to this tribe.

The Centrotini is the largest tribe in the subfamily Centrotinae in terms of genera, with 47. It is monophyletic, as defined here, based on phylogenetic analyses of selected genera (Figs. 24.1, 24.7). The UPGMA analysis of all genera of Centrotini resulted in a single group. The phylogenetic tree of the tribe (Fig. 24.7) is fairly well resolved.

Predominantly Afrotropical, the Centrotini are characterized by their reduced hind wing venation where R4+5 and M1+2 veins are fused (3 apical cells). Furthermore, many members of the tribe have R1 vein represented by a pterostigma in the forewing and many lack distinct frontoclypeal lobes. Centrotus, the type genus, is somewhat enigmatic in its morphology.

Occupying a basal position in the phylogenetic tree (Fig. 24.7), its frontoclypeal lobes are distinct and it lacks a pterostigma on the forewing.

Summary

An overall phylogenetic analysis of the subfamily Centrotinae using 116 morphological characters resulted in a single most parsimonious tree showing numerous poly- or paraphyletic tribes as delimited by existing classifications (Ananthasubramanian

1996a, McKamey 1998a, and Yuan and Chou 2002a). Based on this overall analysis, 11 tribal synonymies and 1 subfamily synonymy are proposed, 6 new tribes are described, and

369 the included genera are placed into a total of 23 centrotine monophyletic tribes (see tribal descriptions). Tribal relationships were supported with many character changes. The subfamily Centrotinae is a monophyletic group supported by the synapomorphy of the presence of abdominal inornate pits, each with a lateral seta. The phylogenetic analysis of the subfamily resulted in two major clades, each with New World and Old World components, plus the New World tribe Centrodontini.

Apparently, centrotines invaded the Old World twice (Fig. 24.1). One invasion included the ancestors of the tribe Gargarini while the other invasion included the ancestors of the remaining Old World centrotine tribes. Characters important in elucidating tribal relationships include features of the male and female genitalia, the wings, the scutellum, the abdomen; and leg chaetotaxy.

A significant number of the 216 known centrotine genera are poorly represented in collections--some being known from only one sex or even a single specimen. Here, all but 9 genera were placed in tribes supported by quantitative phylogenetic analyses of morphological features, or in cases where data were limited, on phenetic overall similarity.

370 Table 24.1. Character list.

Head:

1. Width: (1) less than distance between humeral angles of pronotum; (2) greater than or equal to distance

between humeral angles of pronotum.

2. Frontoclypeus: (1) without median longitudinal carina; (2) with median longitudinal carina.

3. Frontoclypeal lobes: (1) indistinct (Fig. 0.1 C); (2) distinct (Fig. 0.1 D).

4. Frontoclypeal lobes: (1) not extending to apex of frontoclypeus (Fig. 0.1 D); (2) extending to near apex of

frontoclypeus (Fig. 0.1 C).

5. Frontoclypeal margins: (1) distinctly converging (Fig. 4.1 C); (2) parallel or converging only slightly

ventrally (Fig. 0.1 D); (3) broadly expanding towards apex (Fig. 10.4 G); (4) abruptly expanding near

apex ( Fig. 11.2 B).

6. Ocelli: (1) closer to eyes than each other (Fig. 18.2 F); (2) about equidistant from each other and eyes (Fig.

0.1 C).

7. Vertex: (1) without multiple toothlike projections on lower margins (Fig. 0.1 D); (2) with multiple toothlike

projections on lower margins (Figs 23.1 E-F).

Pronotum/Scutellum

8. Posterior pronotal process: (1) lacking (Fig. 3.1 A); (2) produced posteriorly (Fig. 3.1 C). [Coding state 1

makes character #’s 9-12, and 14 inapplicable.]

9. Posterior process: (1) not originating from median anterior horn (not significantly raised above scutellum)

(Fig. 0.1 A); (2) originating from median anterior horn (significantly raised above scutellum) (Fig. 0.11

A).

10. Posterior process: (1) not significantly extending past m-cu3 crossvein in forewing (Fig. 1.1 A); (2)

significantly extending past m-cu3 crossvein (Fig. 1.1 D).

11. Posterior process (shape at base): (1) straight (Fig. 1.1 A); (2) curved dorsally (Fig. 1.1 B).

12. Posterior process (contact with scutellum): (1) not appressed against scutellum (Fig. 0.1 A); (2) appressed

against scutellum (for the entire length of the scutellum) (Fig. 0.1 B).

371 Table 24.1 cont’d.

13. Posterior process (dorsolateral concealment of scutellum by posterior process): (1) both lateral scutellar

apices or median acuminate point clearly visible from dorsolateral view (Fig. 0.2 E); (2) 1 lateral apex

clearly visible from dorsolateral view (Fig. 0.1 B).

14. Extent of posterior pronotal process relative to scutellum: (1) extended over but not completely concealing

scutellum (Fig. 0.3 A); (2) polymorphic; (3) completely concealing scutellum (Fig. 0.3 C). [Character

state #2 is here considered an intermediate state between states #1 and #3. In the genus Sextius

(Terentiini), for example, some specimens in the same species have the scutellum concealed, while in

others it is visible. Coding state 2 makes character #13 inapplicable.]

15. Suprahumeral horns: (1) absent (Fig. 1.1 M); (2) polymorphic; (3) present at base of pronotum (Fig. 1.1 K);

(4) present but partially fused into a median anterior horn (Figs. 6.5 D-E, G); (5) present on tip of

median anterior horn (Fig. 16.1 B). [The bifurcate process at the tip of the median anterior horn in

some treehoppers, for example in many Hypsaucheniini, is here considered homologous to

suprahumeral horns (character state #5); see discussions within phylogenetic analysis for

morphological progression of this character.]

16. Acute pronotal projections or spines: (1) absent (Fig. 0.1 B); (2) present (Figs. 23.1 B, D; Figs. 4.2 I-J).

[Acute projections, or spines, on the pronotum, here considered homologous, have been derived

independently in Centrocharesini, Xiphopoeini, several Centrotini (Anchonobelus, Anchonastes,

Anchonomonoides, Barsumas, Barsumoides, Eumocentrulus, Flatyperphyma, Hamma, Mitranotus),

several gargarines (Madlinus, Eucoccosterphus, Coccosterphus), and the genera Daimon, Jingkara,

and Maguva. With the exception of Daimon, the presence of pronotal spines is confined to Old World

centrotines.]

17. Median anterior pronotal horn: (1) absent; (2) present (Fig. 16.1 B).

18. Scutellar keel: (1) present; (2) absent.

19. Scutellar posterior margin (if visible): (1) acuminate (always exposed, and without median groove (Fig. 0.2

E); (2) emarginate (notched) (Fig. 0.3 B); (3) acuminate with posterior medial groove . [Coding state 1

or 3 makes character #20 inapplicable.]

372 Table 24.1 cont’d.

20. Scutellar apices (posterior margin notched): (1) acute (Fig. 0.3 B); (2) rounded or blunt (Fig. 0.2 B).

21. Scutellum length (viewed ventrally, with abdomen removed): (1) not shortened--full notch or acuminate

point visible (Figs. 0.2 A-B); (2) shortened, at most apices visible (Figs. 0.2 C-D)

22. Scutellar extension: (1) only slightly extending past thorax (Fig. 0.3 A); (2) posterior half of scutellum

extending past thorax (Fig. 0.2 E).

Pleuron

23. Propleural lobe: (1) absent; (2) present (Fig. 0.3 D).

24. Mesopleural lobe: (1) not enlarged; (2) enlarged (Fig. 0.3 D). [In centrotines the mesopleural lobe is

consistently present, but is substantially enlarged in some.]

Forewing

25. Clavus: (1) acuminate (Fig. 5.2 E); (2) truncate (Fig. 0.4 A).

26. Pigmentation of wing: (1) mostly hyaline (Fig. 0.1 A); (2) mostly translucent with darker areas (Fig. 11.1 A-

B).

27. Apical limbus: (1) narrow (Fig. 5.2 A); (2) broad (Fig. 0.4 A).

28. Degree that wing (in repose) is concealed by posterior process: (1) not concealed (Fig. 0.1 A); (2) wing

partially concealed.

29. Ratio of wing width to length: (1) < 0.30 (Fig. 11.1 H); (2) 0.30 > 0.40 (Fig. 0.4 A); (3) ≥ 0.40 (Fig. 10.6

A).

30. M and Cu (number of branches): (1) 3 veins reaching marginal vein (i.e., M 2-branched, Cu unbranched)

(Fig. 0.4 A); (2) with 4 branches reaching marginal vein (M apparently 3-branched) (Fig. 2 D of

Dietrich et al. 2001a); (3) with 5 or more branches reaching marginal vein.

31. Crossvein s: (1) present (Fig. 0.4 A); (2) absent (Fig. 8.1 G). [Coding state 2 makes character #32

inapplicable.]

373 Table 24.1 cont’d.

32. Position of s-crossvein relative to r-m2 crossvein: (1) distad (Fig. 0.4 A); (2) directly dorsal to or very close

to r-m2 crossvein (Fig. 7.1 G).

33. Vein R (number of branches): (1) with 3 or fewer branches reaching marginal vein (Fig. 0.4 A); (2) with 4

branches reaching marginal vein (Fig. 2 D of Dietrich et al. 2001a); (3) with 5 or more branches

reaching marginal vein.

34. Vein R initial division: (1) R1 and RS (Fig. 0.4 A); (2) R1+2+3 and R4+5 (Fig. 9.1 D).

35. Cu1 vein: (1) distally abutting clavus (Fig. 0.4 A); (2) distally abutting marginal vein (Fig. 1.2 I).

36. Crossvein r-m1: (1) present (Fig. 0.4 A); (2) absent. [Coding state 2 makes character #’s 49 and 50

inapplicable.]

37. Crossvein m-cu1: (1) present on at least one wing (Fig. 0.4 A); (2) absent. [This crossvein, as well as m-cu2

crossvein, is sometimes only found on either the right or left wing.]

38. Crossvein m-cu2: (1) present in at least one wing (Fig. 0.4 A); (2) absent. [This crossvein, usually closely

associated with crossvein r-m1 in centrotines, is equivalent to “m-cu1 crossvein” of Dietrich et al.

2001a.]

39. Position of m-cu3 crossvein: (1) distad of fork of vein M (Fig. 0.4 A); (2) basad of fork of vein M (Fig. 10.8

I). [This crossvein is equivalent to “m-cu2 crossvein” of Dietrich et al. 2001a.]

40. M and Cu veins: (1) fused, often for considerable distance (Fig. 2.1 H); (2) adjacent with distinct line

between veins (Fig. 0.4 A); (3) separate (Fig. 7.1 G).

41. R and M veins (apical fusion): (1) not confluent preapically (Fig. 0.4 A); (2) R4+5 confluent with M distad of

its fork (Fig. 4.1 D). [Coding state 2 makes character #32 inapplicable because r-m2 crossvein is

absent when R and M veins are confluent].

42. Additional r-m crossveins: (1) present (Fig. 11.3 C); (2) absent.

43. Anomalous basal r-m crossvein: (1) absent; (2) present (Fig. 11.3 C).

44. Reticulate venation: (1) absent; (2) present (Fig. 5.2 A).

45. Pterostigma: (1) absent (Fig. 0.4 A); (2) present (Fig. 4.1 D). [Coding state 1 makes character #46

inapplicable.]

374 Table 24.1 cont’d.

46. Pterostigma placement: (1) at or near R1 (Fig. 4.1 D); (2) distad of R1 (marginal vein often ambiguous) (Fig.

10.8 F).

47. R1 vein represented by large pterostigma: (1) absent; (2) present (Fig. 0.4 A). [Coding state #2 makes

character #48 inapplicable because R1 vein is not visible.]

48. R1 vein: (1) parallel for considerable distance with longitudinal veins (Fig. 15.2 G); (2) weakly bent towards

marginal vein (Fig. 0.4 A); (3) perpendicular to marginal vein (Fig. 3.4 A).

49. Origin of r-m1 crossvein: (1) arising before initial division of R vein (Fig. 0.4 A); (2) arising near or distad

of initial division of R vein in at least one wing (Fig. 7.1 G).

50. Shape of r-m1 crossvein: (1) bent towards R vein (Fig. 10.5 F); (2) parallel to longitudinal veins (Fig. 1.2 I);

(3) bent nearly to a right angle (Fig. 11.3 C).

51. Longitudinal veins: (1) strongly curving together in unison apically (Fig. 15.3 E); (2) not strongly curving

together in unison apically (Fig. 0.4 A).

52. Longitudinal veins: (1) not parallel apically (Fig. 8.1 G); (2) parallel apically (Fig. 13.4 A).

53. Relative length of discoidal cells: (1) not similar in length (Fig. 1.2 I); (2) similar in length (Fig. 10.5 F).

54. R4+5 vein shape prior to s: (1) not significantly angled (Fig. 0.4 A); (2) significantly angled (Fig. 10.5 F).

55. Base of R2+3 and R4+5 veins: (1) truncate (Fig. 0.4 A); (2) polymorphic; (3) acute (Fig. 10.5 F).

Hind wing

56. Veins: (1) R4+5 and M1+2 veins not fused (4 apical cells) (Fig. 0.4 C); (2) R4+5 and M1+2 vein fused for short

distance basally (4 apical cells) (Fig. 5.2 F); (3) R4+5 and M1+2 veins free near apex (4 apical cells) (Fig.

4.1 E); (4) r-m and m-cu crossveins absent (2 apical cells); (5) R4+5 and M1+2 veins fused (3 apical

cells)(Fig. 0.4 B); (6) R4+5 vein apparently absent (2 apical cells) (Fig. 3.3 F); (7) polymorphic (genus

Oxyrhachis only). [State #7 is polymorphic between #1 and #5.]

Legs

57. Front, middle, and hind tibia shape: (1) not foliaceous (Fig. 0.6 A); (2) foliaceous (Fig. 0.7 A).

375 Table 24.1 cont’d.

58. Prothoracic femur ablateral and adlateral cucullate setae: (1) absent; (2) present.

59. Mesothoracic tibia with longitudinal row(s) of cucullate setae: (1) absent; (2) present (Fig. 3.4 H).

60. Mesothoracic femur ablateral cucullate setae: (1) absent; (2) present (Fig. 0.7 B).

61. Mesothoracic femur adlateral cucullate setae: (1) absent; (2) present (Fig. 0.7 B). [Coding state 1 makes

character #62 inapplicable.]

62. Mesothoracic leg femur adlateral cucullate setae: (1) apical (Fig. 0.7 B); (2) preapical.

Metathoracic leg

63. Ventral setal bases of coxa: (1) small and raised or nearly flat with little or no projection; (2) enlarged,

raised, and often spinelike.

64. Ventral setal bases of trochanter: (1) small and raised or nearly flat with little or no projection (Fig. 0.6 A);

(2) enlarged, raised, and often spinelike; (3) very large spines (Fig. 0.6 D).

65. Ventral setal bases of femur: (1) small and raised or nearly flat with little or no projection (Fig. 0.6 A); (2)

enlarged, raised, and often spinelike (Fig. 0.6 D).

66. Cucullate setae on dorsal femur: (1) absent; (2) present (Fig. 17.3 A). [Coding state 1 makes character #67

inapplicable.]

67. Cucullate setae position on dorsal femur: (1) apical (Fig. 17.3 A); (2) in a longitudinal row; (3) scattered.

68. Femur ablateral cucullate setae: (1) absent; (2) present (Fig. 0.7 B). [Coding state 1 makes character #69

inapplicable.]

69. Femur ablateral cucullate setae position: (1) apical (Fig. 0.7 B); (2) preapical.

70. Femur adlateral cucullate setae: (1) absent; (2) present (Fig. 0.7 B-C). [Coding state 1 makes character #71

inapplicable.]

71. Femur adlateral cucullate setae position: (1) apical (Fig. 0.7 B); (2) preapical (Fig. 14.2 A).

72. Femur ablateral ventrolateral cucullate setae in male: (1) absent; (2) polymorphic; (3) present.

73. Femur ablateral ventrolateral cucullate setae in female: (1) absent; (2) polymorphic; (3) present (Fig. 17.3

A).

376 Table 24.1 cont’d.

74. Tarsomere I apical cucullate setae: (1) absent (Fig. 19.2 B); (2) 1 seta (Fig. 0.7 E, Fig. 11.4 F); (3) 2 or more

setae (Fig. 0.7 D, Fig. 2.1 J).

75. Tibia setal row I: (1) non-cucullate (Fig. 22.12 B, Fig. 0.6 C, Fig. 0.7 A); (2) cucullate (Fig. 0.5 A-C).

76. Tibia setal row II: (1) non-cucullate (Fig. 0.7 A); (2) cucullate (Figs. 0.6 A-B). [Coding state 1 makes

character #77 inapplicable.]

77. Tibia setal row II: (1) mostly single row (Fig. 0.6 A); (2) polymorphic; (3) irregular or double row (Fig. 0.6

B).

78. Tibia setal row III: (1) cucullate (Fig. 0.5 A); (2) non-cucullate.

Abdomen

79. Shape (cross-section): (1) dorsoventrally flattened; (2) nearly triangular.

80. Sternum III and/or IV transverse carina: (1) absent; (2) present (Fig. 6A of Dietrich et al. 2001a).

81. Sternum longitudinal median carina: (1) absent; (2) polymorphic; (3) present on at least one segment (Fig.

0.8 B).

82. Number of inornate pits along side of abdominal segments: (1) 3 or fewer per segment (Fig. 5.4 G); (2) 4 or

more per segment (Fig. 0.8 E).

83. Paired dorsal swellings or remnants of swellings: (1) absent (Fig. 0.8 E); (2) larger anteriorly (Fig. 0.8 C);

(3) larger posteriorly (Fig. 0.8 D).

84. Enlarged setal bases: (1) absent; (2) present (Figs. 0.8 A, E; Fig. 10.17 D). [Coding state 1 makes character

#85 inapplicable.]

85. Enlarged setal bases position: (1) only on tergal borders (Fig. 0.8 E, Fig. 10.17 D); (2) extending to tergal

segment, sparse; (3) extending to tergal segment, numerous (Fig. 0.8 A).

86. Tergum III ventrolateral margin: (1) carinate (Fig. 5 A of Dietrich et al. 2001a); (2) shelflike (Fig. 5 B of

Dietrich et al. 2001a); (3) upcurved groove (Fig. 5 C of Dietrich et al. 2001a).

87. Tergal borders: (1) not extensively modified (Fig. 0.8 E); (2) modified into irregular ridges (Fig. 0.3 A).

377 Table 24.1 cont’d.

Female

88. Second valvulae shape: (1) significant broadening absent (Fig. 5.3 A); (2) short and broad with undulation

on dorsal margin (Fig. 11.5); (3) abrupt slight broadening (Fig. 22.13 A); (4) gradual broadening (Fig.

22.13 C); (5) broad throughout with very slight increase and decrease after midpoint (Fig. 21.2 C-F).

[Coding states 1 or 2 makes character #’s 89 and 90 inapplicable.]

89. Second valvulae shape (broadening): (1) widest before or near midpoint (Fig. 22.13 C); (2) widest past

midpoint (Fig. 4.2 A).

90. Second valvulae dorsal margin: (1) tapering evenly after broadening (Fig. 0.9 D); (2) tapering unevenly

after broadening (Fig. 22.13 A).

91. Second valvulae width near base: (1) narrow (Fig. 5.3 A); (2) broad or broadening (0.9 D).

92. Second valvulae curvature: (1) not curved (Fig. 3.5 E); (2) curved (concave) (Fig. 3.5 I).

93. Second valvulae teeth development: (1) teeth absent or indiscernible (Fig. 0.9 D); (2) fine and distinct (Fig.

1.4 D); (3) large (Fig. 18.5 J). [Coding state 1 makes character #94 inapplicable].

94. Second valvulae teeth: (1) present to tip of apex (Fig. 3.6 F); (2) absent apically (Fig. 22.14 H).

95. Second valvulae acute projections: (1) absent (Fig. 18.5 H); (2) present (Fig. 18.5 J). [Acute projections on

the second valvulae are usually triangular and apparently not homologous to dorsal teeth.]

96. Third valvulae large ventral projections: (1) absent; (2) present (Fig. 11.6 A-D).

97. Third valvulae apical cleft or groove: (1) not distinct; (2) distinct (Fig. 0.9 D).

Male

98. Pygofer with dorsal projection: (1) absent; (2) present (Fig. 11.7 H).

99. Pygofer with lateral plate: (1) apparently absent; (2) free distally (Fig. 6 D of Dietrich et al. 2001a); (3)

entirely free (Fig. 0.9 A).

100. Lateral plate dorsoapical posterior lobe: (1) absent (Fig. 1.6 B); (2) present (Fig. 0.9 A). [Coding state 1

makes character #’s 101 and 102 inapplicable.]

101. Lateral plate dorsoapical lobe length: (1) short (Fig. 0.9 A); (2) long (Fig. 1.6 A).

378 Table 24.1 cont’d.

102. Lateral plate dorsoapical lobe shape: (1) angled dorsally (Fig. 0.9 A); (2) angled laterally (Fig. 11.7 D); (3)

angled ventrally (Fig. 3.8 F).

103. Lateral plate ventral lobe: (1) absent; (2) small lobe present; (3) long and large lobe present (Fig. 3.8 C).

104. Subgenital plate: (1) distinct division absent (Fig. 2.2 I); (2) distinct division present (Fig. 3.8 I).

105. Style clasp overall shape: (1) rounded with acuminate projection (Fig. 10.13 N); (2) truncate with

acuminate projection (Figs. 18.7. A-B); (3) elliptical or circular (Figs. 7.3 A-B); (4) expanding

dorsoventrally and laterally with a sclerotized ridge (Figs. 1.5 C-K); (5) cylindrical (Fig. 3.7 H); (6)

quadrate (Fig. 22.18 A-K); (7) triangular (Fig. 0.9 A); (8) rounded at apex with preapical ventral

extension (2.2 E-F). [Here,

the clasp is defined as the apical portion of the style, which is often flattened or expanded.]

106. Style clasp thickness: (1) thickened (Figs. 18.6 E, M); (2) thickened dorsally, membranous ventrally; (3)

membranous (Fig. 0.9 B-C).

107. Style clasp orientation: (1) dorsoventrally flattened or curving dorsally (Fig. 0.9 C); (2) oriented laterally

(Figs. 0.9 A-B).

108. Style clasp basal thickening: (1) absent; (2) present (Fig. 15.5 A-D).

109. Style clasp angle (viewed laterally): (1) angled ventrally (Fig. 1.5 D); (2) angled dorsally (Fig. 7.3 A); (3)

not angled (Fig. 18.6 J).

110. Style clasp with acuminate apex: (1) absent; (2) blunt (Fig. 0.9 A); (3) acute (Fig. 15.5 D).

111. Style shank ventral margin: (1) without preapical broadening; (2) with preapical broadening (Figs. 0.9 A,

2.2 E, 22.18 A).

112. Style shank shape (viewed laterally): (1) without significant arch (Fig. 0.9 C); (2) apex of arch at midpoint

of style shank (Fig. 0.9 A); (3) apex of arch just prior to style clasp (Fig. 9.2 A).

379 Table 24.1 cont’d.

Abdominal fine structure

113. Inornate pits and associated lateral setae: (1) absent (Fig. 6 C of Dietrich et al. 2001a); (2) present (Figs.

0.8 E, 0.10 B-D); (3) setae present, pits indistinct (Fig. 22.22 C). [Coding state 1 makes character #82

inapplicable].

114. Acanthae development: (1) distinct (Figs. 0.10 A, 0.10 C); (2) indistinct, acanthae blending together (Fig.

0.10 B).

115. Acanthae base development: (1) heightened and broad (Fig. 0.10 C); (2) not significantly heightened or

broadened (Fig. 0.10 A).

116. Acanthae/microtrichia development: (1) single acanthae without ornamentation (Fig. 0.10 D); (2) acanthae

multidentate (Fig. 0.10 A); (3) acanthae divided into threadlike microtrichia (Fig. 0.10 B).

380 Table 24.2. Number of taxa and characters for phylogenetic (PAUP*) and phenetic (UPGMA) analyses. Characters in the “other” column were excluded because they were highly homoplasious and not informative as tribal or generic characters for the analyzed taxa. INCLUDED EXCLUDED Analysis no. no. Constant Parsimony- Other genera characters uninformative 1. PAUP*: 69 109 69, 98 (see text) 42, 44, Centrotinae 57, 93, (overall) 94 2. PAUP*: 30 77 7, 9, 17, 20, 31, 35, 22-24, 32, 36, 42, 44 Beaufortianini, 39, 41, 43, 46, 47, 51, 56, 82, 84, Nessorhinini, 57, 58, 62, 63, 65, 68, 89, 103 Pieltainellini, 69, 76, 78, 85, 96, 98, Platycentrini 108, 110, 111 3. PAUP*: 23 86 7, 9, 16, 17, 20, 31, 32, 22, 28, 36, 42 Boocerini, 35, 41, 43, 46, 51, 52, 46, 62, 63, Centrodontini 69, 85, 90, 96, 98, 108, 80, 84 110, 111 4. PAUP*: 41 81 5, 9, 10, 17, 20, 28, 31, 6, 14, 36, 62, -- Centrotini, 32, 35, 39, 43, 46, 51, 70, 71, 74, Xiphopoeini 57, 58, 63, 65, 68, 69, 102 76, 78, 82, 96, 98, 103 104, 108 5. PAUP*: 32 74 5, 7, 14, 16, 20, 24, 28, 9, 17, 23, 37, 93, 94 Choucentrini, 35, 39, 43, 46, 57, 58, 41, 44, 47, Leptocentrini, 63, 65, 68-70, 76, 78, 56, 71, 75, Maarbarini 80, 85, 96, 98 82, 83, 89, 90, 103, 116 6. PAUP*: 35 71 7, 9, 17, 20, 22, 24, 28, 12, 23, 36, -- Gargarini 31, 32, 35, 37, 43, 51, 41, 44, 47, 52, 57, 68, 69, 70, 76, 49, 60, 61, 78, 80, 82, 85, 90, 96, 62, 72-74, 75, 98, 108, 110, 111 102, 112 7. PAUP*: 17 68 7, 9, 13, 20, 22, 28, 31, 4, 16, 36, 53, -- Hypsaucheniini, 32, 41, 45-47, 51, 52, 54, 65, 77, Oxyrhachini 55, 58, 62, 63, 69, 71- 82, 92, 100, 73, 80, 81, 84-87, 89, 114, 115 90, 95, 103, 104, 108, 110, 111 8. PAUP*: 28 73 5, 7, 9, 13, 16, 20, 22, 12, 36, 45, 42, 57 Terentiini 31, 32, 39, 41, 43, 46, 50, 55, 73, 47, 51, 58, 62, 63, 65, 78, 80, 81, 69, 71, 72, 76, 85, 96, 83, 84, 87 98, 103, 104, 108 9. UPGMA: 91 115 -- -- 94 Centrotini, Beaufortianini, Gargarini, Lobocentrini 10. UPGMA: 76 115 -- -- 94 Leptocentrini, Nessorhinini, Terentiini

381 Table 24.3. Summary of phylogenetic analyses 1-8.

Analysis Fig. #’s no. Steps Consistency Retention SCT (Strict consensus tree) of index (CI) index (RI) MPT (Most parsimonious MPT tree) EPT (Equally parsimonious trees tree) 1. Centrotinae 24.1 (MPT) 1 665 0.23 0.60 (overall) 2. Beaufortianini, 24.3 (SCT), 24.4 (EPT) 2 268 0.36 0.57 Nessorhinini, Pieltainellini, Platycentrini 3. Boocerini, 24.5 (SCT), 24.6 (EPT) 2 209 0.50 0.64 Centrodontini 4. Centrotini, 24.7 (SCT), 24.8 (EPT) 4 277 0.37 0.62 Xiphopoeini 5. Choucentrini, 24.9 (MPT) 1 207 0.43 0.69 Leptocentrini, Maarbarini 6. Gargarini 24.10 (SCT), 24.11 28 224 0.38 0.60 (EPT) 7. Hypsaucheniini, 24.12 (SCT), 24.13 25 150 0.55 0.71 Oxyrhachini (EPT) 8. Terentiini 24.14 (SCT), 24.15 4 224 0.42 0.60 (EPT)

382 Fig. 24.1. Phylogenetic relationships within Centrotinae (Analysis 1, PAUP*). Single most parsimonious tree with branch lengths indicating numbers of assigned character changes. Nodes are labeled by number below or above each branch (CI=0.23, RI=0.60, length 665). 383 Table 24.4. List of apomorphies for Analysis 1 (Fig. 24.1). Node 94 (Centrotypini) 13(2), 20(2)*, 37(1), 40(2), Characters are listed with states in parentheses; non-homoplastic 45(1), 49(2), 84(1), 86(2), changes are marked by an asterisk (*). 112(2) Node 93 32(2), 49(2), 101(2) Node 134 (Centrotinae) 50(1), 66(1), 79(2), 113(2) Node 92 3(1), 11(2), 77(1), 88(1), Node 133 25(2), 26(1), 27(2), 74(3), 92(2), 108(2)*, 109(1), 110(3) 87(2), 101(1) Node 91 (Maarbarini) 27(1), 48(1), 50(2), 51(2)*, Node 132 49(2), 54(2), 67(1)*, 81(3), 52(2) 90(2), 104(2) Node 90 3(2), 26(2), 55(1), 92(1), 95(2) Node 131 (Monobelini) 4(2), 100(1), 102(2), 105(2), Node 89 11(1), 13(2), 97(2) 114(2) Node 88 81(2), 86(2), 97(2), 104(2), Node 130 10(2), 37(1), 53(1), 55(3), 105(1), 107(1) 66(2), 72(3), 73(3) Node 87 48(1), 50(2), 54(1), 60(2), Node 129 60(2), 61(2), 89(2), 92(2), 61(2), 88(1) 106(3) Node 86 (Lobocentrini) 10(1), 40(2), 48(3), 53(2), Node 128 (Boocerini) 13(1), 21(1), 48(3), 88(3), 62(2), 71(2), 77(3), 86(1), 103(3)*, 109(1), 115(1) 95(2), 114(2), 115(2) Node 127 4(2), 39(2)*, 56(5), 58(2)*, Node 85 13(2), 26(2), 74(2) 95(2) Node 84 24(2), 26(2), 70(1), 75(1), Node 126 12(1), 71(2), 105(5) 82(1), 87(1), 90(2) Node 125 6(1), 45(2), 47(2), 59(2), 88(1) Node 83 21(2), 37(1), 74(2), 105(5), Node 124 (Gargarini) 5(3)*, 55(3), 77(3), 87(1) 106(2), 109(1), 112(3), 115(2) Node 123 3(2), 56(5) Node 82 3(1), 15(1), 68(1), 76(1), Node 122 46(2),* 83(2), 84(2), 86(2), 88(2)*, 102(2), 106(3), 116(2) 95(2) Node 81 23(2), 38(1), 50(3)*, 78(2), Node 121 29(3), 97(2) 82(2), 112(1) Node 120 63(2), 64(2), 65(2), 101(2), Node 80 (Hypsaucheniini) 3(2), 5(4)*, 17(2), 43(2)*, 115(1) 48(1) Node 119 16(2), 26(2), 53(1), 116(1) Node 79 (Terentiini) 12(2), 48(1), 50(2), 70(2), Node 118 15(3), 105(4), 107(2), 115(1), 91(2), 105(6)*, 111(2) 116(2) Node 78 40(3), 52(2), 97(2) Node 117 38(1), 52(2), 97(2) Node 77 26(1), 86(2), 88(1) Node 116 (Nessorhinini) 10(2), 14(3), 40(2), 50(2), Node 76 52(1), 66(2), 75(2), 82(2), 83(2), 86(2), 105(2), 112(2) 91(1), 95(2), 114(2) Node 115 4(2), 6(1), 45(2), 70(1), 80(2), Node 75 38(1), 54(2), 74(1) 86(3), 107(1) Node 74 26(1), 28(2), 68(1), 70(1) Node 114 37(1), 38(2), 81(3), 92(2), Node 73 4(2), 15(5), 17(2), 24(1), 116(3) 110(3), 113(3)*, 114(2) Node 113 12(1), 21(1) Node 72 23(2), 37(2) Node 112 (Pieltainellini) 48(3), 49(2), 71(2), 92(2), Microcentrus 15(2), 38(1), 48(1), 88(3), 95(2), 102(2), 105(3) 91(2), 97(2), 102(3), 116(2) Node 111 3(2), 53(1) Centronodus 2(2), 10(2), 15(3), 21(1), Node 110 (Beaufortianini) 101(2), 109(1) 23(2), 30(3), 33(2), 60(2), Node 109 50(2), 83(2), 95(2) 61(2), 74(3), 79(2), 91(1), Node 108 10(2), 88(3), 105(7), 116(3) 92(2), 99(2) Node 107 13(1), 22(2), 54(2) Paracentronodus 2(2), 30(3), 33(3)*, 38(1), Node 106 55(3), 106(3), 109(2), 114(2), 100(1) 115(2) Nicomia 4(2), 25(2), 27(2), 59(1), Node 105 (Boccharini) 88(4), 91(2), 100(1), 105(8)*, 75(1), 99(3), 105(5), 113(2), 111(2) 115(1) Node 104 60(2), 61(2), 77(3), 112(2) Tolania 15(3), 36(2)*, 40(1), 77(3), Node 103 22(1), 50(2), 54(1), 55(1), 114(2) 84(2), 87(1) Centrodontus, Centrodontini 14(3), 29(3), 56(5), 63(2), Node 102 (Leptocentrini) 40(2), 48(3), 52(2), 81(3), 64(2), 65(2), 68(1), 70(1), 86(2), 91(2), 109(1), 110(2), 75(1), 76(1), 78(2), 82(1), 111(2) 92(2), 102(2) Node 101 88(4), 97(2) Brachycentrotus 29(3), 56(4)*, 82(1) Node 100 11(2), 53(2), 90(2), 105(3) Monobelus 21(1), 22(2), 83(2), 88(3), Node 99 (Centrotini) 13(2), 56(5), 85(2)*, 114(1) 97(2) Node 98 3(1), 4(2), 48(3), 49(2), 50(1), Monobeloides 14(3), 28(2), 49(1), 81(1), 54(2), 55(2) 92(2), 100(2), 104(1) Node 97 45(2), 47(2) Amblycentrus 13(2), 29(3) Node 96 26(2), 45(2), 86(3), 89(2), Brachybelus 56(6)*, 65(2) 92(2), 95(2), 97(2), 112(1) Boocerus 10(2), 11(2), 15(3), 55(3), Node 95 3(1), 11(1), 32(2), 53(1), 92(1), 112(3) 54(2), 81(3), 88(1) Abelus 2(1), 81(2), 101(2), 107(2)

384 Table 24.4 cont’d. Maarbarus 4(2), 19(1) Indicopleustes 10(1) Ischnocentrus 71(1), 102(3) Pogon 3(1), 88(3), 95(1) Aleptocentrus 6(1), 48(1) Pogontypus 29(3), 49(1), 92(2) Parayasa 45(2), 81(1), 101(2), 104(1), Awania 10(1), 15(1), 72(3) 105(3), 107(2) Leptocentrus 29(1), 73(2), 81(2) Pantaleon 15(3), 26(2), 54(1), 81(2), Umfilianus 13(2), 15(2), 38(1), 49(2), 106(1), 114(2) 53(2) Gargara -- Xiphopoeus, Xiphopoeini 7(2)*, 16(2), 24(2), 38(1), Tricentrus 15(2), 45(2), 64(3), 100(1), 48(1), 85(3)*, 100(1) 106(1) Micreune, Micreunini 4(2), 6(1), 15(5), 17(2), 52(2), Coccosterphus -- 62(2), 71(2), 101(2), 105(7), Madlinus 3(1), 14(3), 27(1), 77(1) 110(2) Platycentrus, Platycentrini 60(2), 71(2), 72(3), 73(3), Centrotypus 12(2), 14(2), 40(3), 53(2), 74(2), 77(3), 79(1), 88(5)* 100(1) Callicentrus 26(2), 48(1), 97(1), 105(4) Emphusis 54(1), 95(1), 97(1) Orthobelus 14(2), 53(1), 100(1), 109(2), Centrotus 72(2)*, 73(2), 91(2), 101(2), 112(1) 115(1), 116(2) Goniolomus 28(2), 49(2), 50(1), 101(2) Capeneralus 40(2) Nessorhinus 15(4), 52(1), 95(2) Anchon 13(1), 86(2), 88(1), 92(2), Pieltainellus 15(2), 79(1) 95(2), 114(2) Spathocentrus 11(2), 26(2), 54(2) Takliwa 116(1) Imporcitor 21(2), 27(1), 48(3), 49(2), 92(2), 97(2) Beaufortiana 37(1) Dukeobelus 15(1), 26(2) Centrochares, Centrocharesini 5(1)*, 11(2), 16(2), 41(2)*, 45(2), 47(2), 49(2), 56(3)*, 64(2), 65(2), 77(3), 80(2), 83(2), 86(2), 89(2), 96(2)*, 100(1), 110(2) Ebhul, Ebhuloidesini 11(2), 21(1), 34(2), 37(2), 49(2), 56(5) Oxyrhachis, Oxyrhachini 12(2), 14(3), 15(2), 26(1), 35(2), 40(2), 56(7)*, 83(3)*, 116(1) Hypsauchenia 15(5), 21(1), 29(1), 97(2) Hypsolyrium 49(2) Ceraon 34(2), 48(2), 90(1), 101(2) Eufairmairia 74(1), 88(4) Sertorius 54(2), 77(3) Terentius 15(1), 24(1), 29(3), 48(2), 84(2), 92(2), 97(1) Anzac 15(1), 27(1), 29(3), 88(4), 90(1), 115(1), 116(2) Sextius 14(2), 35(2), 55(2), 89(2), 91(1), 92(2), 101(2) Bulbauchenia 14(3), 29(1), 74(2) Funkhouserella 27(1), 88(4), 97(2) Pyrgonota 6(1), 10(1), 70(1) Elaphiceps 3(1), 4(2), 9(2), 15(5), 17(2), 26(2), 32(2), 55(2), 89(2), 101(2), 103(2) Tyrannotus 11(2), 15(2), 72(3), 87(1), 88(4), 91(2), 102(3) Lobocentrus 22(1), 49(2), 81(1), 92(2), 97(1), 101(2) Arcuatocornum 11(2), 53(1), 87(1) Truncatocornum 95(1) Bocchar 15(2), 37(1), 53(2) Lanceonotus 11(2), 26(2), 48(1), 55(2) Leptobelus, Leptobelini 9(2), 15(5), 17(2), 19(1), 59(2), 72(3), 73(3), 97(2), 103(2), 105(3) Dograna, Choucentrini 13(2), 22(1), 31(2)*, 45(2), 60(1), 61(1), 111(2)

385 Table 24.5. List of taxa in the overall phylogenetic analysis (1) of the Centrotinae (alphabetized by genus).

Abelus inermis (Lethierry), USNM; A. luctuosus Stål, NCSU, USNM; Amblycentrus pubescens Fowler, USNM; Anchon sp., USNM; A. limbatum Schmidt, USNM; A. nodicornis (Germar), USNM, PPRI, A. ulniforme Buckton, USNM; A. ximenes Capener, MNHN; Anzac bipunctatum (Fabricius), ANIC; Arcuatocornum sp., LBOB; Awania sp., CASC; A. typica Distant, PPRI, MNHN; Beaufortiana distanti (Funkhouser), PPRI; B. viridis (Capener), AMNH, USNM; Bocchar confusus (Distant), USNM; B. montanum Jacobi, SMTD, USNM; Boocerus gilvipes Stål, NCSU, USNM; Brachycentrotus punctatus (Metcalf and Bruner), NCSU; B. rufinervis Ramos, USNM; Brachybelus sp., NCSU; B. cruralis Stål, USNM; Bulbauchenia sp. (probably mirablis), USNM; B. bakeri (Funkhouser), USNM, NCSU; B. globosa (Funkhouser), USNM; B. mirabilis (Funkhouser), USNM; B. rugosa (Funkhouser), USNM; Callicentrus ignipes (Walker), BMNH, USNM; Capeneralus lobatus (Capener), PPRI; C. subnodosus (Jacobi), PPRI; Centrochares horrifica (Westwood), USNM. Centrodontus atlas (Goding), NCSU, USNM; C. atlas atlas (Goding), USNM; C. atlas paucivenosus Cook, NCSU; Centronodus denticulus Funkhouser, NCSU; C. rochalimai Fonseca, NCSU; Centrotus cornutus (Linnaeus), LSUK, NCSU, USNM; Centrotypus sp., NCSU; C. assamensis (Fairmaire), SHMC; C. flexuosus (Fabricius), USNM; Ceraon tasmaniae (Fairmaire), USNM; Coccosterphus sp., SHMC; C. minutus (Fabricius), USNM, BMNH; C. obscurus Distant, USNM; Dograna suffulta Distant, PPRI, CASC; Dukeobelus simplex (Walker), USNM, PPRI; Ebhul varium (Walker), USNM; Elaphiceps cervus Buckton, USNM; E. javanensis Funkhouser, USNM; Emphusis obesa (Fairmaire), NCSU, USNM; Eufairmairia decisa USNM; E. fraterna Distant, ANIC, USNM; Funkhouserella arborea (Funkhouser), USNM; F. binodis (Funkhouser), USNM; F. brevifurca (Funkhouser), USNM; F. bulbiturris (Funkhouser), USNM; F. pinguiturris (Funkhouser), USNM; F. sinuata (Funkhouser), USNM; Gargara aenea Distant, NCSU; G. fraterna Distant, NCSU; G. genistae (Fabricius), NCSU, AMNH, USNM; G. nyanzai Funkhouser, NCSU; Goniolomus tricorniger Stål, USNM; Hypsauchenia hardwickii (Kirby), USNM, MNHN; Hypsolyrium uncinatum (Stål), USNM; Imporcitor typicus Distant, BMNH; Indicopleustes albomaculata Distant, BMNH; Ischnocentrus sp., NCSU; I. inconspicuous Buckton, USNM; I. niger Stål, USNM; Lanceonotus basilicus Capener, PPRI; L. defloccatus Capener, PPRI; Leptobelus dama (Germar), USNM; L. metuendus (Walker), USNM; Leptocentrus sp., USNM; L. bos (Signoret) USNM, PPRI, MNHN; L. reponens (Walker), NCSU; L. taurus (Fabricius), NCSU. Lobocentrus falco (Buckton), USNM; L. zonatus Stål, USNM; Maarbarus sp., USNM; M. bubalus (Kirby), BMNH; Micreune formidanda Walker, USNM; Microcentrus caryae, NCSU; Monobeloides stuarti Ramos, NCSU, SHMC; Monobelus sp., NCSU; M. biguttatus (Fabricius), USNM; M. flavidus (Fairmaire), USNM; Nessorhinus gibberulus Stål, USNM, N. gracilis Metcalf and Bruner, NCSU; N. vulpes Amyot and Serville, USNM; Nicomia sp., BMNH; N. cicadoides (Walker), BMNH, MNHN; Orthobelus sp., det., USNM, O. urus (Fairmaire), USNM; Oxyrhachis carinata (Funkhouser), AMNH; O. delalendei Fairmaire, AMNH; O. sulcicornis (Thunberg), NCSU; O. taranda (Fabricius), NCSU; Pantaleon dorsalis (Matsumura), USNM, SHMC; P. montiferum (Walker), BMNH; Paracentronodus sp., NCSU; Parayasa elegantula Distant, USNM; P. typica Distant, USNM; Pieltainellus sp., SHMC; P. boneti Peláez, AMNH;

386 Platycentrus acuticornis Stål, USNM; Pogon incurvatum Buckton, BMNH; Pogontypus sp., USNM; P. complicatus (Melichar), BMNH; P. horvathi Distant, BMNH; Pyrgonota sp., USNM; P. bifoliata (Westwood), USNM, DJFC; Sertorius sp., ANIC; S. australis (Fairmaire), USNM; Sextius kurandae Kirkaldy, USNM; S. virescens (Fairmaire), USNM, ANIC; Spathocentrus intermedius, OXUM, SHMC, CNCI; Takliwa carteri Funkhouser, PPRI, MNHN; Terentius convexus Stål, USNM, ANIC; Tolania sp., NCSU, MNHN; Tricentrus curvicornis Funkhouser, NCSU; T. fairmairei (Stål), USNM; Truncatocornum sp., LBOB; Tyrannotus tyrannicus Capener, PPRI, MNHN; Umfilianus declivis Distant, USNM; Xiphopoeus sp., USNM; X. erectus Distant, USNM; X phantasma Signoret, PPRI.

387 Fig. 24.2. Phylogenetic relationships within Centrotinae (Analysis 1, PAUP*) with “existing” tribal names based on Ananthasubramanian (1996a), McKamey (1998a), and Yuan and Chou (2002a). “Revised” tribal classification based on the current study are shown at far right.

388 Fig. 24.3. Phylogenetic relationships within Beaufortianini, Nessorhinini, Pieltainellini, and Platycentrini (Analysis 2, PAUP*). Strict consensus of 2 equally parsimonious trees (CI=0.36, RI=0.57, length 268).

389 Fig. 24.4. Phylogenetic relationships within Beaufortianini, Nessorhinini, Pieltainellini, and Platycentrini (Analysis 2, PAUP*). One of 2 equally parsimonious trees with branch lengths indicating numbers of assigned character changes. Nodes are labeled by number below or above each branch.

390 Table 24.6. List of apomorphies for Analysis 2 (Fig. 24.4). Characters are listed with states in parentheses; non-homoplastic changes are marked by an asterisk (*).

Node 51 15(3), 105(4), 107(2), 115(1) Node 50 38(1), 49(1) Node 49 (Platycentrini) 60(2), 88(5)* Node 48 (Nessorhinini) 10(2), 14(3), 40(2), 83(2), 86(2), 93(3), 112(2) Node 47 4(2), 6(1), 45(2), 80(2), 86(3), 105(2), 107(1) Node 46 15(1), 29(1), 48(1) Node 45 53(1), 71(2) Node 44 70(1)*, 97(2) Node 43 24(2), 37(1), 38(2), 50(2), 52(2), 81(3), 92(2) Node 42 53(1), 97(2) Node 41 75(1), 81(1) Node 40 12(1), 21(1), 48(3), 92(2) Node 39 (Pieltainellini) 71(2), 94(1), 95(2), 102(2), 105(3) Node 38 (Beaufortianini) 3(2), 53(1), 101(2), 109(1) Node 37 48(2), 49(1), 50(2), 83(2) Node 36 92(1), 95(2) Node 35 10(2), 116(3) Node 34 94(1) Node 33 71(2), 81(2), 86(2), 104(2) Pieltainellus 15(2), 79(1) Spathocentrus 11(2), 26(2), 54(2) Imporcitor 21(2), 27(1), 93(3), 97(2) Maguva 11(2), 16(2), 26(2), 105(3) Mabokiana 10(2), 54(2) Beaufortiana 37(1), 93(3) Dukeobelus 15(1), 26(2) Centrolobus 11(2), 13(1) Centruchus 5(3), 38(1), 53(2), 91(2), 97(2), 100(1) Platycentrus 52(2), 71(2), 72(3), 73(3), 74(2), 77(3), 79(1), 97(2) Tylocentrus 15(2), 48(3), 53(1), 54(2), 61(2), 87(1), 100(1), 105(2) Callicentrus 48(1) Orthobelus 14(2)*, 26(1), 94(1), 100(1), 105(2), 109(2)*, 112(1), 116(3) Daimon 4(2), 14(1), 16(2), 45(2), 54(2), 55(2)*, 86(3) Marshallella 15(2), 37(2) Goniolomus 28(2), 49(2), 52(2), 101(2) Nessorhinus 15(4), 50(2), 95(2) Spinodarnoides -- Orekthoptera 15(4), 26(2), 40(1), 80(1), 81(3), 100(1) Paradarnoides 6(2), 29(2), 50(2), 112(1)

391 Fig. 24.5. Phylogenetic relationships within Boocerini and Centrodontini (Analysis 3, PAUP*). Strict consensus of 2 equally parsimonious trees (CI=0.50, RI=0.64, length 209).

392 Fig. 24.6. Phylogenetic relationships within Boocerini and Centrodontini (Analysis 3, PAUP*). One of 2 equally parsimonious trees with branch lengths indicating numbers of assigned character changes. Nodes are labeled by number below each branch

393 Table 24.7. List of apomorphies for Analysis 3 (Fig. 24.6). Characters are listed with states in parentheses; non-homoplastic changes are marked by an asterisk (*).

Node 42 50(1), 54(2), 66(1), 67(1)*, 79(2), 101(1), 102(2), 113(2) Node 41 25(2), 26(1), 27(2), 74(3), 81(3), 87(2), 104(2) Node 40 4(2), 93(3), 100(1), 105(2)*, 114(2) Node 39 10(2), 37(1)*, 53(1), 55(3), 66(2), 72(3)*, 73(3)*, 94(2) Node 38 60(2), 61(2), 92(2), 102(1), 106(3) Node 37 (Boocerini) 21(1), 48(3)*, 88(3), 103(3)*, 109(1)*, 115(1) Node 36 13(1), 89(2)* Node 35 4(2), 39(2)*, 56(5), 58(2)*, 95(2) Node 34 12(1)*, 88(1), 105(5) Node 33 10(2), 11(2), 15(3), 71(2), 94(2), 112(3) Node 32 3(2), 49(1), 50(2), 53(1), 93(1), 107(2) Node 31 6(1), 45(2), 47(2), 59(2) Node 30 81(2), 107(2) Node 29 5(3)*, 55(3), 77(3), 83(2), 86(2), 87(1), 95(2), 97(2) Node 28 (Centrodontini) 14(3), 15(3), 29(3), 44(2), 56(5), 57(2)*, 75(1), 82(1) Node 27 68(1)*, 70(1)*, 76(1)*, 78(2)*, 92(2) Node 26 23(2), 24(2)*, 56(2) Nodonica 4(2), 40(2), 99(1)* Centrodontus 15(1), 49(1), 64(2)*, 65(2), 101(2) Multareis 15(2), 29(2), 56(3)* Multareoides 6(1) Brachycentrotus 29(3), 56(4)*, 82(1) Monobelus 21(1), 83(2), 88(3), 93(2), 97(2) Monobeloides 14(3), 49(1), 81(1), 92(2), 100(2), 104(1) Gargara 3(2), 29(3), 56(5) Aleptocentrus 6(1), 48(1) Centriculus 29(1), 59(2), 81(1), 92(1) Amblycentrus 13(2), 29(3) Brachybelus 56(6)*, 65(2) Ischnocentrus 102(3) Abelus 8(1), 71(2), 101(2) Psilocentrus 6(2), 95(2), 112(2) Boocerus 55(3), 88(3), 92(1) Campylocentrus 11(1), 13(2), 54(1), 86(2), 106(1), 112(2) Ophicentrus 6(1), 15(1), 26(2), 45(2), 47(2), 71(1), 81(1)

394 Fig. 24.7. Phylogenetic relationships within Centrotini and Xiphopoeini (Analysis 4, PAUP*). Strict consensus of 4 equally parsimonious trees (CI=0.37, RI=0.62, length 277).

395 Fig. 24.8. Phylogenetic relationships within Centrotini and Xiphopoeini (Analysis 4, PAUP*). One of 4 equally parsimonious trees with branch lengths indicating numbers of assigned character changes. Nodes are labeled by number below or above each branch.

396 Table 24.8. List of apomorphies for Analysis 4 (Fig. 24.8). Characters are listed with states in parentheses; non-homoplastic changes are marked by an asterisk (*).

Node 68 11(2), 85(2)*, 88(3) Node 67 (Centrotini) 56(5)*, 100(2), 114(1) Node 66 3(1), 4(2), 48(3), 49(2), 50(1), 54(2), 55(2), 91(1) Node 65 45(2), 47(2)* Node 64 13(1), 86(2), 114(2) Node 63 90(1) Node 62 94(1) Node 61 112(1) Node 60 89(2) Node 59 11(1), 86(1) Node 58 13(2), 38(1) Node 57 55(1) Node 56 101(2) Node 55 55(3) Node 54 41(2), 97(2) Node 53 40(2) Node 52 88(1), 90(2), 92(2) Node 51 13(2), 15(4), 93(3) Node 50 45(1), 114(1) Node 49 95(2), 112(2) Node 48 26(2), 93(1) Node 47 26(2), 55(1) Node 46 13(2), 15(4), 16(2), 86(1) Node 45 16(2), 55(3) Node 44 29(3), 41(2), 112(1) Node 43 13(2) Node 42 (Xiphopoeini) 7(2)*, 16(2), 24(2)*, 26(2), 38(1), 45(2), 85(3)*, 86(3), 112(1) Xiphopoeus 13(1), 48(1), 89(2), 91(1), 92(2), 94(1), 95(2), 97(2) Negus 11(1), 12(2), 22(2), 23(2), 29(3), 50(1), 54(2), 80(2) Centrotus 72(2)*, 73(2)*, 101(2), 115(1), 116(2) Capeneralus 40(2) Takliwa 93(1), 116(1)* Anchonomonoides 88(1) Hamma 53(1), 94(1) Barsumas 26(2), 41(1), 42(1), 44(2), 114(1) Barsumoides 11(1), 37(1) Stalobelus 37(1) Monanchon 41(2) Mitranotus -- Eumocentrulus -- Tricoceps 4(1), 29(3) Anchon -- Anchonastes 16(2), 86(1) Paraxiphopoeus 29(1), 77(1), 88(3) Monocentrus 26(2), 77(2)*, 94(2), Eumonocentrus 11(1), 112(2) Zanzia 29(3), 75(1), 95(2) Bleccia 81(2) Platybelus -- Jacobiana 29(3), 112(2) Tiberianus 4(1), 15(2), 86(2), Capeneriana 13(2) Dagonotus -- Vecranotus -- Farcicaudia 53(1) Promitor 13(2), 15(1), 29(3), 81(3), 89(1), 91(2), 94(2)

397 Fig. 24.9. Phylogenetic relationships within Choucentrini, Leptocentrini, and Maarbarini (Analysis 5, PAUP*). Single most parsimonious tree with branch lengths indicating numbers of assigned character changes. Nodes are labeled by number below each branch (CI=0.43, RI=0.69, length 207).

398 Table 24.9. List of apomorphies for Analysis 5 (Fig. 24.9). Characters are listed with states in parentheses; non-homoplastic changes are marked by an asterisk (*).

Node 57 15(3), 49(2), 105(7)*, 106(3)*, 107(2)*, 109(1)*, 110(2), 111(2), 112(2)*, 114(2) Node 56 (Leptocentrini) 40(2), 48(3)*, 77(3), 84(2), 101(1) Node 55 3(2), 52(2), 54(1) Node 54 49(1) Node 53 53(2), 81(3) Node 52 72(3) Node 51 49(1) Node 50 15(1) Node 49 40(1), 73(3)* Node 48 48(2) Node 47 13(2), 15(3), 53(1) Node 46 97(1) Node 45 13(2) Node 44 10(1), 53(1), 88(3) Node 43 32(2), 86(1), 87(2), 88(1), 91(1), 92(2), 108(2)*, 110(3)* Node 42 (Maarbarini) 22(2), 111(1) Node 41 27(1), 51(2)*, 52(2) Node 40 13(2), 26(2) Node 39 11(2), 19(1), 97(1) Node 38 92(1), 95(2) Node 37 3(2), 26(2) Node 36 10(1), Node 35 (Choucentrini) 11(2), 31(2)*, 50(1), 55(3), 60(1), 61(1), 114(1) Node 34 45(2)*, 48(2) Choucentrus -- Evanchon 3(2), 6(1), 27(1), 74(2), 86(2) Dograna 13(2), 97(1) Telingana 6(1), 29(3), 36(2) Pogon 88(3), 92(1) Pogontypus 3(2), 29(3), 49(1), 95(2) Maarbarus 4(2), 55(3) Parapogon 29(3), 50(1) Pogonotus 6(1), 49(1) Bathoutha -- Indicopleustes 19(2) Hemicentrus 8(1), 50(1) Leptocentrus 29(1), 73(2)*, 81(2) Otinotus 13(2), 21(2), 86(1) Umfilianus 13(2), 15(2), 38(1) Nilautama 10(1), 50(1), 81(2) Dacaratha 62(2) Awania -- Occator 6(1) Joveriana 29(1) Uroxiphus 40(1), 42(1), 81(1) Demanga 49(2) Yaponotus 11(2) Periaman 12(2), 40(2), 49(2), 84(1), 100(1), 105(3)*, 110(1), 111(1) Trioxiphus 62(2), 72(2)*, 81(2)

399 Fig. 24.10. Phylogenetic relationships within Gargarini (Analysis 6, PAUP*). Strict consensus of 28 equally parsimonious trees (CI=0.38, RI=0.60, length 224).

400 Node 38

Fig. 24.11. Phylogenetic relationships within Gargarini (Analysis 6, PAUP*). One of 28 equally parsimonious trees with branch lengths indicating numbers of assigned character changes. Nodes are labeled by number below, above, or to the side of each branch.

401 Table 24.10. List of apomorphies for Analysis 6 (Fig. 24.11). Characters are listed with states in parentheses; non-homoplastic changes are marked by an asterisk (*).

Node 60 (Gargarini) 5(3)*, 21(2), 55(3), 88(1) Node 59 3(2), 29(3) Node 58 48(2), 56(5), 77(3) Node 57 83(2)*, 84(2) Node 56 15(3), 114(2) Node 55 40(2), 88(3), 106(1) Node 54 81(3), 95(2) Node 53 86(2), 97(2) Node 52 16(2)*, 26(2), 53(1), 93(3), 115(1), 116(1)* Node 51 63(2), 64(2)*, 65(2) Node 50 3(1), 14(3), 77(1) Node 49 45(2), 46(2)* Node 48 100(1) Node 47 15(3), 29(2), 40(2) Node 46 3(1), 100(2) Node 45 45(1), 106(1) Node 44 81(2), 101(1), 114(2) Node 43 40(1), 54(1), 93(1) Node 42 3(2) Node 41 54(1) Node 40 55(1), 83(3)* Node 39 86(2), 93(1) Node 38 -- Node 37 64(3), 106(1), 115(1) Node 36 3(1), 14(3), 26(2), 59(2), 114(2) Aleptocentrus 6(1), 42(1), 48(1) Yasa 39(2), 93(3), 94(2), 95(2) Parayasa 29(2), 42(1), 45(2), 104(1), 105(3)*, 107(2) Maurya 54(1), 92(1) Antialcidas 45(2), 77(2), 81(3) Machaerotypus 97(2) Gargara 101(1) Eucoccosterphus 27(1), 42(1), 45(2), 48(1), 58(2), 84(1), 95(1), 104(1), 105(4)*, 106(1), 107(2), 109(1)

Coccosterphus -- Madlinus 27(1) Gargarina 29(2) Xanthosticta 63(2), 65(2), 77(1), 93(3), 95(1) Kanada 77(1), 81(1) Cryptaspidia 29(2), 53(1), 86(1) Mesocentrina 48(3), 95(1) Sipylus 29(2) Tricentrus 15(2), 63(2), 65(2), 97(2) Butragulus 55(2), 115(1) Tricentroides 86(2), 94(2) Cryptoparma 10(2), 53(1), 64(3) Thelicentrus 101(1) Nondenticentrus 55(2) Subrincator 77(1) Tribulocentrus 53(1) Pantaleon 26(2), 86(2) Tsunozemia 55(2), 81(1), 97(2)

402 Fig. 24.12. Phylogenetic relationships within Hypsaucheniini and Oxyrhachini (Analysis 7, PAUP*). Strict consensus of 25 equally parsimonious trees (CI=0.55, RI=0.71, length 150).

403 Fig. 24.13. Phylogenetic relationships within Hypsaucheniini and Oxyrhachini (Analysis 7, PAUP*). One of 25 equally parsimonious trees with branch lengths indicating numbers of assigned character changes. Nodes are labeled by number below each branch.

404 Table 24.11. List of apomorphies for Analysis 7 (Fig. 24.13). Characters are listed with states in parentheses; non-homoplastic changes are marked by an asterisk (*).

Node 29 21(2), 23(2), 37(1), 78(2)* Node 28 (Oxyrhachini) 12(2), 14(3)*, 15(3), 26(1), 35(2)*, 40(2), 42(2), 49(1), 83(3)*, 93(2), 97(2), 112(2)*, 116(1)* Node 27 50(2), 56(5) Node 26 76(1) Node 25 (Hypsaucheniini) 3(2), 5(3)*, 17(2)*, 43(2), 50(3)*, 57(1), 76(1) Node 24 5(4), 44(2), 48(1), 112(1) Node 23 15(5)*, 21(1), 49(1) Node 22 29(1), 94(1) Node 21 5(2), 10(1), 12(2), 21(2), 39(2)*, 96(2) 99(2) Node 20 6(1)*, 34(2), 43(1), 57(2), 98(2)* Oxyrhachis delalandei 94(1), 102(1) Oxyrhachis sulcicornis -- Oxyrhachis 15(2), 56(7)* Oxyrhachis carinata -- Hybandoides 10(1), 27(1), 34(2), 96(2) Hypsolyrium -- Jingkara 11(2), 34(2), 40(3)*, 48(2), 93(2) Hypsauchenia 97(2) Hybanda 44(1), 105(3)* Gigantorhabdus 5(4), 10(2), 37(2), 50(2), 93(2), 116(1) Pyrgauchenia 3(1), 101(2), 102(1), 113(3)*

405 Fig. 24.14. Phylogenetic relationships within Terentiini (Analysis 8, PAUP*). Strict consensus of 4 equally parsimonious trees (CI=0.42, RI=0.60, length 224).

406 Node 33

Fig. 24.15. Phylogenetic relationships within Terentiini (Analysis 8, PAUP*). One 4 equally parsimonious trees with branch lengths indicating numbers of assigned character changes. Nodes are labeled by number below, above, or to the side of each branch.

407 Table 24.12. List of apomorphies for Analysis 8 (Fig. 24.15). Characters are listed with states in parentheses; non-homoplastic changes are marked by an asterisk (*).

Node 49 (Terentiini) 3(2)*, 54(2), 70(2), 86(2), 92(2), 105(6)*, 111(2)* Node 48 15(3), 38(2), 102(1), 116(3) Node 47 66(2), 114(2) Node 46 37(1), 40(3), 95(2) Node 45 48(1), 86(1) Node 44 24(2), 88(4), 91(2), 92(1) Node 43 29(3) Node 42 54(1) Node 41 37(1) Node 40 38(1), 75(1), 82(1), 88(3), 94(2) Node 39 28(2)*, 44(2), 68(1), 70(1), 74(1), 97(1) Node 38 35(2), 54(1), 89(2)*, 90(2), 91(1), 101(2) Node 37 15(1), 27(1), 29(3), 88(4), 93(1), 115(1), 116(2) Node 36 94(2) Node 35 40(2), 52(2), 54(1) Node 34 34(2), 38(2), 48(2), 101(2) Node 33 -- Node 32 4(2), 15(5), 17(2), 24(1), 26(2), 90(2), 110(3)*, 113(3)*, 114(2) Node 31 23(2), 37(2), 74(1) Dingkana 95(2) Alosextius 53(2), 67(3) Sertorius 24(2), 48(1), 77(3), 92(1) Terentius 15(1), 29(3), 54(1), 97(1) Eutryonia 15(5), 17(2), 40(2), 100(1) Bucktoniella 40(2), 53(2), 56(5), 82(1), 115(1) Acanthuchus -- Alocanthella -- Lubra 40(3), 52(2) Anzac -- Neosextius 14(3), 15(4), 38(2) Goddefroyinella 23(2), 40(3), 48(2), 97(2) Sextius 14(2)*, 92(2) Bulbauchenia 14(3), 29(1)* Funkhouserella 27(1), 44(2), 88(4), 93(3) Pyrgonota 6(1), 10(1), 70(1), 97(1) Eufrenchia -- Cebes 52(1), 70(1), 88(4) Ceraon 26(2), 40(3) Sarantus 56(2)*, 90(2), 94(1)

408 Fig. 24.16. Phenetic relationships within Lobocentrini, Beaufortianini, Gargarini, and Centrotini (Analysis 9, UPGMA). Branch lengths indicate mean character distance. Asterisks indicate genera not included in the phylogenetic analyses because of limited data.

409 Fig. 24.17. Phenetic relationships within Nessorhinini, Leptocentrini, and Terentiini (Analysis 10, UPGMA). Branch lengths indicate mean character distance. Asterisks indicate genera not included in the phylogenetic analyses because of limited data.

410 Table 24.13. Data matrix.

1 1111111112 2222222223 1234567890 1234567890 1234567890 Abelus 11112111?? ????111221 1111212121 Acanthophyes decens 1111221212 1121311221 1111212121 Acanthucalis macalpini 1121221212 1221311221 2111212121 Acanthuchus trispinifer 1121221212 1221311221 2112212131 Afraceronotus quinquefasciatus 1112221212 1111111221 1?11212121 Aleptocentrus notabilis 1111311211 12211?1221 ?1??2 ?2121 Alocanthella fulva 1121221212 1221311221 2112212131 Alocebes dixoni 11212212?2 12213?12?? ?1??212121 Alosextius carinatus 1121221212 1221311221 2111212121 Amblycentrus pubescens 1112221211 1221111221 1111212131 Amphilobocentrus bifasciatus 11?1221211 21?13?1221 12??2?212? Ananthasubramanian tomentosus 1121221212 11?13?1221 1???212121 Anchon 1112221212 2111311221 1111212121 Anchonastes hastatus 1112221212 2111321221 1111222121 Anchonobelus aries 1112221212 2111321221 1111212121 Anchonomonoides expansus 1112221212 2111321221 1111212121 Antialcidas 1121321211 1221311221 21112121?1 Anzac bipunctatum 1121221212 1221111221 2112211231 Arcuatocornum sp. 1121221211 2121311221 1211222121 Arimanes doryensis 1121221212 1221311221 2111222121 Aurinotus auricornis 1111221212 1121311221 1111222121 Awania 1121221211 1111111221 1111212121 Barsumas 1112221212 2121321221 111122?131 Barsumoides 1112221212 1121321221 1111212131 Bathoutha indicans 1121221211 211131121? 12112211?1 Beaufortiana 1121221211 1121311221 1111212121 Bleccia fastidiosus 1112221212 1111311221 1111212121 Bocchar 1121221212 1111211221 1211212121 Boocerus gilvipes 1111221212 2111311221 1111212121 Brachybelus 1112221211 1211111221 1111212121 Brachycentrotus 11122?1211 1221111221 2111212131 Bucktoniella pyramidatus 1121221212 1221311221 2112212131 Bulbauchenia sp. 1122221212 12?351222? 2111222111 Bulbauchenia bakeri 11222212?2 12?3311221 2?11212121 Bunyella dromedarius 11212212?2 12?13?12?? ?1??2??1?1 Butragulus flavipes 1121321211 1221311221 2111212121 Callicentrus ignipes 1111221212 12?33112?? 2111222121 Camelocentrus yunnanensis 1121221212 21?13?12?? ????2?2131 Campylocentrus hamifer 1121221212 1121311221 1111212121 Campylocentrus obscuripennis 1121221212 1111311221 11112121?1 Capeneralus 111222121? 2121311221 1111212121 Capeneriana tenuicornis 1112221212 1121311221 1111212121 Cebes transiens 1121221212 1221311221 2112212121 Centriculus 1111221211 1221111221 1111212111 Centrochares horrifica 1121121212 2121321221 1112222121 Centrodontus 111122121? 12?31112?? 211112113? Centrolobus africanus 112122121? 2111311221 11112121?1 Centronodus 1211221212 1221311221 1121121123 Centrotosuoides muiri 1121321212 1221311221 1112212131 Centrotus cornutus 1121221212 2121311221 1111212121 Centrotypus 1111221212 12?2311222 1111222121 Centruchus 1121321212 1121311221 1112212121 Ceraon tasmaniae 1121221212 1221311221 2112222121 Choucentrus 11?1221212 21?13?1221 ????2?2121 Coccosterphus 1121321211 1221121221 2111222131 Cornutobelus mutabilis 1112221212 1121311221 1111212121 Crito festivum 1121221212 12?13?12?? ?1??2?2121 Cryptaspidia pubera 1111321211 12?3111221 2111222121 Cryptoparma parva 1111321212 1221311221 2111212121 Dacaratha 1121221212 1111311221 1111212121 Daconotus projectus 1112221212 1121311221 1111212131 Dagonotus lectus 1112221211 1111311221 1111212121 Daimon serricorne 1112221212 1221321221 2111222121 Demanga sookana 11212212?? 11111112?? 1?112121?1 Dingkana borealis 1121221212 1221111221 2111212121 Distanobelus sericeus 1112221212 1121311221 1111212121 Dograna suffulta 1111221212 2121311221 1111212121 Dukeobelus simplex 1121221211 1121111221 1111222121 Ebhul varium 111122121? 2121111221 1112222121 Elaphiceps 1112221222 1111512221 1211222121 Emphusis obesa 1111221212 1121311222 1111222121

411 Table 24.13 cont’d. Data matrix.

3333333334 4444444445 5555555556 1234567890 1234567890 1234567890 Abelus 1111112211 1211212?21 1122111122 Acanthophyes decens 1111112211 1211212?21 1122351112 Acanthucalis macalpini 1111112211 1211??1212 1122111111 Acanthuchus trispinifer 1111112211 12111?1112 1111111111 Afraceronotus quinquefasciatus 1111112212 1111212?21 1122351112 Aleptocentrus notabilis 1111?12211 11111?1121 11?231???? Alocanthella fulva 1111112211 11111?1112 1111111111 Alocebes dixoni 1111?11213 12111?1111 1?2111???? Alosextius carinatus 1111112211 12111?1212 1122111111 Amblycentrus pubescens 1111112221 12111?1321 1122151212 Amphilobocentrus bifasciatus 111111221? 12111?1311 112111???? Ananthasubramanium tomentosum 111111221? 12111?1321 112211???? Anchon 1111112211 1211212?21 1122251112 Anchonastes hastatus 1111112211 1211212?21 1122251112 Anchonobelus aries 1111112211 1211212?21 1122351122 Anchonomonoides expansus 1111112211 1211212?21 1122351112 Antialcidas 1111112212 1211211221 1122351112 Anzac bipunctatum 1111111111 11121?1112 1112112111 Arcuatocornum sp. 1111112212 12111?1312 1111111112 Arimanes doryensis 1111112211 12111?1112 1112111111 Aurinotus auricornis 1111112112 1211212?11 1122151112 Awania 1111112212 12111?1312 1211111112 Barsumas 1111112?11 1112212?21 1122351112 Barsumoides 1?11111?11 2211212?21 1122351112 Bathoutha indicans 1211112211 12111?1122 2212111112 Beaufortiana 1111111211 12111?1212 111111111? Bleccia fastidiosus 1111112211 1211212?21 1122251112 Bocchar 1111111211 12111?1211 1122311111 Boocerus gilvipes 1111112211 12111?1321 1122311112 Brachybelus 1111112221 12111?1321 1122161212 Brachycentrotus 1111112211 12111?1221 1122141111 Bucktoniella pyramidatus 111111?212 11111?1112 1122151111 Bulbauchenia sp. 1111111111 12111?1112 1112112111 Bulbauchenia bakeri 1111111111 1211??1112 1??2211111 Bunyella dromedarius 1111?12212 12111?1?12 112211???? Butragulus flavipes 1111112212 1211221221 1122251112 Callicentrus ignipes 1111111212 12111?1112 1221111111 Camelocentrus yunnanensis 111111221? 12111?1321 112211???? Campylocentrus hamifer 1111112211 12111?1312 1111111112 Campylocentrus obscuripennis 1111112211 12111?1221 1112311112 Capeneralus 1111112212 12111?1321 1122251112 Capeneriana tenuicornis 1111112212 1211212?21 11222511?2 Cebes transiens 1?12111212 11111?1?12 1111112111 Centriculus 1111112211 12111?1321 1122111122 Centrochares horrifica 1?1?112211 2111212?21 11???32111 Centrodontus 1???112211 11121?1?1? 11???52111 Centrolobus africanus 1111112211 12111?1212 1111111111 Centronodus 1?2?112211 11121?1??? 11???11112 Centrotosuoides 1111112111 11111?1221 1122111111 Centrotus cornutus 1111112211 12111?1212 1121151112 Centrotypus 121111?213 12111?1222 1122111112 Centruchus 1111112111 12111?1212 1121111111 Ceraon tasmaniae 1112111213 11111?1212 1211111111 Choucentrus 2?1111221? 12111?1121 11??31???? Coccosterphus 1?11112211 ?2111?1221 1112351112 Cornutobelus mutabilis 1111112212 1211212?21 1122251112 Crito festivum 1111111213 12111?1112 111211???? Cryptaspidia pubera 1111112211 1211221221 1112351122 Cryptoparma parva 1111112212 1211221221 1111151112 Dacaratha 1111112212 12111?1312 1221111112 Daconotus projectus 1111111111 1211212?11 1122251112 Dagonotus lectus 1111112212 1211212?21 1122251112 Daimon serricorne 1111111212 1211211212 1212211111 Demanga sooknana 1111112211 1211??132? 1????11112 Dingkana borealis 1111112111 12111?1212 1112111111 Distanobelus sericeus 1111112111 1211212?11 1122251112 Dograna suffulta 2?11112211 1211211221 11???11111 Dukeobelus simplex 1111112211 12111?1212 1111111111 Ebhul varium 1112112211 11111?1221 1111152111 Elaphiceps 1211112211 12111?1211 1112211111 Emphusis obesa 1211111212 12111?1222 1111111112

412 Table 24.13 cont’d. Data matrix.

6666666667 7777777778 8888888889 1234567890 1234567890 1234567890 Abelus 211111?212 2113221121 2211?121?? Acanthophyes decens 211111?212 1?13223121 1212221321 Acanthucalis macalpini 1?1111?212 1?12221121 1?????1312 Acanthuchus trispinifer 1?1111?212 1112221121 1211?11411 Afraceronotus quinquefasciatus 211111?212 11?322312? ?2???21??? Aleptocentrus notabilis ?????????? ?????????? ?????????? Alocanthella fulva 1?1111?212 11?2221121 1?11?11??? Alocebes dixoni ?????????? ?????????? ?????????? Alosextius carinatus 1?11123212 1?12221121 1?11??11?? Amblycentrus pubescens 211111?212 1113221121 3211?12322 Amphilobocentrus bifasciatus ?????????? ?????????? ?????????? Ananthasubramanium tomentosus ?????????? ?????????? ?????????? Anchon 211111?212 1113223121 12122211?? Anchonastes hastatus 211111?212 1113223121 12122111?? Anchonobelus aries 211111?212 1113223121 1212221322 Anchonomonoides expansus 211111?212 1113223121 12122211?? Antialcidas 211111?212 1113222121 3222111322 Anzac bipunctatum 1?1111?1?1 ?111121121 1?11?11411 Arcuatocornum sp. 221111?212 2112223121 2211?111?? Arimanes doryensis 1?1111?212 1?12221121 1211??14?? Aurinotus auricornis 211111?212 11?322312? ?2???21??? Awania 211111?212 1313223121 3212121311 Barsumas 211111?212 1?13223121 1212221312 Barsumoides 211111?212 1?13223121 1212?21312 Bathoutha indicans 211111?212 11??221121 1211?12??? Beaufortiana 1?1111?21? ?113221121 1221?121?? Bleccia fastidiosus 211111?212 1113223121 2212211321 Bocchar 1?1111?212 1113221121 1211?12411 Boocerus gilvipes 211111?212 2113221121 3211?12322 Brachybelus 211121?212 1113221121 3211?12322 Brachycentrotus 1?1111?212 1113221121 3111?121?? Bucktoniella pyramidatus 1?1111?212 11?2221121 1111?11??? Bulbauchenia sp. 1?1111?212 11?2121121 1?11?11??? Bulbauchenia bakeri 1?1111?212 111?121121 1?11?11322 Bunyella dromedarius ?????????? ????22?1?? ?????????? Butragulus flavipes 211111?212 1113223121 32221111?? Callicentrus ignipes 1?1111?212 1113?21121 3221?221?? Camelocentrus yunnanensis ?????????? ?????????? ?????????? Campylocentrus hamifer 221111?212 211?221121 3211?221?? Campylocentrus obscuripennis 221111?212 21?3221121 1211?22??? Capeneralus 211111?212 1?13223121 1212211312 Capeneriana tenuicornis 211111?212 1113223121 1212?11??? Cebes transiens 1?1111?211 ?112121121 1?11??1411 Centriculus 211111?212 1?13221121 1211?12312 Centrochares horrifica 1??221?211 ?113123122 1121?21322 Centrodontus 1?2221?1?1 ?11211?221 1111?111?? Centrolobus africanus 1?1111?212 1?13221121 1221?121?? Centronodus 2111122212 1113221121 1?11?111?? Centrotosuoides muiri 1?11122212 2?13221121 1221?221?? Centrotus cornutus 211111?212 1223223121 1212211312 Centrotypus 211111?212 1113223121 3211?211?? Centruchus 1?1111?212 1113221121 1221?121?? Ceraon tasmaniae 1?1111?212 1112121121 1111?11311 Choucentrus ?????????? ????22?1?? ?????????? Coccosterphus 212221?212 1113223121 32221211?? Cornutobelus mutabilis 211111?212 1113223121 1212211312 Crito festivum ?????????? ????22?1?? ?????????? Cryptaspidia pubera 211111?212 1113223121 32221111?? Cryptoparma parva 211311?212 13?3223121 3232111??? Dacaratha 221111?212 1?13223121 3212121411 Daconotus projectus 211111?212 1113223121 1212211312 Dagonotus lectus 211111?212 1113223121 1212211??? Daimon serricorne 1?1111?212 1?13121121 1221?321?? Demanga sooknana 211111?212 13?322312? ?????2???? Dingkana borealis 1?1111?212 1132221121 2211?211?? Distanobelus sericeus 211111?212 1113223121 12122211?? Dograna suffulta 1?1111?212 1113221121 1211?121?? Dukeobelus simplex 1?1111?212 1113221121 1221?121?? Ebhul varium 1?1111?1?1 ?1121??121 1111?112?? Elaphiceps 1?1111?212 1113221121 2211?22321 Emphusis obesa 211111?212 1113223121 3211?211?? 413 Table 24.13 cont’d. Data matrix.

1 1111111111 111111 9999999990 0000000001 111111 1234567890 1234567890 123456 Abelus 1221111132 2132532111 112113 Acanthophyes decens 2121111132 111?332121 112223 Acanthucalis macalpini 211?112??? ?????????? ??2??? Acanthuchus trispinifer 2121112132 1111622111 232123 Afraceronotus quinquefasciatus ?????????? ?????????? ??2??? Aleptocentrus notabilis ?????????? ?????????? ?????? Alocanthella fulva ???????132 1111622111 232??? Alocebes dixoni ?????????? ?????????? ?????? Alosextius carinatus 1221112??? ????622111 232??? Amblycentrus pubescens 1221211132 1132131111 112113 Amphilobocentrus bifasciatus ?????????? ?????????? ?????? Ananthasubramanium tomentosus ?????????? ?????????? ?????? Anchon 1221211132 1111332121 122223 Anchonastes hastatus 121?211132 1111332121 122223 Anchonobelus aries 1121111132 2111332121 112223 Anchonomonoides expansus 1122111132 1111332121 122??? Antialcidas 1221111132 2112111131 112??? Anzac bipunctatum 211?111132 111?622111 232112 Arcuatocornum sp. 111?212132 1112111131 112??? Arimanes doryensis 21??11???? ?????????? ??2??? Aurinotus auricornis ???????132 111?332121 1?2??? Awania 211?111132 11117321?2 2?2223 Barsumas 1122111??? ?????????? ??2123 Barsumoides 112211???? ?????????? ??2223 Bathoutha indicans ???????132 2111732213 122??? Beaufortiana 1131211132 2111412111 112112 Bleccia fastidiosus 1121111132 1111332121 112??? Bocchar 2122111131 ??11832121 212??? Boocerus 1122111132 1132531111 132113 Brachybelus 1221211132 1132131111 112??? Brachycentrotus 1131111131 ??12211131 112??? Bucktoniella pyramidatus ???????132 1111622111 232113 Bulbauchenia ???????132 1111622113 233223 Bulbauchenia bakeri 1122111132 1111622113 233223 Bunyella dromedarius ?????????? ?????????? ?????? Butragulus flavipes 1221211131 ??12131131 112113 Callicentrus ignipes 1232111132 1111412131 122??? Camelocentrus yunnanensis ?????????? ?????????? ?????? Campylocentrus hamifer 121?111132 1132512111 122??? Campylocentrus obscuripennis ???????132 1132532111 132??? Capeneralus 1122111??? ?????????? ??2??3 Capeneriana tenuicornis ???????132 2111332121 112223 Cebes transiens 2122112132 2111622111 232??? Centriculus 1121111??? ?????????? ??2113 Centrochares horrifica 1122121131 ??11712132 112113 Centrodontus 1221111132 2211111131 112123 Centrolobus africanus 1122211?32 2111412111 112??? Centronodus 1222111122 2111111131 111??? Centrotosuoides muiri 2122112??? ?????????? ??2??? Centrotus cornutus 2122111132 2111332121 122112 Centrotypus 1222212131 ??11332121 122223 Centruchus 2122212131 ??11412111 112113 Ceraon tasmaniae 2122112132 2111622111 232123 Choucentrus ?????????? ?????????? ?????? Coccosterphus 1231212132 2112131131 112111 Cornutobelus mutabilis 1122112132 1111332121 122??? Crito festivum ?????????? ????622?1? 2????? Cryptaspidia pubera 121?211131 ??12131131 112223 Cryptoparma parva ???????132 2112131131 112??? Dacaratha 2122112??? ?????????? ??2223 Daconotus projectus 111?211132 1111332121 112223 Dagonotus lectus ???????132 2111332121 112??? Daimon serricorne 1232112132 1111412131 122112 Demanga sooknana ?????????? ?????????? ??2??? Dingkana borealis 1221212132 1211622111 232122 Distanobelus sericeus 1121111132 1111332121 112??? Dograna suffulta 1221111132 2111732213 222??? Dukeobelus simplex 1121211132 2111412111 112112 Ebhul varium 111?111132 1211532111 132122 Elaphiceps 111?112132 2122111131 112113 Emphusis obesa 1222111132 1111332121 122223

414 Table 24.13 cont’d. Data matrix.

1 1111111112 2222222223 1234567890 1234567890 1234567890 Erecticornia 1111321211 12?13?1221 ?1???12121 Euceropsila primus 1112221212 1111411221 1111212121 Eucoccosterphus 1121321211 1221121221 2111221131 Eufairmairia 1121221212 1221311221 2112212121 Eufairmairiella 1121221212 1221311221 2112212121 Eufrenchia falcata 1121221212 1221311221 2112212121 Eumocentrulus 1112221212 2121421221 1111222121 Eumonocentrus 1112221212 1?21411221 1111212121 Eutryonia monstrifera 1121221212 1221512221 2111212121 Evanchon 1121211212 2111311221 1111211121 Evansiana iasis 1121221212 1221311221 2112212121 Farcicaudia nitida 1112221212 1111311221 1111212121 Flatyperphyma flavocristatus 1112221212 1121421221 1111222121 Flexanotus albescens 1112221212 2111311221 1111212121 Foliatrotus elephas 1112221212 1121411221 1111212121 Funkhouserella brevifurca 11222212?? 1221512221 2?21222111 Funkhouserella pinguiturris 1122221212 1?21512221 2121221121 Gargara 1121321211 1221111221 2111212131 Gargarina carinata 1111321211 12?31?12?? ?1??2?2121 Gigantorhabdus enderleini 1121411212 1221512221 2122222111 Goddefroyinella neglecta 1121221212 1221311221 2122212221 Goniolomus tricorniger 1112211212 12?33112?? 2111212221 Hamma 1112221212 2111321221 1111212131 Hemicentrus 11112211?? ????311221 1111212121 Hybanda anodonta 1121221211 1221?12221 2122222111 Hybandoides 1121321211 1121112221 2122221121 Hypsauchenia hardwickii 1121421212 1121512221 1122222111 Hypsolyrium uncinatum 112142121? 1121112221 2122222121 Imporcitor typicus 1121221211 1121311221 2111211121 Indicopleustes albomaculata 1121221211 2111311221 1211221121 Ischnocentrus 1111211211 1111111221 1111212121 Jacobiana 1112221212 1121311221 1111212131 Jingkara hyalipunctata 1121421212 2121522221 1122222121 Joveriana 1121221212 1121111221 1111212111 Kallicrates bellicornis 1112221212 1111311221 1111212131 Kanada irvinei 1121321211 1221111221 2111212131 Lanceonotus 1121221212 2111311221 1211222121 Leprechaunus 1112221211 2121111221 1111212131 Leptobelus 1121221222 111151221? 1211212121 Leptocentrus 1121221212 1111311221 1111212111 Leptoceps viniculum 1121221212 2111311221 1111212121 Lobocentrus 1121221211 1111311221 1111212121 Lubra spincornis 1121221212 1221311221 2112212121 Maarbarus 1112221212 211131121? 1211211121 Mabokiana teocchii 1121221212 1121311221 1?11212121 Machaerotypus sibiricus 1121321211 1221311221 2111212131 Madlinus seychellensis 1111321211 12?3121221 2111221131 Maguva nigra 1121221211 2121321221 1111222121 Marshallella rubripes 1111221212 12?32112?? 21112?2121 Matonotus 1112221212 21213?1221 ??????2121 Matumuia 1121221212 12213?12?? ?1??2?2111 Maurya 1121321211 1221311221 2111212131 Menthogonus badhami 1112221212 2111311221 1111222121 Mesocentrina pyramidata 1111321211 12?31112?? 2111222131 Micreune formidanda 1112211212 1111512221 1111222121 Microcentrus caryae 1111221211 1221211221 2111121121 Mitranotus albofascipennis 1112221212 2121421221 1111222121 Monanchon monanchonus 1112221212 2111311221 1111222121 Monobeloides stuarti 1112221212 12?3111221 2111212221 Monobelus 1112221212 1221111221 1211212121 Monocentrus 1112221212 2121411221 1111222121 Multareiodes 111121121? 12?33112?? 212212113? Multareis 111122121? 12?32112?? 212212112? Negus asper 1121222212 1221321221 1222222131 Neocanthuchus tropicus 1121221212 1221311221 2112212121 Neocentrus rufus 112?221211 11?11?1221 ????2?2121 Neomachaerotypus eguchii 112?32?211 12?13?12?? ????2?21?1 Neosextius 1121221212 12?34?12?? ?1??211??1 Nessorhinus 1112211212 12?3411221 2111212121 Nicomia 21122211?? ????11113? 1111212122 Nilautama minutaspina 1121221211 1111311221 1111212121 Nilautama typica 112122121? 1111311221 1111212121 Nodonica bispinigera 1112221211 12?33112?? 2???1211?? Nondenticentrus 1111321211 1221311221 2111212121 415 Table 24.13 cont’d. Data matrix.

3333333334 4444444445 5555555556 1234567890 1234567890 1234567890 Erecticornia 111111221? 1211221221 112225???? Euceropsila primus 1?11112212 ?211212?21 1122251112 Eucoccosterphus 1111112211 1111211121 1112351212 Eufairmairia 1111111213 12111?1112 1211112111 Eufairmairiella 1111111213 12111?1112 111111?111 Eufrenchia falcata 1111111112 12111?1112 1211112111 Eumocentrulus 1111112211 1211212?21 1122151112 Eumonocentrus 1111112211 12111?2?21 1122251112 Eutryonia monstrifera 1111112212 12111?1112 1112111111 Evanchon 2?11112211 2211212?21 11?2351111 Evansiana iasis 1111112211 12111?1212 1112111111 Farcicaudia nitida 1?11112211 2211212?21 1112351112 Flatyperphyma flavocristatus 1111112111 1211212?21 1122151112 Flexanotus albescens 1111112211 1211212?21 1122251112 Foliatrotus elephas 1111112211 1211212?21 1122251112 Funkhouserella brevifurca 1111111111 1111??111? 1????11111 Funkhouserella pinguiturris 1111112111 11121?1112 11??112111 Gargara 1111112211 12111?1221 1122351112 Gargarina carinata 111111221? 12111?1221 111235???? Gigantorhabdus enderleini 1112112121 11121?1112 11?1112111 Goddefroyinella neglecta 11?1?11113 11121?1212 1111112111 Goniolomus tricorniger 1111112112 1211211221 1221111111 Hamma 1?11112211 2211212?21 1112351112 Hemicentrus 1111112212 12111?1321 1112111112 Hybanda anodonta 1111111121 11211?1113 1111111111 Hybandoides 11121111?1 11211?1223 1111111111 Hypsauchenia hardwickii 1111111111 11221?1113 11?1111111 Hypsolyrium uncinatum 1111111111 11221?1123 11?1111111 Imporcitor typicus 1111112211 12111?1321 1111111111 Indicopleustes albomaculata 1211112211 12111?1122 2212111112 Ischnocentrus 1111112211 1211212?21 1122111122 Jacobiana 1111112111 1211212?21 1122151112 Jingkara hyalipunctata 1112111113 1122??1213 11???11111 Joveriana 1111112212 12111?13?2 1221111112 Kallicrates bellicornis 1111112211 1211212?21 1122251112 Kanada irvinei 1111112211 1211221221 11223511?? Lanceonotus 1111112211 12111?1111 1112211111 Leprechaunus 1111112111 1211212?21 1122251112 Leptobelus 1?11112211 12111?1221 1112311122 Leptocentrus 1111112212 12111?1312 1211111112 Leptoceps viniculum 1111112212 12111?1211 1122211112 Lobocentrus 1111112212 12111?1322 1121111112 Lubra spinicornis 1111111213 12111?1112 1212111111 Maarbarus 1211112211 12111?1122 2212311112 Mabokiana teocchii 1111112211 12111?1212 1112111111 Machaerotypus sibiricus 1111112212 12111?1221 1122351112 Madlinus seychellensis 1111112211 12111?1221 1112351112 Maguva nigra 1111112211 12111?1212 1111111111 Marshallella rubripes 1111112212 12111?1212 1211111111 Matonotus 111111221? 1211212?21 112235???? Matumuia 1112?11213 12111?1212 122111???? Maurya 1111112?11 12111?1221 1121351112 Menthogonus badhami 1111112211 1211212?21 1122251112 Mesocentrina pyramidata 1111112211 1211221321 1122351122 Micreune formidanda 1211112211 1211211212 1212111112 Microcentrus caryae 1111112111 12111?1112 1121111111 Mitranotus albofascipennis 1111112211 1211212?21 1122151112 Monanchon monanchonus 1?11112211 2211212?21 1122151112 Monobeloides stuarti 1111111211 12111?1211 1112311111 Monobelus 1111111211 12111?1221 1112311111 Monocentrus 1111112211 1211212?21 1122251112 Multareiodes 1???11??11 11121?1??? 11???22111 Multareis 1???11??11 11121?1?2? 11???32111 Negus asper 1111112111 1211211211 1122111112 Neocanthuchus tropicus 1111112211 12111?1112 1112111111 Neocentrus rufus 111111221? 12111?1212 112111???? Neomachaerotypus eguchii 11111121?? 12111?1111 112235???? Neosextius 1?111112?1 11121?1112 1????1???? Nessorhinus 111111?112 1211211212 1121111111 Nicomia 1122112212 1211??1222 11???11112 Nilautama minutaspina 1111112212 12111?1321 1221111112 Nilautama typica 1111112212 1211221321 1221111112 Nodonica bispinigera 1?????2212 11?21????? 11???5???? Nondenticentrus 1111112212 12111?1221 1122251112 416 Table 24.13 cont’d. Data matrix.

6666666667 7777777778 8888888889 1234567890 1234567890 1234567890 Erecticornia ??111????? ?????????? ?????????? Euceropsila primus 211111?212 1113223121 3212211??? Eucoccosterphus 211111?212 1113223121 3221?211?? Eufairmairia 1?1111?212 1111121121 1111?21412 Eufairmairiella 1?1111?212 1112221121 1111?21??? Eufrenchia falcata 1?1111?212 1112121121 1?11??1311 Eumocentrulus 211111?212 1113223121 1212211311 Eumonocentrus 211111?212 1113223121 12122211?? Eutryonia monstrifera 1?1111?212 1112221121 1211?111?? Evanchon 1?1111?212 1?12221121 1121?221?? Evansiana iasis 1?1111?212 1?1222112? ?????11??? Farcicaudia nitida 211111?212 1113223121 1212211321 Flatyperphyma flavocristatus 211111?212 1?1322312? ?????1???? Flexanotus albescens 211111?212 1?1?223121 1212221311 Foliatrotus elephas 211111?212 1113223121 12122211?? Funkhouserella brevifurca 1?1111?211 ??12121121 1?11?1?312 Funkhouserella pinguiturris 1?1111?212 1?11121121 1?11?11412 Gargara 211111?212 1113223121 32221211?? Gargarina carinata ?????????? ?????????? ?????????? Gigantorhabdus enderleini 1?1111?1?1 ?11211?221 1211?112?? Goddefroyinella neglecta 1?1111?1?1 ?111121121 1111?11322 Goniolomus tricorniger 1?1111?211 ?113221122 1221?321?? Hamma 211111?212 1113223121 1212221312 Hemicentrus 211111?212 11?3223121 1212121411 Hybanda anodonta 1?1111?1?1 ?11211?221 1211?112?? Hybandoides 1?1121?1?1 ?11211?221 1211?112?? Hypsauchenia hardwickii 1?1111?1?1 ?11211?221 1211?112?? Hypsolyrium uncinatum 1?1111?1?1 ?11211?221 1211?112?? Imporcitor typicus 1?1111?212 1113221121 1211?121?? Indicopleustes albomaculata 211111?212 1113221121 1211?121?? Ischnocentrus 211111?212 1113221121 3211?121?? Jacobiana 211111?212 1113223121 1212211321 Jingkara hyalipunctata 1?1111?1?1 ??1211?221 1211?112?? Joveriana 211111?212 13?3223121 3212121411 Kallicrates bellicornis 211111?212 1113223121 1212221311 Kanada irvinei ??1111?212 1?1?221121 12221211?? Lanceonotus 1?1111?212 1113221121 1211?12411 Leprechaunus 211111?212 1113221121 1212?21322 Leptobelus 211111?212 1333223121 1211?12311 Leptocentrus 211111?212 1123223121 2212121411 Leptoceps viniculum 211111?212 1??32231?? ?????????? Lobocentrus 221111?212 2113223121 1211?121?? Lubra spinicornis 1?1111?212 1112221121 1211?11411 Maarbarus 211111?212 1113221121 1211?121?? Mabokiana teocchii 1?1111?212 21?32211?? ?2???2???? Machaerotypus sibiricus 211111?212 1113223121 1222111322 Madlinus seychellensis 212221?212 11132211?? ?????21??? Maguva nigra 1?1111?212 2113221121 2221?221?? Marshallella rubripes 1?1111?212 1113121121 1221?221?? Matonotus ?????????? ?????????? ?????????? Matumuia ?????????? ????22?1?? ?????????? Maurya 211111?212 1113223121 12221111?? Menthogonus badhami 211111?212 1?13221121 1212?2?321 Mesocentrina pyramidata 211111?212 1?13223121 32221211?? Micreune formidanda 221111?212 2113223121 32121311?? Microcentrus caryae 1?11122212 1112221111 1?11?1131? Mitranotus albofascipennis 211111?212 1?132231?? ?2???1???? Monanchon monanchonus 211111?212 1?132231?? ?2???2???? Monobeloides stuarti 1?11121212 1333221121 1211?121?? Monobelus 1?11121212 1333221121 3221?12312 Monocentrus 211111?212 1113222121 12122211?? Multareiodes 1?1111?1?1 ?11211?221 1111?111?? Multareis 1?1111?1?1 ?11211?221 1111?111?? Negus asper 211111?212 1113223122 1212331312 Neocanthuchus tropicus 1?1111?212 1?1222112? ?????11??? Neocentrus rufus ?????????? ?????????? ?????????? Neomachaerotypus eguchii ?????????? ?????????? ?????????? Neosextius ?????????? ?????????? ?????????? Nessorhinus 1?1111?211 ?113221122 1221?321?? Nicomia 2113123212 1113121111 1211?1141? Nilautama minutaspina 211111?212 1313223121 2212121411 Nilautama typica 211111?212 13132231?? ?2?21?1??? Nodonica bispinigera ???????2?2 ????12?1?? ???????1?? Nondenticentrus 211111?212 1113223121 3222?111??

417 Table 24.13 cont’d. Data matrix.

1 1111111111 111111 9999999990 0000000001 111111 1234567890 1234567890 123456 Erecticornia ?????????? ?????????? ?????? Euceropsila primus ???????132 1111332121 122??? Eucoccosterphus 1231112132 2111412111 112111 Eufairmairia 2122112132 1111622111 232123 Eufairmairiella ???????132 2111622111 232??? Eufrenchia falcata 2122112132 1111622111 232??? Eumocentrulus 1121111132 1111332121 122??3 Eumonocentrus 1231111132 1111332121 122123 Eutryonia monstrifera 1221112131 ??11622111 232123 Evanchon 1232112??? ?????????? ??2123 Evansiana iasis ?????????? ?????????? ??2??? Farcicaudia nitida 1121112132 2111332121 112223 Flatyperphyma flavocristatus ?????????? ?????????? ??2??? Flexanotus albescens 1121111??? ????3????? ??2??? Foliatrotus elephas 1131211132 1111332121 122??? Funkhouserella brevifurca 1122111??? ?????????? ??3223 Funkhouserella pinguiturris 2132112??? ?????????? ??3??? Gargara 1221212132 1112131131 112123 Gargarina carinata ?????????? ?????????? ?????? Gigantorhabdus enderleini 1121121222 1211532111 112121 Goddefroyinella neglecta 1121112132 2111622111 2?2??? Goniolomus tricorniger 1132112132 2111211131 122??? Hamma 1121111132 1111332121 112223 Hemicentrus 21??1??132 1111732112 222223 Hybanda anodonta 111?121122 1211332111 112??? Hybandoides 111?121132 1211532111 132122 Hypsauchenia hardwickii 111?112132 1211532111 112122 Hypsolyrium uncinatum 111?111132 1211532111 112122 Imporcitor typicus 1232112132 211141?111 112??? Indicopleustes albomaculata 1122211132 2111732213 122??? Ischnocentrus 1221111132 1332531111 112113 Jacobiana 1121111132 1111332121 122223 Jingkara hyalipunctata 1122111??? ????532??? 1?2??? Joveriana 212211?132 1111732112 222??? Kallicrates bellicornis 1121111132 1111332121 122223 Kanada irvinei 121?211??? ?????????? ??2??? Lanceonotus 2121111131 ??11832121 212223 Leprechaunus 1121111132 1111332121 112??? Leptobelus 1122112132 2121332121 122223 Leptocentrus 2122112132 1111732112 222223 Leptoceps viniculum ?????????? ?????????? ??2??? Lobocentrus 121?211132 2112111131 112223 Lubra spinicornis 2121112132 1111622111 232123 Maarbarus 1222111132 2111732213 122??3 Mabokiana teocchii ?????????? ????4121?1 1?2??? Machaerotypus sibiricus 1221112132 2112111131 112??? Madlinus seychellensis ?????????? ?????????? ??2??? Maguva nigra 1222111132 2112312111 112??? Marshallella rubripes 1232112132 1111412131 122112 Matonotus ?????????? ?????????? ?????? Matumuia ?????????? ?????????? ?????? Maurya 1121111132 2112131131 112223 Menthogonus badhami 1121111??? ?????????? ??2??? Mesocentrina pyramidata 121?111??? ?????????? ??2??? Micreune formidanda 1222212132 2111732122 112223 Microcentrus caryae 211?112132 2311111131 111122 Mitranotus albofascipennis ?????????? ?????????? ??2??? Monanchon monanchonus ?????????? ?????????? ??2??? Monobeloides stuarti 1232111132 1211211131 112??? Monobelus 1122112131 ??12211131 112223 Monocentrus 1232111132 1111332121 112223 Multareiodes 1221111132 1211111131 112123 Multareis 1221111132 1211111131 112123 Negus asper 2122111131 ??11332121 112223 Neocanthuchus tropicus ?????????? ?????????? ??2??? Neocentrus ?????????? ?????????? ?????? Neomachaerotypus eguchii ?????????? ?????????? ?????? Neosextius ?????????? ?????????? ?????? Nessorhinus 1132212132 1111211131 122112 Nicomia 2122111132 211?511131 112113 Nilautama minutaspina 211?112132 1111732112 222223 Nilautama typica ?????????? ?????????? ??2??? Nodonica bispinigera 112?1???1? ????1?11?? ?????? Nondenticentrus 1221211132 2112111131 112123

418 Table 24.13 cont’d. Data matrix.

1 1111111112 2222222223 1234567890 1234567890 1234567890 Occator erectus 11??211211 11?11?12?? ????2?2121 Ophicentrus notandus 1121211212 2111111221 1111222121 Orekthophora cornuta 1112211212 12?34112?? 2111222111 Orthobelus 1111221212 1222311221 2111212121 Otinotoides 1121221212 1221311221 2111212111 Otinotus ammon 1111221211 1121311221 11112121?1 Otinotus bantuantus 1121221212 1121311221 2111212121 Oxyrhachis 111?221212 12?3211221 2122212121 Oxyrhachis carinata 111?221212 12?33112?? ?122212121 Oxyrhachis delalandei 111?221212 12?33112?? ?122212121 Oxyrhachis sulcicornis 111?221212 12?33112?? ?122212121 Pantaleon 1121321211 1221311221 2111222121 Paracentronodus 1211221212 2221111221 1111111123 Paradarnoides 1112221212 12?31112?? 2111212121 Parapogon kandyiana 1111221212 211131121? 1211211131 Paraxiphopoeus 1112221212 2111311221 1111222111 Parayasa 1121321211 1221111221 2111212121 Peltzerella borneensis 1121221212 1?21311221 ?1112121?1 Periaman 1121221212 1221311221 1111212121 Pieltainellus 1111221211 1121211221 1111212121 Platybelus flavus 1112221212 1121311221 1111212121 Platycentrus acuticornis 1111221211 1221311221 2111212121 Pogonella minutus 1121221212 1221311221 2111212121 Pogon incurvatum 111122121? 1121311221 1211221121 Pogonotus indicus 112?211212 21?13?121? 12??2?1121 Pogonotypellus australis 1121221212 1221311221 2112212131 Pogontypus 1121221212 1121311221 1211221131 Polonius froggatti 1121221212 1221311221 ?111222121 Promitor nominatus 1112221211 1121111221 1111212131 Protinotus doddi 1121221212 12213?12?? ?1??212121 Psilocentrus 1111221211 1111111221 1111212121 Pyrgauchenia 1111211211 1221512221 2122222111 Pyrgonota 1122211211 1221512221 2121222121 Rachinotus marshalli 1121221212 1121311221 1111212111 Rentzia 1121221212 12?13?12?? ?1??222111 Rexicornia elegans 1112221212 1111311221 1111222121 Rigula 1121221212 12?13?1??? ?1??212121

419 Table 24.13 cont’d. Data matrix.

3333333334 4444444445 5555555556 1234567890 1234567890 1234567890 Occator erectus 1111?1221? 12111?1312 121111???? Ophicentrus notandus 1111112211 1211212?12 1112111112 Orekthophora cornuta 1111112111 1211211111 1111111111 Orthobelus 1111111?12 12111?1212 1211111111 Otinotoides 1111111212 12111?1112 1122111111 Otinotus ammon 1111112212 12111?1211 1212211112 Otinotus bantuantus 1111112212 12111?1312 1211111112 Oxyrhachis 1111211112 12111?121? 11??172111 Oxyrhachis carinata 1111211112 12111?1212 1111152111 Oxyrhachis delalandei 1111211112 12111?1211 1112112111 Oxyrhachis sulcicornis 1111211112 12111?1212 1111152111 Pantaleon 1111112211 12111?1221 1121351112 Paracentronodus 1?3?112112 11111?1??? 11???11122 Paradarnoides 1111112112 1211211112 1111111111 Parapogon kandyiana 1211112211 12111?1121 2212111112 Paraxiphopoeus 1111112211 1211212?21 1122251112 Parayasa 1111112211 1111211221 11?2351112 Peltzerella borneensis 1111112212 12111?1321 1221111112 Periaman 1111112212 12111?1222 1211111112 Pieltainellus 1111112211 12111?1321 1121111111 Platybelus flavus 1111112111 1211212?21 1122251112 Platycentrus acuticornis 111111?111 12111?1211 1221111112 Pogonella minutus 1111112211 12111?1112 1112111111 Pogon incurvatum 1211112211 12111?1122 2212111112 Pogonotus indicus 1211112211 12111?1112 221211???? Pogonotypellus australis 1111111213 12111?1112 11211?1111 Pogontypus 1211112211 12111?1112 2212111112 Polonius froggatti 1111112211 12111?1112 1112111111 Promitor nominatus 1?11112211 2211212?21 1122351112 Protinotus doddi 1111??2212 12111?12?2 111211???? Psilocentrus 1111112211 1211212?21 1122111122 Pyrgauchenia 111?111121 11?21?1113 11??112111 Pyrgonota 1111112111 12111?1112 1112111111 Rachinotus marshalli 1111111211 1211212?21 1122251112 Rentzia 111?111213 12111?1112 121211???? Rexicornia elegans 1?11112212 2211212?21 1122351112 Rigula 1111112211 12111?1112 111111????

420 Table 24.13 cont’d. Data matrix.

6666666667 7777777778 8888888889 1234567890 1234567890 1234567890 Occator erectus ?????????? ?????????? ?????????? Ophicentrus notandus 211111?212 11?3221122 1211?12??? Orekthophora cornuta 1?1111?212 2113221121 3221?32??? Orthobelus 1?1111?212 1113221121 3221?221?? Otinotoides 1?1111?212 1112223121 1?11??11?? Otinotus ammon 211111?212 1113221121 1211?121?? Otinotus bantuantus 211111?212 1113223121 1212111411 Oxyrhachis 1?1111?1?1 ?11?1??221 1231?112?? Oxyrhachis carinata 1?1111?1?1 ?11211?221 1231?112?? Oxyrhachis delalandei 1?1111?1?1 ?112121221 1231?112?? Oxyrhachis sulcicornis 1?1111?1?1 ?112121221 1231?112?? Pantaleon 211111?212 1113223121 22221211?? Paracentronodus 2111123212 1113221111 1?11?114?? Paradarnoides 1?1111?212 2113221122 1221?321?? Parapogon kandyiana 211111?212 1?13221121 1211?121?? Paraxiphopoeus 211111?212 1113221121 1212221322 Parayasa 211111?212 1113223121 1211?111?? Peltzerella borneensis 211111?212 1?1322312? ?2???2???? Periaman 211111?212 1333223121 3211?21412 Pieltainellus 1?1111?212 2113221111 1211?121?? Platybelus flavus 211111?212 1113223121 1212211321 Platycentrus acuticornis 1?1111?212 2332223111 1211?12511 Pogonella minutus 1?1111?212 1112221121 1111?11311 Pogon incurvatum 211111?212 1?13221121 1211?12311 Pogonotus indicus ?????????? ?????????? ?????????? Pogonotypellus australis 1?1111?1?1 ??12121121 1?11??1311 Pogontypus 211111?212 1?13221121 1211?121?? Polonius froggatti 1?1111?212 1?12221?2? ?????1???? Promitor nominatus 211111?212 1113223121 3212211311 Protinotus doddi ?????????? ?????????? ?????????? Psilocentrus 211111?212 1113221121 2211?121?? Pyrgauchenia 1?1111?1?1 ?11211?221 1?11?112?? Pyrgonota 1?1111?211 ?11?121121 1?11?113?? Rachinotus marshalli 211111?212 1113223121 3212221322 Rentzia ?????????? ????22?1?? ?????????? Rexicornia elegans 211111?212 1?1322312? ?????2???? Rigula ?????????? ????22?1?? ??????????

421 Table 24.13 cont’d. Data matrix.

1 1111111111 111111 9999999990 0000000001 111111 1234567890 1234567890 123456 Occator erectus ?????????? ?????????? ?????? Ophicentrus notandus ???????132 1132532111 132??? Orekthophora cornuta ???????131 ??1121113? 122??? Orthobelus 1231112131 ??11212121 112113 Otinotoides 1122111132 2111622111 232113 Otinotus ammon 1221212??? ?????????? ??2??? Otinotus bantuantus 212211213? ????732112 222??? Oxyrhachis 112?11?132 1?11532111 1?2121 Oxyrhachis carinata 1122112132 1211532111 122??? Oxyrhachis delalandei 1121112132 1111532111 122??? Oxyrhachis sulcicornis 112211?132 1211532111 122??? Pantaleon 121?211132 1112111131 112223 Paracentronodus 2122111121 ??11111131 111??? Paradarnoides 1132111132 1111211131 112??? Parapogon kandyiana 1122211??? ?????????? 1?2??? Paraxiphopoeus 121?211132 1111332121 122??? Parayasa 1221111132 2111332131 112??? Peltzerella borneensis ?????????? ?????????? ??2??? Periaman 2122112131 ??11332111 122??? Pieltainellus 1221211132 1211312131 112112 Platybelus flavus 1121111132 1111332121 112223 Platycentrus acuticornis 1122112132 1111412131 112112 Pogonella minutus 1132112132 1111622111 232123 Pogon incurvatum 1121112??? ?????????? 1?2??? Pogonotus indicus ?????????? ?????????? ?????? Pogonotypellus australis 2122112??? ?????????? ??2??? Pogontypus 1222212??? ????732213 122223 Polonius froggatti ?????????? ?????????? ??2??? Promitor nominatus 2122112132 2111332121 112??? Protinotus doddi ?????????? ?????????? ?????? Psilocentrus 1221211132 1132532111 122??? Pyrgauchenia 111?121222 2111532111 113122 Pyrgonota 2122111132 1111622113 233223 Rachinotus marshalli 1222112132 2111332121 112223 Rentzia ?????????? ?????????? ?????? Rexicornia elegans ?????????? ?????????? ??2??? Rigula ?????????? ?????????? ??????

422 Table 24.13 cont’d. Data matrix.

1 1111111112 2222222223 1234567890 1234567890 1234567890 Sarantus wallacei 1121221212 1221311221 2112212121 Sarantus nobilus 1221221212 1221311221 2112212111 Sertorius 1121221212 1221311221 2112212121 Sextius 1121221212 1222311221 2112212221 Sinodemanga 112?221211 11111?1221 ????2?2121 Sipylus 1121321211 1221111221 2111212121 Spalirises rugosa 1112221212 2121311221 1111212121 Spathenotus tridentatus 111?211212 12?3?112?? ?1????22?1 Spathocentrus intermedius 1111221211 2121311221 1111222121 Spinodarnoides typus 1112211212 12?3111221 2111212111 Stalobelus 1112221212 2111311221 1111212121 Streonus tenebrosus 1112221212 1111311221 1111212121 Strzeleckia montanus 1121221212 12?11?12?? ?1??2?2121 Subrincator tonkinensis 1111321211 1221311221 2111212121 Takliwa carteri 1112221212 2121311221 1111212121 Telingana 1111211212 1111311221 1211212131 Terentius convexus 1121221212 1221111221 2111212131 Thelicentrus xizangensis 11?????211 12?13?12?? ????2?2121 Tiberianus 1111221211 1121211221 1111212121 Tolania 21112211?? ????31113? 1111111122 Tribulocentrus zhenbaensis 111??2?211 12213?12?? ????212121 Tricentroides orcus 1111321211 1221311221 21112121?1 Tricentrus 1121321211 1221211221 2111212131 Tricoceps 1111221212 2111311221 1111212131 Trioxiphus 1121221212 1121311221 1111212121 Truncatocornum sp. 1121221211 1121311221 1211222121 Tsunozemia paradoxa 1121321211 1221311221 2111212121 Tylocentrus 1111221211 1221211221 2111212121 Tyrannotus tyrannicus 1121221212 2111211221 1211212121 Umfilianus declivis 112122121? 1121211221 1111212121 Undarella storeyi 1121221212 ??21311221 2112212121 Uroxiphus maculiscutum 1121221212 1121111221 1111212121 Vecranotus sinuatus 1112221212 1111311221 1111212121 Xanthosticta pygmaea 1121321211 1221111221 2111212131 Xiphopoeus 1121222212 2111321221 1112222121 Yangupia occidentalis 1121221212 1221311221 21122122?1 Yaponotus villiersi 1121221212 2111111221 1111212121 Yasa greeni 1121321211 1221111221 2111212131 Zanzia vanderplanki 1112221211 2121411221 1111212131 Zigzagicentrus bannaensis 112?221212 21?13?12?? ????2?2121

423 Table 24.13 cont’d. Data matrix.

3333333334 4444444445 5555555556 1234567890 1234567890 1234567890 Sarantus wallacei 1112111212 12111?1212 12?1121111 Sarantus nobilus 1112111213 12111?1?12 1221111111 Sertorius 1111111213 12111?1112 1112111111 Sextius 1111211111 11121?1112 111?212111 Sinodemanga 111111221? 12111?1321 112111???? Sipylus 1111112211 1211221221 1122351112 Spalirises rugosa 1111112211 1211212?21 1122251112 Spathenotus tridentatus 1111?121?? 1111????12 121111???? Spathocentrus intermedius 1111112211 12111?1321 1122111111 Spinodarnoides typus 1211112112 1211211111 1121111111 Stalobelus 1111111211 1211212?21 1122251112 Streonus tenebrosus 1111112212 1211212?21 1122251112 Strzeleckia montanus 1111112211 12111?1212 111211???? Subrincator tonkinensis 1111112212 12111?1221 1122351112 Takliwa carteri 1111112211 1211212?21 1122251112 Telingana 1211122211 12111?11?2 1112111112 Terentius convexus 1111111213 12111?1212 1111111111 Thelicentrus xizangensis 111111221? 1211221221 112115???? Tiberianus 1111112?11 1211212?21 1122151112 Tolania 1122122211 12111?12?? 11???11122 Tribulocentrus zhenbaensis 111111221? 12111?1221 111135???? Tricentroides orcus 1111112212 1211221221 1?21351112 Tricentrus 1111112211 1211221221 1122351?12 Tricoceps 1111112211 1211212?21 1122251112 Trioxiphus 1111112211 1211??1212 1211111112 Truncatocornum sp. 1111112212 12111?1312 1121111112 Tsunozemia paradoxa 1111112211 12111?1221 1121251??2 Tylocentrus 1111112111 12121?1311 1112111112 Tyrannotus tyrannicus 1111112211 12111?1112 1111111112 Umfilianus declivis 1111112112 12111?1322 1221111112 Undarella storeyi 1111112111 11111?1112 1112111111 Uroxiphus maculiscutum 1111111211 11111?1312 1221111112 Vecranotus sinuatus 1111112211 1211212?21 1122351112 Xanthosticta pygmaea 1111112211 1211221221 1122351112 Xiphopoeus 1111112111 1211211112 1121111112 Yangupia occidentalis 1111112213 12111?1112 1111111111 Yaponotus villiersi 1111112211 12111?1212 1221111112 Yasa greeni 1?11112221 2211??1321 1122?11112 Zanzia vanderplanki 1111112?11 12111?2?21 1122251112 Zigzagicentrus bannaensis 111111221? 12111?1312 111111????

424 Table 24.13 cont’d. Data matrix.

6666666667 7777777778 8888888889 1234567890 1234567890 1234567890 Sarantus wallacei 1?1111?212 1112121121 1111?11312 Sarantus nobilus 1?1111?212 1?12221121 1?11??1411 Sertorius 1?11122212 1112223121 1211?211?? Sextius 1?1111?1?1 ?111121121 1111?11322 Sinodemanga ?????????? ?????????? ?????????? Sipylus 211311?212 1113223121 32221211?? Spalirises rugosa 211111?212 1113223121 1212211311 Spathenotus tridentatus ?????????? ?????????? ?????3???? Spathocentrus intermedius 1?1111?212 2?13221121 1211?121?? Spinodarnoides typus 1?1111?212 1?1?22112? ?2???32??? Stalobelus 211111?212 1113223121 1212221311 Streonus tenebrosus 211111?212 1113223121 12122211?? Strzeleckia montanus ?????????? ????22?1?? ?????????? Subrincator tonkinensis 211111?212 1113221121 22221111?? Takliwa carteri 211111?212 1113223121 1212211312 Telingana 211111?212 1??3221121 1211?12??? Terentius convexus 1?11122212 1112221121 12121211?? Thelicentrus xizangensis ??111????? ?????????? ???????1?? Tiberianus 211111?212 1113223121 1212221321 Tolania 2113123212 1113223111 1?11?1141? Tribulocentrus zhenbaensis ??111????? ????2231?? ?????????? Tricentroides orcus 221111?212 1?33223121 32221211?? Tricentrus 212321?212 1113223121 32221211?? Tricoceps 211111?212 1113223121 1212221311 Trioxiphus 221111?212 2233223121 2212121411 Truncatocornum sp. 221111?212 2?1222312? ?211?121?? Tsunozemia paradoxa 21???????? ????????21 12221111?? Tylocentrus 211111?212 1113221121 1211?11511 Tyrannotus tyrannicus 211111?212 1313221121 2211?21411 Umfilianus declivis 211111?212 1113223121 3212121411 Undarella storeyi 1?1111?212 1?1222112? ?????21??? Uroxiphus maculiscutum 211111?212 1?13223121 1212121411 Vecranotus sinuatus 211111?212 1113223121 1212211321 Xanthosticta pygmaea 212121?212 1113221121 32221111?? Xiphopoeus 211111?212 1113223121 1212331322 Yangupia occidentalis 1?1111?212 11?2223121 1211?21??? Yaponotus villiersi 211111?212 1333223121 3212121411 Yasa greeni 211111?212 1?13221121 1211?111?? Zanzia vanderplanki 211111?212 1113123121 12122211?? Zigzagicentrus bannaensis ?????????? ?????????? ??????????

425 Table 24.13 cont’d. Data matrix.

1 1111111111 111111 9999999990 0000000001 111111 1234567890 1234567890 123456 Sarantus wallacei 2121112132 2111622111 232123 Sarantus nobilus 2122112??? ?????????? ??2??? Sertorius 1121212132 1111622111 232223 Sextius 1221111132 2111622111 232123 Sinodemanga ?????????? ?????????? ?????? Sipylus 121?211131 ??12111131 112??? Spalirises 1121111132 2111332121 112??? Spathenotus tridentatus ?????????? ?????????? ?????? Spathocentrus intermedius 1221211??? ?????????? ??2??? Spinodarnoides typus ?????????? ?????????? ??2??? Stalobelus 1122111132 1111332121 122??3 Streonus tenebrosus 1232211132 1111332121 112223 Strzeleckia montanus ?????????? ?????????? ?????? Subrincator tonkinensis 1221211132 1112111131 112223 Takliwa carteri 111?111132 1111332121 122121 Telingana ???????132 2111732213 122223 Terentius convexus 1221211132 1111622111 232223 Thelicentrus xizangensis 12212???32 11121?113? 11???? Tiberianus 1121111132 1111332121 112223 Tolania 2121111122 211?111131 111223 Tribulocentrus zhenbaensis ?????????? ????1?113? 11???? Tricentroides orcus 1222211??? ?????????? ??2??? Tricentrus 121?212131 ??12111131 112113 Tricoceps 1121111132 1111332121 112223 Trioxiphus 2122112132 1111732112 222223 Truncatocornum sp. 111?1121?? ?????????? ??2??? Tsunozemia paradoxa 121?212??? ????1?1131 112??? Tylocentrus 1122111131 ??11212131 112112 Tyrannotus tyrannicus 2122112132 1312111131 112113 Umfilianus declivis 211?112132 1111732112 222??? Undarella storeyi ?????????? ?????????? ??2??? Uroxiphus maculiscutum 2122111??? ?????????? ??2??? Vecranotus sinuatus 1121111132 2111332121 112223 Xanthosticta pygmaea 1231111132 2112131131 112?23 Xiphopoeus 1221212131 ??11332121 112223 Yangupia occidentalis ???????132 1111622111 232??? Yaponotus villiersi 2122112132 1111732112 222??? Yasa greeni 1232211??? ?????????? ??2??? Zanzia vanderplanki 1231211132 1111332121 112??? Zigzagicentrus bannaensis ????????3? ?????????? ??????

426 Table 24.14. Summary of taxonomic changes based on phylogenetic analyses 1-8.

Existing classification (Dietrich et al. 2001a, Revised classification presented here Yuan and Chou 2002a)

CENTRODONTINAE Centrotinae: moved to ABELINI Centrodontini Centrotinae BOOCERINI Boocerini

BULBAUCHENIINI Terentiini new

FUNKHOUSERELLINI Gargarini synonymies

TERENTIINI Leptocentrini

ANTIALCIDINI Ebhuloidesini

COCCOSTERPHINI Centrocharesini

MADLININI Centrotini

TRICENTRINI Centrotypini

GARGARINI Choucentrini

DEMANGINI Hypsaucheniini

LEPTOCENTRINI Leptobelini names CENTROCHARESINI Micreunini unchanged CENTROTINI Nessorhinini

CENTROTYPINI Oxyrhachini

CHOUCENTRINI Platycentrini

EBHULINI Xiphopoeini

HYPSAUCHENIINI Lobocentrini

LEPTOBELINI Maarbarini

MICREUNINI Monobelini new tribes NESSORHININI Pieltainellini

OXYRHACHINI Beaufortianini

PLATYCENTRINI Boccharini

XIPHOPOEINI

427 25: BIOGEOGRAPHY OF THE CENTROTINAE AND MEMBRACIDAE

Introduction: Origins of the Membracidae

Where and when did treehoppers originate? This question is an outstanding and

controversial topic for three reasons: (1) the current geographic distribution of treehoppers,

with one large cosmopolitan subfamily, but the eight other subfamilies all restricted to the

New World; (2) the limited fossil record of treehoppers; and, (3) the lack of phylogenetic

understanding for the Membracidae (only recently elucidated) and the Centrotinae

(elucidated in this work). Following a review of our knowledge in these three areas, the

biogeographic patterns within the subfamily Centrotinae are, for the first time, placed in a

phylogenetic context.

Geographic patterns. The current distribution of major treehopper lineages is

intriguing. Except for a few introductions by man--Spissistilus to Hawaii (Zimmerman

1948a); Centrotus and Gargara to North America (Metcalf and Wade 1965a, McKamey

1998a); and to Europe (Goidanich 1946a, McKamey 1998a)--no membracid tribe (and thus no species or genus) occurs in both the Old World and the New.

Nevertheless, the largest membracid subfamily, Centrotinae, occurs in all major regions of the Old World (The Afrotropical, Australasian/Oceanian, Indomalayan, and Palearctic

Regions) as well as the New World (Nearctic and the Neotropical Regions). All of the other eight membracid subfamilies occur only in the New World. This overall pattern lead Wood

(1993) to believe that treehoppers arose in tropical Gondwana prior to its breakup, with the

Old World and New World membracids diversifying after the continents separated.

Similarly, Strümpel (1972a) postulated that the membracids arose in Gondwana, but that the

428 Centrotinae reached the New World from Asia by way of the Bering Land Bridge in the

Pleistocene.

In contrast, the center of origin theory, a controversial method based solely on distribution (Futuyma 1998a), suggests a New World origin of the family. Areas of origin include regions that contain the largest number of species and the most morphological diversity (Cranston and Naumann 1991a). South Asia, for example, is believed to be the center of origin for vespid wasps (Hymenoptera: Vespidae) because it is the only area where all the subfamilies are found (Briggs 1995a). With treehoppers, the Neotropical Region contains more species, genera, tribes, and subfamilies than any other region (McKamey

1998a) and thus is arguably the most morphologically diverse, and, under the center of origin theory, the most likely area of origin. Nonetheless, this method can not distinguish between primary and secondary areas of diversification.

Fossils. While a number of hemipteran families have a relatively rich fossil record

(Labandeira and Seposki 1993a), the only known fossils assignable to the family

Membracidae with certainty are undescribed representatives of the subfamily Stegaspidinae from amber of the Dominican Republic (Schlee 1990a, Poinar 1992a, McKamey 1998a).

Dominican amber was deposited during the Eocene-Miocene, 57.8 to 5.3 million years ago

(mya), long after the vicariance of Gondwana. Perhaps further membracid fossils await

discovery, but meanwhile, the limited records provide a minimum age of 57.8 to 5.3 million

years for the Stegaspidinae, and suggest a Tertiary origin for Membracidae, perhaps in the

New World.

Phylogeny. Recent phylogenetic studies provide a broad outline of evolutionary relationships among New World membracids, but phylogeny within the cosmopolitan

429 subfamily Centrotinae--so critical to addressing biogeographical patterns among treehoppers-

-was largely neglected until the present study. Both morphological and molecular data (Deitz

and Dietrich 1993a, Dietrich and Deitz 1993a, Cryan et al. 2000a, Dietrich et al. 2001a)

suggest that the Membracidae arose in the Neotropics, but the time of origin is difficult to

pinpoint with neither a substantial fossil record nor divergence times calculated from molecular data. Phylogenetic analyses have consistently placed four subfamilies as the first membracid lineages. These groups--Endoiastinae, Stepaspidinae, Nicomiinae, and

Centronodinae--are largely confined to the Neotropics.

To summarize, evidence from phylogeny, fossils, and geography (region of greatest morphological diversity) all favor a Neotropical origin for the family Membracidae.

Furthermore, fossils provide a minimum age of 57.8 to 5.3 million years for the

Stegaspidinae (one of four basal membracid lineages), pointing toward a Tertiary origin for

the family.

Biogeographic patterns of the Centrotinae

The Centrotinae account for roughly half of all treehopper diversity at the tribal,

generic, and species levels. As noted above, centrotines are found in all major zoogeographic regions. While a few tribes are widely distributed, many occur primarily in one or two major regions. The distinctive fauna of the Afrotropical, Indomalayan,

Australasian/Oceanian, and Caribbean Regions are especially notable. Indeed, all but one of

the Old World centrotine tribes have representative genera found in the Indomalayan Region

(Fig. 25.1).

430 How did treehoppers acquire their Old World distribution if it is assumed that membracids arose in the Tertiary Neotropics, when the southern continents had already drifted far apart? If the centrotine distribution were to be explained by vicariance, their phylogeny should, to some extent, reflect the historical splitting of the land masses and their historical proximity to one another. The geologic history of the continents followed here is based on McLoughlin (2001a). North America and separated roughly 180-165 mya.

Madagascar + India separated from Africa approximately 165 mya, and from Antarctica and

Australia about 132 mya. Africa diverged from South America 135-105 mya and India and

Madagascar separated from each other 95-84 mya. By the early Tertiary (65 mya), New

Zealand was widely separated from Australia. South America, Australia, and Antarctica were more or less connected from 60-35 mya.

The evolutionary relationships of the Centrotinae (Fig. 25.1) do not coincide with the historical relationships of the continents. Centrotines found in former Gondwanan regions such as Africa, Australia, and South America, are not closely related (Fig. 25.1). The

Terentiini, placed relatively basally in the phylogeny (Fig. 25.1) and primarily Australasian in distribution, show no close relationship with South American centrotines. Aside from a single record of the genus Gargara (Gargarini) (Day 1999a), the only tribe on continental

Australia is the Terentiini. Terentiines are the sister group to a primarily Palearctic and

Indomalayan clade of centrotines, Ebhuloidesini + Oxyrhachini + Hypsaucheniini.

Furthermore, the immediate basal lineage of the Terentiini are the Centrocharesini, found in the Palearctic and Indomalayan Regions (Fig. 25.1). With the exception of the

Centrodontini, the only tribe with South American elements, the Boocerini, are the sister group of the Gargarini, which are predominantly Palearctic and Indomalayan in distribution.

431 The highly derived (Fig. 25.1) and primarily Afrotropical tribes Centrotini and Xiphopoeini are distantly related to the Australasian Terentiini and to South American centrotines.

Additionally, no centrotines are apparently native to Madagascar or New Zealand based on extensive collecting in recent times (Capener 1968a; Eyles 1970a, 1971a; Wise

1977a), suggesting either that they went extinct on both islands or perhaps that these islands were isolated before treehoppers reached the Old World. Had treehoppers originated before the breakup of South America and Africa, however, they would likely have colonized both

New Zealand and Madagascar. Moreover, centrotines of several tribes have been described from India. If treehoppers were present in Gondwana prior to its breakup, they would likely be present in Madagascar also, because of its historical proximity to India up to 85 mya.

Treehoppers likely invaded India in the Cenozoic either when it collided with Asia approximately 45 mya ago (McLoughlin 2001a) or when it is thought to have briefly contacted Africa (Hedges 2001a). The cuckoo wasps (Hymenoptera: Chrysididae) show a similar relationships to centrotines. No higher chrysidid taxa found on different Gondwanan continents are closely related, and thus it is believed that the cuckoo wasps evolved following the Gondwanan breakup (Briggs 1995a).

Based on the phylogeny presented here (Fig. 24.1, Fig. 25.1), centrotines originated in the New World, dispersed to the Old World twice, and subsequently underwent explosive radiations. All suitable outgroups for the Centrotinae (Fig. 24.1) are from the New World.

Furthermore, the first centrotines are apparently from the New World, ancestors of the

Centrodontini (Fig. 25.1), a disjunct tribe located in South and North America. Apparently, one centrotine invasion of the Old World eventually gave rise to the predominantly

Indomalayan and Palearctic Gargarini--the other invasion gave rise to most of the remaining

432 centrotine species, with more than half distributed in the Afrotropical and the

Australasian/Oceanian Regions. Although the first Old World invasion (Fig. 24.1: node 124,

Gargarini) is supported by 4 character changes, the second (Fig 24.1: node 111) is supported

by only 2 character changes.

Centrotinae biogeographical patterns and scenarios

Biogeographical patterns of New World centrotines. The first centrotines were from

the New World, ancestors of the Centrodontini (Fig. 25.1), a disjunct tribe located in South

and North America. The genera Multareis, Multareoides, and Centrodontus are confined to

creosote bush in the southwestern United States and northern Mexico, the apparent center of

diversification of the centrodontines, while Nodonica has been found only in the South

American countries of Brazil, Ecuador, and Peru. Most New World centrotines are located

in Central America and Mexico (31 spp.), and the Caribbean islands (66 spp.) (McKamey

1998a, Dietrich et al. 2001a). Just 5 genera and 12 centrotine species, all in the Boocerini and Centrodontini, are found in South America. Based on these numbers, the early centrotines likely arose in North America and later invaded South America. Nonetheless, even though South American centrotines are few, phylogenetic analyses of the Boocerini and

Centrodontini (Fig. 24.5) do not rule out a South American origin for centrotines. Nodonica, the basal genus of Centrodontini, is found in South America, and the basal relationships of the Boocerini are unresolved. Ramos (1988a), however, noted a close relationship among

Central American, Mexican, and Caribbean centrotines.

Apparently, there were two centrotine invasions to what are now the Caribbean

Islands from mainland Neotropical centrotines, one eventually giving rise to the Monobelini

433 and the other giving rise to the Nessorhinini, both tribes endemic to the Caribbean Region

(Fig. 25.1). The distribution of these centrotines is likely explained by dispersal rather than

vicariance due to the high endemism of the Caribbean fauna and the absence of nessorhinines

and monobelines in the mainland Neotropics. The Caribbean membracid fauna would likely

resemble a cross-section of the mainland Neotropical fauna if there had been an ancient

vicariance of land masses, with a higher diversity at the generic and subfamily levels.

Therefore, it is more likely that ancestors of the Centrodontini dispersed into the Caribbean

Region giving rise to the Monobelini (Fig. 25.1). The same ancestors apparently also gave

rise to the Boocerini. The common ancestor of the Mexican tribe Platycentrini likely made

the second invasion into the Antillean region, eventually giving rise to the Nessorhinini (Fig.

25.1).

The mechanism for these dispersals is unclear due to the controversial geologic

history of the Antillean region (Iturralde-Vinent and MacPhee 1999a, Hedges 2001a). It is

generally agreed that the Caribbean Islands were formed by volcanism as a result of subduction of the North American plate beneath the Caribbean plate in the mid-Cretaceous

(Hedges 2001a). As a result of this event, it is likely that North America and South America were connected by a “proto Antillean” land arc or land bridge consisting largely of present day Antillean land masses in the late Cretaceous, approximately 70-80 mya. This land bridge could have been an avenue of dispersal to the Caribbean islands. Researchers disagree on the timing and permanency of this land bridge and which islands were continuously above water.

If this was a mechanism for dispersal, however, why didn’t more centrotine higher level taxa

disperse to these areas? One possibility is that the ancestral centrotines were isolated in

various areas of North America.

434 Another possibility is an early Tertiary dispersal following the extraterrestrial impact

believed responsible for massive terrestrial and marine extinctions 65 mya. At that time, the

continuous land bridge connecting North and South America was beginning to dissolve

leaving an island archipelago (Briggs 1995a). Dispersal via more temporary land bridges,

rafting, or other means, to these newly formed islands would better explain the endemic

Caribbean centrotine fauna. While a permanent land bridge would permit more to disperse, island chains would act as filter, allowing some taxa to colonize while acting as a barrier to others (Hedges 2001a). Vertebrate fauna are also low in taxonomic diversity at

higher levels in the Caribbean but some genera have a large number of species, similar to centrotines (Hedges 2001a). Many researchers believe that approximately 65 mya, at the

border of the Cretaceous and Tertiary, an extraterrestrial object impacted the Yucatan

peninsula of Mexico resulting in a mass extinction of numerous marine organisms, dinosaurs,

mammals, , and (Labandeira et al. 2002a). The side effects to the fauna would

have been widespread, including massive tsunamis and hurricanes, perhaps destroying all

Antillean fauna (Hedges 2001a). It is possible that any Caribbean centrotines that had dispersed via a permanent land bridge prior to the impact would have also been exterminated.

This would favor a dispersal following the 65 mya impact event.

Biogeographic patterns of Old World centrotines. Apparently, there were two

centrotine colonizations of the Old World (Fig. 25.1); one eventually giving rise to the

predominantly Indomalayan and Palearctic Gargarini and another giving rise to most of the

remaining centrotine species, with more than half of these distributed in the Afrotropical and

the Australasian/Oceanian Regions. Interestingly, the most basal Old World groups, the

tribes Gargarini and Beaufortianini, are also very widely distributed (Fig. 25.1). If the Old

435 World Centrotinae had reached the Old World by dispersal after the extraterrestrial impact

(based on the earlier dispersal times to Caribbean and the fossil record), how was this accomplished seeing that the Gondwanan continents by this time were well separated? Four possible scenarios are considered here.

Firstly, as a result of a sea level drop in the late Cretaceous, southern South America,

Antarctica, and Australia were joined from approximately 60 to 35 mya (Briggs 1995a,

McLoughlin 2001a). This passage has been hypothesized as the Tertiary dispersal route for

marsupials, birds, reptiles, invertebrates, and angiosperms from southern South America to

Australia (Briggs 1995a). There is no evidence, however, from current centrotine distributions or the present phylogenetic analysis (Fig. 25.1) to support centrotines dispersing

to the Old World via South America to Australia. The South American centrotines

(Centrodontini and Boocerini) are not closely related to Australasian centrotines (all

Terentiini except one record of Gargara) (Fig. 25.1). Additionally, as noted above, most

New World centrotines are located in Central and North America and the Caribbean, not

southern South America. This scenario is therefore unlikely for either of the two invasions.

Dispersal to the Afrotropical Region from the New World is a second possibility.

Still, there are only a few species of Gargarini in the Afrotropical Region, a primarily

Indomalayan and Palearctic tribe (Fig. 25.1). The first Old World tribe of the other

centrotine invasion is the Beaufortianini (Fig. 25.1). Their immediate ancestor is the New

World tribe Pieltainellini, found in the mainland Neotropics. The tribe Beaufortianini

consists of Afrotropical and Indomalayan genera but the basal lineage is the genus

Imporcitor, found in the Palearctic and Indomalayan Regions. It is possible that both invasions dispersed from the Africa to India, which is thought to have been joined with

436 Somalia in northeast Africa in the late Cretaceous (Briggs 1995). Both invasions could have colonized the Indomalayan and Palearctic Regions following India’s collision with Asia, approximately 45 mya (McLoughlin 2001a).

The distribution of the gargarine genus Madlinus provides some support for this scenario. Madlinus, which is closely related to Coccosterphus, has been found only on the

Seychelle Islands. The Seychelles were closely associated with India until 65 mya.

Coccosterphus and its relatives are mostly confined to India. Based on the above scenario, the ancestors of Madlinus were subsequently confined to the Seychelles after its split with

India 65 mya. The presence of Madlinus in the Seychelles is evidence for an ancient dispersal of the gargarine lineage to India via Africa, considering the great distance between

India and the Seychelles today and the relative proximity of the Seychelles to Madagascar, which is devoid of membracids. Nevertheless, the presence of Madlinus on the Seychelles-- the only membracid collected there besides Leptocentrus--could also be explained by a recent long distance dispersal from India.

Other factors discredit an initial dispersal through the Afrotropical Region. In the

Tertiary, the New World and Africa were separated by a long distance seemingly making dispersal by any means, whether rafting or by wind, difficult. The largest centrotine genus,

Tricentrus, here placed in the Gargarini, is absent from the Afrotropical Region. Presumably some Tricentrus would be present in the Afrotropical Region, if treehoppers migrated from the New World to India through Africa. Also, the late Cretaceous connection between India and northeastern Africa may have been earlier than the hypothesized origin of membracids following the Cretaceous/Tertiary boundary. Moreover, the immediate Old World lineages following the Beaufortianini in the tree (Fig. 25.1) are primarily distributed in the

437 Indomalayan, Palearctic, and Australasian/Oceanian Regions with very few genera present in

Afrotropical Region. Finally, as mentioned previously, centrotines distributed in Gondwanan

areas are not closely related, further excluding a Gondwanan vicariant event and dispersal

through Africa.

Thirdly, it is possible that both Old World invasions were from east to west over the

Bering Land Bridge to Asia. This bridge connected North America and Asia beginning in

the mid- to late Cretaceous, and from time to time throughout the Tertiary, as a result of

continental convergence (Briggs 1995a). The geographic distributions of the larger

centrotine lineages support this scenario. The Gargarini, the eventual descendants of the one

invasion, are predominantly distributed in the Palearctic and Indomalayan Regions. The

genus Imporcitor, the first lineage of the Beaufortianini (Fig. 24.1) (the first Old World tribe resulting from the other invasion), has been recorded in India, Taiwan, and Japan (McKamey

1998a). As noted previously, all but one of the Old World centrotine tribes have

representative genera found in the Indomalayan Region (Fig. 25.1). Evans (1966a) noted that

the Indomalayan Region may be the center of origin for the Centrotinae considering the large

number of species found there. Therefore, based on the phylogeny and known distributions

of the centrotine tribes (Fig. 25.1), the Indomalayan Region appears to be a likely center of

diversification and “jumping-off point” for centrotine dispersals to other zoogeographic

regions, notably Australia and the Afrotropical Region.

Strümpel (1972a) also believed that centrotines used the Bering Land Bridge as a

dispersal route. However, he thought the Membracidae arose in Gondwana and that the

Centrotinae reached the New World from Asia by way of the Bering Land Bridge in the

438 Pleistocene. This would imply a more derived position for the New World centrotine tribes

which is not supported by the current phylogenetic analysis (Fig. 25.1).

The center of diversification for the Gargarini, the immediate descendants of one of

the Old World Invasions, is clearly the Indomalayan Region (Fig. 25.1). All gargarine

genera except one, Butragulus (McKamey 1998a) are found in the Indo-Malaysian Region.

Furthermore, 17 of the 28 gargarine genera are restricted to this Region (McKamey 1998a).

Based on the phylogenetic tree (Fig. 25.1), ancestors of the Australian treehoppers

(Terentiini) likely arrived from the Indomalayan and Palearctic Regions. Apparently

numerous angiosperm families now present in Australia invaded from southeast Asia in the

early Tertiary (Briggs 1995a). It is possible that treehoppers followed these angiosperms into

Australia. Other Australian insects, including the ground beetles (Coleoptera: Carabidae)

and some scarabs (Scarabaeidae: Dynastinae), likely dispersed into Australia from southeast

Asia (Briggs 1995a). According to Hall (1998a), northern Australia and Asia (present day

Philippines) collided approximately 25 mya, which probably resulted in a temporary land

connection. The ant genus Tetraponera likely invaded Australia from Asia 20 mya using this

land bridge (Ward 2001a). It is possible that terentiine ancestors all used this temporary land

bridge. Nonetheless, it is clear that Australia was the center of diversification for the

Terentiini; all but 3 of the 40 terentiine genera are found in the Australasian/Oceanian

Region.

The center of diversification for the tribe Maarbarini is the Indomalayan Region (Fig.

25.1) with all of the genera recorded from either India or Sri-Lanka or both (McKamey

1998a). The derived position of this tribe on the phylogeny (Fig. 24.1, 25.1) and its

immediate Indomalayan and Palearctic ancestors and relatives provide further evidence that

439 treehoppers invaded India after it collided with Asia in the mid-Cretaceous. One would

expect a closer relationship between maarbarines and Afrotropical and/or Australian tribes if

maarbarine ancestors had colonized India when it was closer to or contiguous with the other

Gondwanan continents in the late Cretaceous.

Ancestors of the Afrotropical centrotines (Xiphopoeini and Centrotini, Fig. 25.1) likely would have arrived more recently from Indomalayan ancestors. The ancestors of these derived tribes may have dispersed into Africa approximately 23 mya in the Miocene when

Africa collided with Asia. The Leptocentrini, the lineage basal to both these tribes, is widely distributed in the Old World and has significant components in the Afrotropical and

Indomalayan Regions. All of the genera in the Centrotini, the largest centrotine tribe, are found in the Afrotropical Region, with a few genera (notably the basal genus Centrotus) also

occurring in the Australasian/Oceanian, Indomalayan, and Palearctic Regions (McKamey

1998a). The Afrotropical Region, therefore, appears to be the center of diversification for

this large tribe. The Centrotini are a derived lineage with reduced hind wing venation (Fig.

25.1). Their derived position and large distance from New World centrotines in the

phylogenetic tree (Fig. 24.1, 25.1) is evidence against a historic Gondwanan relationship with

Neotropical centrotines.

A fourth possibility involves dispersal from west to east across a North Atlantic Land

Bridge that is thought to have connected the Laurasian continents in the North Atlantic from the Mesozoic to the Eocene (57.8 mya) (Briggs 1995a). This route was a possible alternative to the Bering Land Bridge or perhaps a parallel dispersal route to the Old World.

Nevertheless, if ancestral centrotines arose in tropical North America, dispersal to the Old

440 World--particularly to the Indomalayan Region--across the North Atlantic route would involve a far greater distance than the Bering Land Bridge.

Discussion. Of the four scenarios presented here, dispersal across the Bering Land

Bridge is most compelling. A number of other organisms are thought to have migrated between North America and Asia via the Bering Land Bridge in the late Cretaceous and early

Tertiary. The use of this bridge as a dispersal route to explain disjunct distributions has been hypothesized for placental mammals, salamanders, dinosaurs, and freshwater fish (Briggs

1995a). Although most dispersals over the Bering Land Bridge are thought to have occurred from Asia to North America, there are several examples of organisms dispersing from North

America to Asia (Briggs 1995a). The freshwater fish family Esocidae (pikes), distributed today in eastern North America and eastern Asia, apparently migrated a long distance from

North America to Asia based on fossil evidence (Briggs 1995a). Researchers believe that

numerous aquatic insects lineages used the land bridge as a connection between Asia and

North America. The trichopteran genus Chimarra is thought to have dispersed from South

America to Asia in the early Tertiary (Briggs 1995a).

Further evidence in support of dispersal across the Bering Land Bridge includes

records of similar floras in eastern Asia and eastern North America (Briggs 1995a).

Numerous plant genera and families show disjunct distributions among Asia and North

America. Apparently, angiosperms migrated back and forth between the two continents

using the land bridge as a dispersal route. The initial dispersal was apparently eastern but

later there were migrations of plants back to Asia from North America (Briggs 1995a). The

presence of angiosperms would have provided a constant food source for dispersing

treehoppers from North America to Asia.

441 Evidence from plant biogeography supports a possible treehopper migration from

North America to the Bering Land Bridge. In the early Tertiary, the dominant vegetation in

temperate latitudes consisted mainly of deciduous plants. At the beginning of the Eocene,

the time when the earliest known treehoppers (fossil stegaspidines) have been found, the

climate was the warmest of the entire Cenozoic, allowing tropical animals, such as

treehoppers, to invade to the north. Tropical and temperate vegetation spread northward due to this worldwide warming trend (Briggs 1995a). Several plant families, including

Cactaceae, Liliaceae, Loasaceae, Nyctaginaceae, Martyniaceae, Tecophilaceae, and

Zygophyllaceae, migrated northward from South America in the early Tertiary representing the beginnings of colonization of North America by South American tropical flora (Briggs

1995a). Indeed, centrotines have been recorded from the families Liliaceae, Nyctaginaceae, and most notably the Zygophyllaceae (Table 26.2). The tribe Centrodontini, the first centrotine lineage (Fig. 25.1), is the only treehopper group known to feed on the

Zygophyllaceae. A northward migration of treehoppers from North America to the Bering

Land Bridge is supported by these plant migrations.

Assuming the Bering Land Bridge was the dispersal route for both Old World invasions (Fig. 25.1), the treehoppers likely dispersed to the Old World and diversified in isolation without migrating back to North America. No centrotines are currently found in northern North America; the predominant North American treehopper subfamily is the

Smiliinae. Centrotines may have gone extinct in these areas or migrated to southern refugia as a result of Pleistocene glaciations. Similarly, modern day continental Europe has only three native centrotine species but may have had more prior to the Pleistocene glaciations.

Depauperate fauna in Europe may be due to extreme climatic conditions during the

442 Pleistocene glaciation. Both eastern and western North America have close to 20% more

genera of trees and shrubs endemic to their area than Europe. This discrepancy in floral

diversity has been attributed to the east/west oriented mountains in Europe that may have

prevented the migration of trees into lower, warmer latitudes during the glaciations of the

Quaternary. In North America, the major mountain ranges run north/south. Here, the woody

plants could migrate ahead of the glaciers without any barriers (Reid 1935a). According to

Huntley (1993a), the harsh environments and climates of the Quaternary period eliminated many European forest taxa. These climatic effects could also have severely reduced treehopper numbers.

Summary and Conclusions

According to the fossil record and recent phylogenetic analyses, Membracidae likely originated in the New World during the Tertiary, possibly near the time of the hypothesized

extraterrestrial impact 65 mya. Other evidence for a Tertiary origin include the absence of

treehoppers in Madagascar and New Zealand, the historic connection of India with

Madagascar and the high species richness of India (including the tribe Maarbarini), and the distantly related centrotine faunas of the Afrotropical Region, Australia, and South America.

These observations do not correspond to patterns that would be expected if centrotines originated in Gondwana, prior to the splitting of the land masses. The highly endemic

Monobelini and Nessorhinini of the Caribbean occupy a basal position in the phylogenetic analysis. The hypothesized dispersal of their ancestors to the Caribbean over an island archipelago at the Cretaceous/Tertiary border also supports a treehopper origin near this time.

443 Centrotines are found in all major zoogeographic regions: The Afrotropical, the

Nearctic, Neotropical, Palearctic, Indomalayan, and Australasian/Oceanian Regions. While a few tribes are widely distributed, many occur primarily in one or two major zoogeographic regions. The distinctive fauna of the Indomalayan, Australian/Oceanian, Afrotropical, and

Caribbean regions are especially notable. All of the Old World centrotine tribes, except the

Xiphopoeini, have representatives in the Indomalayan Region.

Based on the phylogenetic analysis presented here, the early centrotines, apparently widely abundant in North America, dispersed twice to the Caribbean and twice to the Old

World. Indeed, each of the two major centrotine clades has a basal lineage that dispersed to the Caribbean Region and also a more derived clade that dispersed to the Old World.

Although the pathways and methods of dispersal are unclear, the repetitive pattern of dispersals in the two groups suggests that the timing, routes, and mechanisms may have been similar in each clade. It is possible that the dispersals to the Old World occurred over the

Bering Land Bridge, accounting for the Indomalayan and Palearctic distributions of basal centrotine lineages. Based on the phylogeny and known distributions of the centrotine tribes, the Indomalayan Region is the most plausible center of diversification and “jumping-off point” for centrotine dispersals to other zoogeographic regions, notably Australasian and

Afrotropical Regions.

444 Figure 25.1. Distributions of centrotine tribes. Geographic regions are noted on the tribal phylogeny (modified from Fig. 24.1). Asterisks (*) denote obvious centers of generic diversification for those taxa known from multiple geographic regions. Plus signs (+) denote the region of the basal genus, if apparent.

445 26: CENTROTINE ANT ASSOCIATIONS, HOST PLANTS, AND CHROMOSOME

NUMBERS

Introduction

Although primarily recognized for their exaggerated morphological characteristics,

treehoppers are also known for their complex life history patterns including ant-mutualisms,

maternal care, sound communication, and host plant specialization. Wood summarized

behavioral patterns in the New World Membracidae (1993a), and Ananthasubramanian and

Ananthakrishnan (1975a, 1975b), Ananthasubramanian (1996a), and Capener (1962a, 1968a)

discussed similar characteristics for Indian and African membracids, respectively.

Ant-membracid mutualisms, where ants feed on the excreted treehopper honeydew

and in exchange provide the homopterans defense against natural enemies, are well

documented (Ananthasubramanian 1996a, Hölldobler and Wilson 1990a, Panda 1968a).

Ant-attendance is common in both Old World (Table 26.1) and New World Membracidae

(Wood 1993a).

Wood (1993a) described different levels of maternal care in treehoppers. Maternal

care occurs in four of the seven New World subfamilies and in approximately half of the

tribes in the highly derived subfamilies Membracinae and . In addition to egg

guarding, some New World groups aggressively defend their offspring from predators and parasitoids (Wood 1993a, McKamey and Deitz 1996a).

The life history traits of the Centrotinae, a group primarily distributed in the Old

World, have not been examined in an evolutionary context. Firstly, it is unclear if ant- attendance is an ancestral trait for centrotines and if ant-attendance and maternal care (egg

446 guarding) are correlated. Secondly, there are many questions regarding the relationship between centrotines and their host plants. What were the original centrotine host plant families and what are the subsequent patterns of host plant exploitation? Baseline information on centrotine host plant families is presented here. Finally, centrotine chromosome data was gathered to determine the likely ancestral chromosome number, what derivations occurred, and the usefulness of chromosomes as phylogenetic characters.

In order to examine these evolutionary patterns, centrotine behavioral and host plant patterns, as well as male chromosome numbers, are tabulated by genus and tribe and are optimized as unweighted characters on a tribal phylogeny (modified from Fig. 24.1).

Although Ananthasubramanian (1996a) provided a summary of aggregation behaviors among the Centrotinae, data are lacking for too many taxa to establish evolutionary trends.

Methods

Published records of centrotine genera reported to be ant-attended, host plant families, and male chromosome numbers are summarized in Tables 26.1-26.3. Sources are given in each table. The phylogeny of the 23 centrotine tribes was modified from the tree in

Fig. 24.1 to serve as a framework for mapping the ecological, behavioral, and chromosomal features. Ant-attendance, maternal care in the form of egg guarding, host plant families, and chromosome numbers were treated as unweighted characters (i.e., each host plant family was treated as a separate character in the analysis) and scored for each tribe in DELTA (Dallwitz et al. 1999a). Characters were scored as present if at least one genus in a tribe was reported as having the trait in the literature. For example, although the genus Coccosterphus is the only gargarine genus listed to feed on the family Nyctaginaceae, this host character was

447 scored as present for the tribe Gargarini. Host plant information is unknown for the tribes

Choucentrini, Micreunini, and Pieltainellini and these were scored with a question mark (?).

Otherwise, if a host plant family is not recorded for a tribe, it was scored as absent. Tribes

and genera without published information on ant-attendance or chromosome numbers were

scored with a question mark (?). The presence or absence of each of these characters for the

23 centrotine tribes was optimized in the parsimony program Winclada (Nixon 1999a) using

the fast optimization procedure. The gain and loss of these characters were then mapped

onto the tribal phylogeny (Figs. 26.1-26.3).

Chromosome numbers for Chinese taxa follow Tian and Yuan (1997a: Table 1)

except that Tricentrus acuticornis Funkhouser should be male 2n=10 (1997a: 156); some

numbers in Yuan and Chou’s (2002a) review are ambiguous.

Results and Discussion

Ant-attendance and Maternal Care. Ant-attendance has been reported from 28

centrotine genera and 11 of 23 centrotine tribes: Beaufortianini, Boocerini, Centrocharesini,

Ebhuloidesini, Hypsaucheniini, Maarbarini, Oxyrhachini, and the four largest tribes in terms

of genera, Centrotini, Gargarini, Leptocentrini, and Terentiini (Table 26.1). The tribe

Gargarini has the largest number of ant-attended genera with 8, although “all” Australasian

(Terentiini) and South African (including some Beaufortianini, Boccharini, Centrotini,

Leptocentrini, Oxyrhachini, and Xiphopoeini) nymphs are said to be ant-attended. The New

World tribe Centrodontini is the only centrotine group reported in the literature as not attended by ants (Dietrich et al. 2001a).

448 Ancestral state reconstruction using parsimony resulted in a single derivation of ant-

attendance in the common ancestor of Monobelini + Boocerini + Gargarini and the remaining

19 centrotine tribes (Fig. 26.1). Ant-attendance, however, is an ambiguous trait in the 11

tribes (denoted with a “?’ in Fig. 26.1) where attendance information is unknown.

Therefore, although ant-attendance is ambiguous for many centrotine tribes, it appears to be an ancestral character for a majority of the Centrotinae.

Lin (2003a), in a study of the treehopper subfamily Membracinae, concluded that ant- attendance precedes the derivation of maternal care (egg guarding) but that the gain of maternal care is accompanied by the loss of ant-attendance. These findings supported the

hypothesis of Wood (1984a) that egg guarding in treehoppers is correlated with the absence

of ant-attendance. Conversely, according to Tallamy and Schaefer (1997a), maternal care in

the is frought with increased costs to the mother and young including increased

exposure to predators and lower fecundity. Thus, many hemipteran groups have acquired traits such as ant-attendance to lower these costs.

The results presented here for the Centrotinae (Fig. 26.1) do not reflect either of these

conclusions. Maternal care in the form of egg guarding appears to be apomorphic in the

Centrotinae. Tribes within the well supported clade Ebhuloidesini + Oxyrhachini +

Terentiini + Hypsaucheniini + Centrocharesini all have ant-attended genera (Table 26.1) and are the only centrotines known to exhibit maternal care in the form of egg-guarding (Fig.

26.1) (Stegmann and Linsenmair 2002a). (Hinton 1977a listed Platycentrus acuticornis as

subsocial but it is unclear from the figure if the female is guarding nymphs or eggs. Thus, for

the purposes of this work, Platycentrus is not considered to show maternal care in the form

of egg guarding). This common trait, unique to these tribes, provides independent support of

449 their relatedness. In centrotines, therefore, ant-attendance and maternal care in the form of egg guarding appear to occur concurrently. Cryan (1999a) also found sociality and ant-

attendance to occur together on a phylogenetic tree of the Membracidae derived from

combined morphological and molecular data. Nevertheless, as found in the Membracinae

(Lin 2003a), maternal care is preceded by ant-attendance on the centrotine phylogenetic tree

(Fig. 26.1).

Apparently, females of some Membracinae, a derived membracid subfamily,

developed the trait of defending eggs and did not require additional ant defense (Lin 2003a),

but the females of some Centrotinae, a more primitive membracid subfamily, guard their

eggs and have ant herders that provide additional defense. Clearly, further data on the life

history of centrotines is needed to further elucidate the relationships between maternal care

and ant-attendance.

Host plants. Centrotines are documented from 105 different host plant families

(Table 26.2). Based on ancestral state reconstruction by parsimony, most of the plant family

derivations in the phylogenetic tree (Fig. 26.2) are concentrated at the tips, suggesting many

centrotine taxa only recently adapted to these hosts. Apparent losses of host plants could

reflect the absence of a plant family in a tribe’s geographic range. These patterns, especially

in the large tribes Gargarini, Terentiini, Leptocentrini, and Centrotini, suggest an increasing

trend towards generalization in host use although there are many examples of novel

adaptations of hosts in centrotine tribes. Despite this observable trend in host generalization

in centrotine tribes, these patterns should be examined based on generic-level data to avoid

over-generalizations on centrotine/host relationships.

450 Excluding the New World tribe Centrodontini, most centrotine tribes are extremely polyphagous. The North American genera of the Centrodontini, Centrodontus, Multareis, and Multareoides, feed only on a single plant species, the creosote bush, Larrea divaricata tridentata (DC) Felger and Lowe, in the family Zygophyllaceae. Twelve of 23 centrotine tribes, however, have at least 5 or more known host plant families. Three of the four largest centrotine tribes in numbers of genera have the most reported host plant families (Table 26.2,

Fig. 26.2). Sixty plant families are listed for the Gargarini, 54 for the Leptocentrini, and 40 for the Centrotini. Within the Gargarini, the genus Gargara is known from 35 host plant families and Tricentrus is known from 44 families. The species Centrotus cornutus

(Centrotini) is recorded from 16 different plant families: Aceraceae, Betulaceae, Compositae,

Corylaceae, Cornaceae, Ericaceae, Euphorbiaceae, Fagaceae, Juglandaceae, Leguminosae,

Moraceae, Onagraceae, Pinaceae, Rhamnaceae, Rosaceae, and Salicaceae (Table 26.2).

Wood (1993a) also noted the widespread polyphagy in tropical Old World centrotines and

Central and South American membracids. In contrast, most North American temperate membracids are found on a single host genus (Wood 1993a).

In addition to being polyphagous, many centrotines show adaptations to novel plant families. Forty plant families are hosts for only a single centrotine genus or tribe. Centrotus

(Centrotini) is the only centrotine genus found on the plant families Aceraceae, Cornaceae,

Corylaceae, Onagraceae, while Gargarini is the only centrotine tribe reported to feed on

Alangiaceae, Cannabaceae, Coriariaceae, Elaeagnaceae, Hamamelidaceae, Myristicaceae,

Nyctaginaceae, Oleaceae, Rhizophoraceae, Saxifragaceae, and Thymelaeaceae. The tribe

Nessorhinini, a primitive group based on the phylogenetic analysis (Fig. 24.1), is the only centrotine group found on the Malpighiaceae. These patterns suggest recent adaptations by

451 tribes to plant hosts, however, in most cases, the same tribes include genera that also feed on

a number of other host plant families. Conversely, the Leptocentrini and Gargarini share 37

host plant families even though they are not closely related (Fig. 24.1), while the more

closely related Centrotini and Leptocentrini share 23 host plant families. These patterns may reflect convergent adaptations to host plants.

The Leguminosae (hosts for 42 centrotine genera, 13 tribes), Solanaceae (22 genera,

10 tribes), Euphorbiaceae (19 genera, 8 tribes), and Compositae (18 genera, 7 tribes), are

exploited at more basal positions in the tree and appear to be favored centrotine hosts.

Moreover, the Solanaceae and Leguminosae are likely the two original host plant families

(Fig. 26.2) for most centrotines except the Centrodontini. More than half of the centrotine

tribes have genera reported to feed on the host plant family Leguminosae. Ancestral state

reconstruction by parsimony indicates 2 independent gains of legume feeding and 5 losses,

with the most prominent gain in the common ancestor of Monobelini + Boocerini +

Gargarini and the remaining 19 centrotine tribes (Fig. 26.2). With the exception of

Ebhuloidesini, all tribes in the clade Centrocharesini + Terentiini + Ebhuloidesini +

Oxyrhachini + Hypsaucheniini include some genera that feed on the Euphorbiaceae.

Several closely related tribes feed on the same host plant family(s), providing

independent support of their relatedness. For example, the related tribes Lobocentrini,

Leptobelini, Maarbarini, Leptocentrini, and Centrotini all have genera that feed on plants

within the family Fagaceae. Furthermore, only the Gargarini and the related Monobelini are

known to feed on the family Araceae.

Male Chromosome Numbers. Chromosome numbers have only been examined in 8

centrotine tribes, the male number being reported universally. Therefore, many ambiguous

452 gains were plotted using ancestral state optimization. Data is insufficent to conclude on the usefulness of male chromosome numbers as phylogenetic characters in Centrotinae.

Nevertheless, 2n=21 may have been the original centrotine chromosome number (Fig. 26.3).

Indeed, Kirillova’s (1987a) review gave 2n=21 as the mode among all treehoppers and 17 as the mode among leafhoppers (Cicadellidae). This chromosome number is apparently lost in the Ebhuloidesini, Hypsaucheniini, and Centrotini. Furthermore, the large tribe Gargarini independently acquired 5 different male chromosome numbers. The closely related tribes

Centrotini, Maarbarini, and Leptocentrini all have genera with a male chromosome number of 2n=19, while the Ebhuloidesini and Hypsaucheniini have a number of 2n=17, providing independent corroboration of their relatedness. The sex chromosome system in centrotines is primarily XO:XX although Tian and Yuan (1997a) report a XY:XX system in two gargarine species: Nondenticentrus curvispineus Chou and Yuan and Tricentrus acuticornis

Funkhouser.

453 Table 26.1. Centrotine genera reported to be tended by ants with citation. Note: not all species within the genus are necessarily ant attended.

Tribe: Genus (citation)

BEAUFORTIANINI: Dukeobelus (Capener 1952b).

BOOCERINI: Ischnocentrus (Loye 1992a; Olmstead and Wood 1990a).

CENTROCHARESINI: Centrochares: (Stegmann and Linsenmair 2002a).

CENTROTINI: Anchon (Ananthasubramanian 1984a, 1987a; Ayyar 1937a; Capener 1953b; Lamborn, 1914a); Centrotus (Green 1900a); Leprechaunus (Capener 1950a); Monocentrus (Kenne and Dejean 1997a).

EBHULOIDESINI: Ebhul (Azhar 1992a, Funkhouser 1951a).

GARGARINI: Butragulus (Hayashi and Endo 1985b); Coccosterphus (Ananthasubramanian and Ananthakrishnan 1975a); Eucoccosterphus (Ananthasubramanian and Ananthakrishnan 1975a); Chitra and Ananthasubramanian 1999a); Gargara (Hayashi and Endo 1985b; Ananthasubramanian and Ananthakrishnan 1975a); Enslin 1911a, 1911b; Funkhouser 1919d, 1951a; Panda 1968a; Weiss and Dickerson 1921a); Machaerotypus (Hayashi and Endo 1985b); Parayasa (Ananthasubramanian and Ananthakrishnan 1975a; Ananthasubramanian 1987a); Tsunozemia (Hayashi and Endo 1985b); Tricentrus (Ananthasubramanian and Ananthakrishnan 1975a); Funkhouser 1919d).

HYPSAUCHENIINI: Gigantorhabdus (Ushijima and Nagai 1979a); Hybandoides (Stegmann and Linsenmair 2002a); Hypsauchenia (Funkhouser 1951a); Pyrgauchenia (Melichar 1914b).

LEPTOCENTRINI: Hemicentrus (Melichar 1914b); Leptocentrus (Ananthasubramanian and Ananthakrishnan 1975a; Ananthasubramanian and Ramachandran 1990a; Boulard 1969a; Dejean and Bourgoin 1998a; Funkhouser 1951a; Kenne and Dejean 1997a; Panda 1968a; Panda and Behura 1957a; Lamborn 1914a); Otinotus (Ananthasubramanian and Ananthakrishnan 1975a; Behura 1951a, 1955a, 1962a; Behura and Panda 1959a; Behura and Sengupta 1951a; Behura and Sinha 1951a; Panda 1968a; Panda and Behura 1956a).

MAARBARINI: Telingana (Ananthasubramanian and Ananthakrishnan 1975a).

OXYRHACHINI: Oxyrhachis (Adenuga and Adeboyeku 1987a; Gersani and Degen 1988a; Lamborn 1914a; Panda 1968a; Panda and Behura 1957a; Singh 1986a; Thakur 1973a).

TERENTIINI: Cebes (Cookson and New 1980a); Sextius (Buckley 1982a, 1983a; Cookson and New 1980a; Froggatt 1902a; Goding 1903a; Kitching and Filshie 1974a; Hölldobler and Wilson 1990a); Terentius (Kitching 1987a); all Australian nymphs and adults (Carver et al. 1991a; Evans 1966a; Tillyard 1926d).

South African nymphs (all ?) (Jacobs 1985a).

454 Table 26.2. List of host plant families and treehopper genera. Numbers correspond to labels in Fig. 25.2. Host plant families are based on the website: http://www.rbgkew.org.uk/data/vascplnt.html and Brummitt (1992a). Treehopper host plant data taken from: Ahmad 1975a, 1976a, 1978a, 1988a; Alma 1999a; Ananthasubramanian 1987a, 1996a; Ananthasubramanian and Ananthkrishnan 1975a; Ananthasubramanian et al. 1990a; Ayyanna et al. 1978a; Ballou 1935a, 1936b; Behura 1951a, 1962a; de Bergevin 1934b; Boulard 1966a, 1968b, 1968d, 1969a, 1969c, 1971c, 1979i, 1979j, 1983b; Capener 1951a, 1962a, 1966a, 1968a, 1968b, 1968c, 1971a, 1972a, 1972b, 1972c; Chatterjee 1933c; Chatterjee and Bose 1933a; Cheo 1935b; Davli et al. 1992a; Day 1999a; Dietrich et al. 2001a; Funkhouser 1919a, 1919d, 1927b, 1935b; Goding 1893d; Gunji and Nagai 1994a; Günthart 1987b; Hargreaves 1937a; Hayashi and Endo 1985b; Helmore 1982a; Hoffmann 1942a; Jankovic 1975a; Kirkaldy 1906c; Koningsberger 1915a; Krauss 1965a; Lamborn 1914a; Lodos and Kalkandelen 1981a; Loye 1992a; Matsumura 1912a; Melichar 1914b; Mohammad and Ahmad 1991a, 1995a; Morley 1905b; Okáli and Janský 1998a; Panda and Behura 1957a; Peláez 1941b; Plummer 1935a; Ramos 1957a, 1979a; Rao et al. 1988a; Raut and Bhattacharya 1999a; Richter 1942c; Smithers 1985a; Swezey 1942a; Wolcott 1941a; Yousuf et al. 1997a; Yuan and Chou 2002a.

Host plant family Tribe (Genus) 1. Aceraceae Centrotini (Centrotus) 2. Actinidiaceae Leptobelini (Leptobelus) 3. Adiantaceae Leptocentrini (Leptocentrus) 4. Alangiaceae Gargarini (Tricentrus) 5. Alliaceae Leptocentrini (Otinotus); Maarbarini (Telingana) 6. Amaranthaceae Gargarini (Gargara, Tricentrus); Leptocentrini (Leptocentrus); Oxyrhachini (Oxyrhachis) 7. Anacardiaceae Boocerini (Campylocentrus); Centrotypini (Centrotypus); Gargarini (Tricentrus); Leptocentrini (Hemicentrus, Leptocentrus, Otinotus); Monobelini (Monobelus); Nessorhinini (Nessorhinus) 8. Annonaceae Hypsaucheniini (Gigantorhabdus); Leptocentrini (Leptocentrus, Otinotus) 9. Apocynaceae Centrotini (Monocentrus); Gargarini (Tricentrus); Leptocentrini (Leptocentrus, Otinotus) 10. Araceae Gargarini (Tricentrus); Monobelini (Monobelus) 11. Araliaceae Gargarini (Machaerotypus); Leptocentrini (Leptocentrus) 12. Aristolochiaceae Leptobelini (Leptobelus) 13. Asclepiadaceae Boocerini (Campylocentrus); Gargarini (Tricentrus); Leptocentrini (Leptocentrus, Otinotus) 14. Balanitaceae Oxyrhachini (Oxyrhachis) 15. Balsaminaceae Leptocentrini (Otinotus) 16. Betulaceae Centrotini (Centrotus); Gargarini (Butragulus, Gargara, Machaerotypus, Tricentrus) 17. Bignoniaceae Gargarini (Coccosterphus, Gargara, Tricentrus); Leptocentrini (Otinotus); Oxyrhachini (Oxyrhachis) 18. Bixaceae Leptocentrini (Leptocentrus) 19. Bombacaceae Leptocentrini (Hemicentrus, Leptocentrus); Gargarini (Tricentrus) 20. Bromeliaceae Centrotini (Hamma) 21. Buddlejaceae Oxyrhachini (Oxyrhachis) 22. Cannabaceae Gargarini (Gargara) 23. Capparaceae Leptocentrini (Leptocentrus, Otinotus) 24. Caprifoliaceae Maarbarini (Telingana) 25. Caricaceae Centrotini (Hamma, Monocentrus) 26. Casuarinaceae Gargarini (Tricentrus); Leptocentrini (Leptocentrus, Otinotus); Oxyrhachini (Oxyrhachis); Terentiini (Acanthuchus, Terentius) 27. Celastraceae Gargarini (Gargara, Parayasa); Leptocentrini (Periaman) 28. Chenopodiaceae Terentiini (Acanthucalis) 29. Combretaceae Centrotini (Distanobelus, Platybelus); Gargarini (Gargara); Leptocentrini (Leptocentrus, Otinotus, Umfilianus); Monobelini (Monobelus) Continued.

455 Table 26.2 cont’d. Host plant family Genus 30. Compositae Centrotini (Anchon, Centrotus, Distanobelus, Leprechaunus); Gargarini (Butragulus, (Asteraceae) Coccosterphus, Gargara, Machaerotypus, Tricentrus, Tsunozemia); Hypsaucheniini (Hypsauchenia, Hypsolyrium, Jingkara); Leptobelini (Leptobelus); Leptocentrini (Leptocentrus, Otinotus); Monobelini (Monobeloides); Oxyrhachini (Oxyrhachis) 31. Connaraceae Leptocentrini (Leptocentrus) 32. Convolvulaceae Boocerini (Campylocentrus); Centrotini (Anchon); Leptobelini (Leptobelus), Leptocentrini (Leptocentrus) 33. Coriariaceae Gargarini (Tricentrus) 34. Cornaceae Centrotini (Centrotus) 35. Corylaceae Centrotini (Centrotus) 36. Cruciferae Gargarini (Gargara); Leptocentrini (Otinotus) 37. Cucurbitaceae Boocerini (Campylocentrus) 38. Cupressaceae Maarbarini (Telingana) 39. Dryopteridaceae Maarbarini (Telingana) 40. Ebenaceae Gargarini (Gargara, Machaerotypus); Oxyrhachini (Oxyrhachis) 41. Elaeagnaceae Gargarini (Erecticornia, Gargara, Maurya, Tricentrus) 42. Ericaceae Centrotini (Centrotus); Gargarini (Butragulus, Machaerotypus) 43. Euphorbiaceae Centrocharesini (Centrochares); Centrotini (Anchon, Centrotus, Eumonocentrus, Hamma, Monocentrus); Gargarini (Coccosterphus, Eucoccosterphus, Gargara, Sipylus, Tricentrus); Hypsaucheniini (Hypsauchenia, Hypsolyrium); Leptocentrini (Leptocentrus, Otinotus); Oxyrhachini (Oxyrhachis); Terentiini (Pyrgonota, Terentius); Xiphopoeini(Xiphopoeus) 44. Fagaceae Centrotini (Centrotus); Gargarini (Erecticornia, Gargara, Machaerotypus, Maurya, Tricentrus); incertae sedis (Elaphiceps); Leptobelini (Leptobelus); Leptocentrini (Leptocentrus); Lobocentrini (Arcuatocornum, Truncatocornum); Maarbarini (Telingana) 45. Flacourtiaceae Ebhuloidesini (Ebhul); Leptocentrini (Hemicentrus, Otinotus) 46. Gnetaceae Leptobelini (Leptobelus) 47. Gramineae Boocerini (Campylocentrus); Centrotini (Anchon); Gargarini (Tricentrus); Leptocentrini (Leptocentrus); Maarbarini (Telingana); Oxyrhachini (Oxyrhachis); Terentiini (Pogonella, Strzeleckia); Xiphopoeini (Xiphopoeus) 48. Guttiferae Boocerini (Ischnocentrus); Gargarini (Tricentrus); Leptocentrini (Otinotus) 49. Hamamelidaceae Gargarini (Tricentrus) Continued. 50. Hernandiaceae Leptocentrini (Leptocentrus) 51. Juglandaceae Centrotini (Centrotus); Gargarini (Machaerotypus, Tricentrus) 52. Labiatae Leptocentrini (Leptocentrus, Otinotus); Nessorhinini (Nessorhinus) 53. Lauraceae Boccharini (Lanceonotus); Ebhuloidesini (Ebhul); Gargarini (Gargara); Leptocentrini (Hemicentrus, Otinotus); Oxyrhachini (Oxyrhachis); Terentiini (Acanthuchus) 54. Lecythidaceae Terentiini (Terentius) 55. Leguminosae Beaufortianini (Centruchus); Centrocharesini (Centrochares); Centrotini (Fabaceae); (Acanthophyes, Anchon, Anchonobelus, Centrotus, Cornutobelus, Distanobelus, (Leguminosae- Eumonocentrus, Hamma, Monocentrus, Rachinotus, Stalobelus, Tiberianus, Tricoceps); Caesalpinioideae); Gargarini (Butragulus, Coccosterphus, Eucoccosterphus, Gargara, Machaerotypus, (Leguminosae- Parayasa, Tricentrus); Hypsaucheniini (Jingkara); Leptobelini (Leptobelus); Mimosoideae); Leptocentrini (Hemicentrus, Leptocentrus, Otinotus); Monobelini (Monobelus); (Leguminosae- Nessorhinini (Nessorhinus); Oxyrhachini (Oxyrhachis); Platycentrini (Platycentrus, Papilionoideae) Tylocentrus); Terentiini (Acanthuchus, Anzac, Cebes, Ceraon, Eufairmairia, Eufrenchia, Pogonella, Sarantus, Sextius); Xiphopoeini (Xiphopoeus) 56. Liliaceae Centrotini (Anchon, Tricoceps); Gargarini (Gargara); Leptocentrini (Leptocentrus) 57. Lythraceae Gargarini (Eucoccosterphus, Gargara, Tricentrus); Leptocentrini (Otinotus) 58. Magnoliaceae Hypsaucheniini (Hypsauchenia); Leptocentrini (Leptocentrus, Otinotus, Periaman) 59. Malpighiaceae Nessorhinini (Nessorhinus, Orthobelus) Continued.

456 Table 26.2 cont’d. Host plant family Genus 60. Malvaceae Centrotini (Hamma); Gargarini (Gargara, Tricentrus); Hypsaucheniini (Jingkara); Leptocentrini (Leptocentrus); Nessorhinini (Nessorhinus); Terentiini (Alosextius) 61. Melastomataceae Boocerini (Ischnocentrus); Ebhuloidesini (Ebhul), Gargarini (Gargara, Sipylus, Tricentrus); Hypsaucheniini (Pyrgauchenia); Leptocentrini (Leptocentrus, Nilautama) 62. Meliaceae Gargarini (Gargara, Tricentrus); Leptocentrini (Leptocentrus) 63. Moraceae Centrotini (Centrotus, Eumonocentrus); Centrotypini (Centrotypus); Ebhuloidesini (Ebhul); Gargarini (Eucoccosterphus, Gargara, Machaerotypus, Tricentrus); Leptocentrini (Leptocentrus, Otinotus); Monobelini (Monobelus); Nessorhinini (Nessorhinus); Oxyrhachini (Oxyrhachis); Terentiini (Pogonotypellus) 64. Moringaceae Gargarini (Gargara); Leptocentrini (Leptocentrus, Otinotus) 65. Myristicaceae Gargarini (Tricentrus) 66. Myrtaceae Gargarini (Tricentrus); Leptocentrini (Otinotus); Nessorhinini (Nessorhinus); Oxyrhachini (Oxyrhachis); Terentiini (Sextius, Acanthuchus, Ceraon, Eufairmairia, Eufairmairiella, Eufrenchia) 67. Nyctaginaceae Gargarini (Coccosterphus) 68. Olacaceae Centrotini (Anchon, Monocentrus) 69. Oleaceae Gargarini (Gargara, Tricentrus) 70. Onagraceae Centrotini (Centrotus) 71. Orchidaceae Leptocentrini (Leptocentrus) 72. Oxalidaceae Centrotini (Zanzia); Gargarini (Tricentrus) 73. Palmae Centrotini (Monocentrus); Leptocentrini (Leptocentrus) 74. Passifloraceae Leptocentrini (Leptocentrus) 75. Phytolaccaceae Boocerini (Campylocentrus); Nessorhinini (Nessorhinus) 76. Pinaceae Centrotini (Centrotus); Gargarini (Gargara, Machaerotypus, Maurya, Tricentrus) 77. Piperaceae Centrotini (Monocentrus); Gargarini (Tricentrus); Leptocentrini (Leptocentrus) 78. Plumbaginaceae Terentiini (Pogonella) 79. Polygonaceae Centrotini (Tricoceps); Gargarini (Gargara, Tricentrus); Leptocentrini (Leptocentrus); Terentiini (Cebes) 80. Proteaceae Beaufortianini (Dukeobelus); Oxyrhachini (Oxyrhachis); Terentiini (Acanthuchus, Otinotoides, Pogonella, Sertorius, Terentius) 81. Ranunculaceae Centrotini (Anchon) 82. Rhamnaceae Centrotini (Acanthophyes, Centrotus, Distanobelus); Centrotypini (Centrotypus); Gargarini (Gargara); Leptocentrini (Leptocentrus, Otinotus); Oxyrhachini (Oxyrhachis) 83. Rhizophoraceae Gargarini (Tricentrus) 84. Rosaceae Centrotini (Anchon, Centrotus, Daconotus); Gargarini (Butragulus, Machaerotypus, Maurya, Pantaleon, Tricentrus); Leptobelini (Leptobelus); Maarbarini (Telingana); Terentiini (Acanthuchus) 85. Rubiaceae Boocerini (Campylocentrus); Centrotini (Euceropsila, Eumonocentrus, Hamma, Monocentrus); Centrotypini (Centrotypus); Ebhuloidesini (Ebhul); Gargarini (Eucoccosterphus, Tricentrus); Leptocentrini (Leptocentrus, Otinotus); Nessorhinini (Nessorhinus) 86. Rutaceae Centrotini (Hamma, Monocentrus); Gargarini (Gargara, Machaerotypus); Leptocentrini (Leptocentrus, Otinotus); Nessorhinini (Nessorhinus); Terentiini (Pogonella) 87. Salicaceae Centrotini (Centrotus); Gargarini (Gargara, Machaerotypus, Tricentrus); Hypsaucheniini (Hypsauchenia) 88. Salvadoraceae Leptocentrini (Leptocentrus) 89. Santalaceae Centrotypini (Centrotypus); Gargarini (Eucoccosterphus, Coccosterphus, Gargara, Tricentrus); Leptocentrini (Leptocentrus, Otinotus); Maarbarini (Pogon); Oxyrhachini (Oxyrhachis) Continued.

457 Table 26.2 cont’d. Host plant family Genus 90. Sapindaceae Centrotini (Anchon); Gargarini (Tricentrus) 91. Sapotaceae Monobelini (Brachycentrotus) 92. Saxifragaceae Gargarini (Antialcidas, Pantaleon) 93. Solanaceae Beaufortianini (Beaufortiana); Boocerini (Ischnocentrus); Centrotini (Anchon, Eumonocentrus); Gargarini (Coccosterphus, Eucoccosterphus, Gargara, Parayasa, Tricentrus); Leptocentrini (Leptocentrus, Otinotus); Maarbarini (Telingana); Monobelini (Monobelus); Nessorhinini (Nessorhinus); Oxyrhachini (Oxyrhachis); Terentiini (Neocanthuchus, Oxyrhachis, Pogonella, Pogonotypellus, Rentzia, Sarantus, Terentius) 94. Sterculiaceae Centrotini (Eumonocentrus, Hamma, Monocentrus, Stalobelus); Leptocentrini (Leptocentrus); Oxyrhachini (Oxyrhachis) 95. Styracaceae Hypsaucheniini (Hypsauchenia); Leptobelini (Leptobelus) 96. Tamaricaceae Gargarini (Gargara); Leptocentrini (Leptocentrus, Otinotus); Oxyrhachini (Oxyrhachis) 97. Theaceae Centrotini (Stalobelus); Gargarini (Machaerotypus, Tricentrus) 98. Thymelaeaceae Gargarini (Gargara); Hypsaucheniini (Jingkara) 99. Tiliaceae Centrotini (Anchon, Eumonocentrus, Hamma, Leprechaunus, Monocentrus); Gargarini (Butragulus, Gargara, Tricentrus); Leptocentrini (Leptocentrus, Otinotus) 100. Ulmaceae Centrotini (Anchon, Leprechaunus, Monocentrus); Gargarini (Butragulus, Gargara, Machaerotypus, Tricentrus); Leptocentrini (Otinotus); Oxyrhachini (Oxyrhachis) 101. Urticaceae Centrotini (Anchon, Mitranotus, Monocentrus); Leptocentrini (Leptocentrus, Otinotus) 102. Verbenaceae Gargarini (Gargara, Tricentrus); Leptocentrini (Leptocentrus, Otinotus); Oxyrhachini (Oxyrhachis) 103. Vitaceae Gargarini (Gargara, Tricentrus); Nessorhinini (Nessorhinus) 104. Zingiberaceae Centrotini (Kallicrates) 105. Zygophyllaceae Centrodontini (Centrodontus, Multareis, Multareoides)

458 Table 26.3. Chromosome numbers (2n) of male centrotines.

Male 2n Taxa and citations 2n=10 Gargarini: Tricentrus (Tian and Yuan 1997a). 2n=13 Gargarini: Tricentrus (Tian and Yuan 1997a). 2n=17 Centrotini: Anchon (Kirillova 1988a; Parida and Dalua 1981a). Ebhuloidesini: Ebhul (Tian and Yuan 1997a). Hypsaucheniini: Jingkara (Tian and Yuan 1997a). 2n=19 Centrotini: Centrotus (Halkka 1959a, 1962a; Kirillova 1988a). Gargarini: Coccosterphus (Bhattacharya and Manna 1973a; Kirillova 1988a); Gargara (Bhattacharya and Manna 1967a, 1973a; Halkka 1959a, 1962a; Kirillova 1988a; Menon 1958a; Parida and Dalua 1981a; Ray-Chaudhuri et al. 1967a; Tian and Yuan 1997a); Tricentrus (Ahmad and Yasmeen 1980a; Bhattacharya and Manna 1973a; Kirillova 1988a; Parida and Dalua 1981a; Tian and Yuan 1997a). Ebhuloidesini: Ebhul (Tian and Yuan 1997a). Leptocentrini: Leptocentrus substitutus (Halkka 1962a; Menon 1959a). Maarbarini: Telingana (Kirillova 1988a; Sharma et al. 1964a). 2n=20 Gargarini: Nondenticentrus (Tian and Yuan 1997a). 2n=21 Boocerini: Boocerus (Halkka 1964a; Kirillova 1988a). Gargarini: Coccosterphus (Bhattacharya and Manna 1967a); Pantaleon (Tian and Yuan 1997a); Tricentrus (Kirillova 1988a; Parida and Dalua 1981a; Tian and Yuan 1997a). Leptocentrini: Hemicentrus (Tian and Yuan 1997a); Leptocentrus (Banerjee 1958a; Bhattacharya and Manna 1967a, 1973a; Halkka 1959a; Kirillova 1988a; Parida and Dalua 1981a; Rao 1956a; Tian and Yuan 1997a); Otinotus (Bhattacharya and Manna 1967a, 1973a; Halkka 1959a, 1962a; Kirillova 1988a; Menon 1958a; Parida and Dalua 1981a). Maarbarini: Pogon (Sharma et al. 1964a); Telingana (Sharma et al. 1964a). Oxyrhachini: Oxyrhachis (Abrar and Ahmad 1975a; Banerjee 1958a; Bhattacharya and Manna 1967a, 1973a; Biswas and Bhattacharya 1989a; Halkka 1959a, 1962a; Kirillova 1988a; Menon 1958a; Parida and Dalua 1981a; Rao 1956a; Sharma et al. 1964a; Tian and Yuan 1997a). Terentiini: Eufairmairia (Whitten 1965a; Kirillova 1988a); Sextius (Kirillova 1988a; Whitten 1965a). 2n=23 Gargarini: Tricentrus (Tian and Yuan 1997a).

459 Fig. 26.1. Ant attendance and maternal care in centrotines. The gain or loss of each trait was mapped on the tribal phylogeny tree using fast optimization in Winclada. Question marks (?) represent missing data.

460 Fig. 26.2. Host plant families of centrotines. The gain (indicated below branches) or loss (indicated above branches) of each host plant family was mapped on the tribal phylogeny using fast optimization in Winclada. Numbers on the branches identify host plant families in Table 26.2. Question marks represent missing data.

461 Fig. 26.3. Male chromosome numbers in centrotines. The gain (indicated below branches) or loss (indicated above branches) of each was mapped on the tribal phylogeny using fast optimization in Winclada. Question marks (?) represent missing data.

462 CONCLUSIONS

The treehopper subfamily Centrotinae is the only treehopper group found worldwide.

Predominantly Old World in distribution, this subfamily accounts for roughly half of the membracid diversity at the tribal, generic, and species levels. Although centrotines are cosmopolitan in distribution, there is no centrotine tribe (or genus) found in both the Old and

New Worlds.

Despite their diversity, the Centrotinae have been poorly studied. Historically, workers have focused their work on centrotines within a particular geographic region (for example, Capener 1962a, 1968a; Evans 1966a; Ananthasubramanian 1996a; Day 1999a;

Yuan and Chou 2002a) and few have justified classifications based on quantitative phylogenetic analyses. These disparities have impeded the development of a stable higher classification and taxonomic studies of centrotines at the generic and species levels. The objectives of this study were to establish the phylogenetic limits of the Centrotinae and its included tribes, to determine the evolutionary relationships among these tribes in order to provide a sound and comprehensive classification, to advance investigations of biogeographical patterns and life history traits, and to develop a tribal key to facilitate identification of the centrotine assemblage.

An overall phylogenetic analysis of the 24 existing tribes plus 5 outgroups, using 116 morphological characters, resulted in a single most parsimonious tree with 2 major clades

(each with New and Old World components) plus the basal New World tribe Centrodontini.

Numerous tribes, as defined in earlier classifications, were rendered polyphyletic or paraphyletic. Eight further phylogenetic analyses confirmed the monophyly of the larger

463 tribes, and, along with two phenetic analyses, helped to place the remaining genera. The

subfamily Centrotinae is a monophyletic group supported by the synapomorphy of the

presence of abdominal inornate pits, each with a lateral seta. Characters important in

elucidating tribal relationships include features of: the male and female genitalia, the fore-

and hind wings, the scutellum, leg chaetotaxy; and abdominal characteristics using scanning

electron microscopy.

Based on the overall analysis, 11 tribal synonymies and 1 subfamily synonymy are proposed: Abelini, junior synonym of Boocerini; Acanthophyesaria, junior synonym of

Centrotini; Ebhulini, junior synonym of Ebhuloidesini; Aleptocentrini, Antialcidini,

Coccosterphini, Madlinini, and Tricentrini, all junior synonyms of Gargarini; Demangini, junior synonym of Leptocentrini; Bulbaucheniini and Funkhouserellini, junior synonyms of

Terentiini; and Centrodontinae, junior synonym of Centrotinae. Furthermore, 6 new tribes are described: the Beaufortianini, Boccharini, Lobocentrini, and Maarbarini, all from the Old

World, and Monobelini, and Pieltainellini from the New World. The 216 included centrotine genera are placed into a total of 23 centrotine monophyletic tribes. Two genera from the phylogenetic analysis, Elaphiceps and Tyrannotus, are placed as Centrotinae, incertae sedis,

although they are closely related to the Lobocentrini. Seven genera that were not examined are placed as Centrotinae, incertae sedis: Aspasiana, Centrobelus, Insitor, Insitoroides,

Megalocentrus, Megaloschema, and Sinocentrus.

Brachytalis, formerly in Nessorhinini, is placed as Membracidae, incertae sedis.

Additionally, a lectotype of Butragulus flavipes (Uhler) is designated. The new combinations

Hybanda bulbicornis (Funkhouser), referred from Funkhouserella, and Bulbauchenia bakeri

(Funkhouser), B. rugosa (Funkhouser), B. globosa (Funkhouser), and B. kurosawai (Hayashi

464 and Endo), all referred from the Emphusis Buckton, are proposed. Deitzius

Ananthasubramanian is a junior objective synonym of Ananthasubramanium McKamey, both of which are replacement names for Paranotus Ananthasubramanian, preoccupied. A taxonomic key to the 23 centrotine tribes is included. The descriptions of the 23 tribes include diagnoses, descriptions, notes on ecology and distribution, and discussions of phylogeny and morphological characters.

Numerous centrotine genera are poorly represented in collections with some known from only one sex or even a unique specimen. All but 9 of the 216 genera were here placed in tribes based on phylogenetic analyses of morphological features, or in cases where data were limited, based on overall morphological similarity.

The broader impacts of this work extend beyond systematics to related areas of biological inquiry. The phylogenetically based classification presented here has greater predictive value than prior classifications that included numerous para-or polyphyletic tribes.

Furthermore, the phylogenetic hypotheses outlined provide a sound foundation for exploring patterns in host plant associations, ant-attendance, maternal care, acoustic communication, and biogeography.

Based on the phylogenetic analyses, centrotines colonized the Old World twice. One invasion included the ancestors of the tribe Gargarini while the other invasion included the ancestors of the remaining 16 Old World centrotine tribes. It seems possible that these dispersals from the New World to the Old occurred over the Bering Land Bridge, accounting for the Indomalayan and Palearctic distributions of the basal centrotine lineages. According to the fossil record and recent phylogenetic analyses of the Membracidae, treehoppers likely originated in the New World in the Tertiary, possibly near the time of the hypothesized

465 extraterrestrial impact 65 mya. Other evidence for a Tertiary origin includes the absence of

treehoppers in Madagascar and New Zealand, the historic connection of India with

Madagascar and the high species richness of India, and the distantly related centrotine faunas of Africa, Australia, and South America. These observations do not favor an ancient vicariant event, for example the splitting of Gondwana, that isolated the Old and New World treehopper faunas. The highly endemic Monobelini and Nessorhinini of the Caribbean occupy a basal position in the phylogenetic analysis. The hypothesized dispersal of their ancestors to the Caribbean over an island archipelago at the Cretaceous/Tertiary border also supports a treehopper origin near this time.

Centrotines have been reported from 105 different host plant families, notably the

Leguminosae, Solanaceae, Compositae, and Euphorbiaceae. Eleven of 23 centrotine tribes have genera that are ant-attended and the Centrocharesini + Ebhuloidesini + Oxyrhachini +

Hypsaucheniini + Terentiini are the only centrotine group known to exhibit maternal care by egg guarding. Although male chromosome numbers of many centrotine tribes are unknown, many of the tribes reported have 2n=21. The reported range in males is 2n= 10-23.

Armed with the revised classification presented here and the distributional data summarized by recent workers (McKamey 1998a, Day 1999a, Yuan and Chou 2002a), it is possible to identify hotspots of centrotine diversity or endemism--areas that merit special attention in efforts to preserve global biodiversity. The New World tribes Nessorhinini and

Monobelini, for example, are endemic to the Caribbean. Likewise, Queensland, Australia, is a hotspot of diversity for the Terentiini. It is hoped that the improved identification tools provided here will encourage further collecting, stimulate systematic studies at the generic and species levels, and facilitate molecular research at all taxonomic levels.

466 REFERENCES CITED

Abrar, I., and I. Ahmad. 1975a. Comparative karyotypes of Oxyrhachis taranda (Fabricius) and O. serratus

[serrata] Ahmad & Abrar 1974 (: Oxyrhachinae). Proc. Entomol. Soc. Karachi 4-5:

32-39.

Adenuga, A. O., and K. Adeboyeku. 1987a. Notes on selected crop plants. Sci. & Its Applic. 8(2):

239-243.

Agassiz, J. L. R., W. E. Erichson, and E. F. Germar. 1846a. Hemiptera. (Addenda et corrigenda).

Nomenclator Zoologicus 1846: 1-16.

Ahmad, I. 1975a. A Revision of the Superfamily Membracoidea of Pakistan. [U.S. Dep. Agric.] First

[Annual] Tech. Rep. FG-Pa-245 (PK-ARS 56) (University of Karachi). 47 pp. + map.

Ahmad, I. 1976a. A Revision of the Superfamily Membracoidea of Pakistan. [U.S. Dep. Agric.] Second Ann.

Tech. Rep. FG-Pa-245 (PK-ARS 56) (University of Karachi). 74 pp. + map.

Ahmad, I. 1978a. A Revision of the Superfamily Membracoidea of Pakistan. [U.S. Dep. Agric.] Fourth Ann.

Tech. Rep. FG-Pa-245 (PK-ARS 56) (University of Karachi). [i] + 69 pp. + map.

Ahmad, I. 1988a. A cladistic analysis of Tricentrini (Homoptera: : Membracidae) with a note

on their origin, distribution and food plants. pp. 473-484. In Vidano, C., and A. Arzone (eds.). 6th

Auchenorrhyncha Meeting, Turin, Italy, September 7-11, 1987, Proceedings. Consiglio Nazionale

delle Ricerche, Incremento Produttivita` Risorse Agricole (CNR-IPRA), Torino. 652 pp.

Ahmad, I., and F. A. Mohammad. 1990a. Redescription of the species of Otinotus elongatus complex

(Hemiptera: Membracidae: Centratinae [sic: Centrotinae]: Leptocentrini) with two new species from

Sind and Punjab in Pakistan, a key to all the Otinotus species from Indo-Pakistan subcontinent and

their cladistic analysis. Indian J. Zool. Spectrum 1(2: 30-41): 43-59.

Ahmad, I., and F. A. Mohammad. 1998a. The Otinotus rufescens complex: redescription of O. rufescens and

O. transversus with two new species from Pakistan and notes on their phylogenetic relationships

(Hemiptera Membracidae). Boll. Soc. Entomol. Italiana 130(1): 27-40.

Ahmad, I., and N. Yasmeen. 1972a. A revision of the genus Tricentrus Stal [Stål] from Pakistan.

467 Ahmad, I., and N. Yasmeen. 1979b. New species and records of the Tricentrus projectus group (Homoptera:

Membracidae: Tricentrini) from Pakistan, Azad Kashmir and Bangladesh, with phylogenetic

considerations. Pacific Insects 20(2-3): 257-278.

Ahmad, I., and N. Yasmeen. 1980a. The chromosomes of five species of the genus Tricentrus Stal [Stål]

(Membracidae, Centrotinae, Tricentrini). Natur. Sci. 2(3): 69-74.

Alma, A. 1999a. Indagini sulle popolazioni di Auchenorrinchi in zone umide del lago di Viverone (Piemonte,

Italia) (Rhynchota Hemiptera). [Investigations on the populations of Auchenorrhyncha in the wet

zones of the lake of Viverone (Piedmont, Italy) (Rhynchota Homoptera).] Boll. Soc. Entomol. Italiana

131(3): 209-217.

Amyot, C. J. B., and A. Serville. 1843a. Histoire naturelle des insectes Hémiptères. [Deuxième partie.

Homoptères. Homoptera Latr. pp. 455-676]. Libraire Encyclopédique de Roret, Paris, France.

i-lxxvi + 676 pp.

Ananthasubramanian, K. S. 1980a. Descriptions of a new genus and some new species of Membracidae

(Homoptera) in the collections of the Zoological Survey of India. Rec. Zool. Surv. India Misc. Publ.,

Occas. Pap. 16: 1-[69].

Ananthasubramanian, K. S. 1980b. Taxonomic studies on Indian Membracidae (Insecta: Homoptera).

Entomon 5(2): 113-128.

Ananthasubramanian, K. S. 1984a. Taxonomical and biological notes on Anchon ulniforme Buckton

(Homoptera: Membracidae). Entomon 9(3): 225-229.

Ananthasubramanian, K. S. 1987a. Newer trends in the biosystematics of Membracidae. Proc. Indian Acad.

Sci., Sci., 96(5): 517-525.

Ananthasubramanian, K. S. 1996a. Fauna of India (Homoptera: Membracidae). In Ghosh, A. K. (ed.).

Zoological Survey of India, Calcutta, India. xviii + 534 pp.

Ananthasubramanian, K. S., and T. N. Ananthakrishnan. [1975a (dated 1970)]. Taxonomic, biological and

ecological studies of some Indian membracids (Insecta: Homoptera). Part I. Rec. Zool. Surv. India

68(1-2): 161-272.

468 Ananthasubramanian, K. S., and T. N. Ananthakrishnan. [1975b (dated 1970)]. Taxonomic, biological and

ecological studies of some Indian membracids. Part--II. Rec. Zool. Surv. India 68(1-2): 305-340.

Ananthasubramanian, K. S., G. Murugan, and L. K. Ghosh. 1990a. Redescription of Hypsauchenia subfusca

Buckton (Homoptera: Membracidae) with notes on its nymphal stages. Indian Zool. 14(1-2): 93-96.

Ananthasubramanian, K. S., and C. Ramachandran. 1990a. Preliminary observations on the behaviour of

Formicomus sp., a coleopteran ant-mimic, towards the nymphs of the membracid bug Leptocentrus

taurus (F.) (Homoptera: Insecta). Indian Zool. 14(1-2): 131-133.

Arnett, R. H., G. A. Samuelson, and G. M. Nishida. 1993a. The insect and spider collections of the world, 2nd.

ed. Sandhill Crane, Gainesville, FL.

Ayyanna, T., G. V. Subbaratnam, and E. Dharmaraju. 1978a. Pest complex on sunflower, Helianthus annus

Lin. in Andhra Pradesh. Indian J. Entomol. 40(3): 353-356.

Ayyar, T. V. R. 1937a. A cow bug (Anchon pilosum, Wlk.) injurious to leguminous crops in Malabar. Madras

Agric. J. 25(2): 33-35.

Azhar, I. 1992a. Role of black ants in cocoa pod borer natural control. MAPPS Newsletter 16(4): 36-37.

Ballou, C. H. 1935a. Insect notes from Costa Rica in 1934. Insect Pest Surv. Bull. 15, Suppl. 4: 163-212.

Ballou, C. H. 1936b. Insect notes from Costa Rica in 1935. Insect Pest Surv. Bull. 16: 437-497 [454-479].

Banerjee, M. R. 1958a. A study of the chromosomes during meiosis in twenty-eight species of Hemiptera

(Heteroptera, Homoptera). Proc. Zool. Soc. (Calcutta) 11(1): 9-37.

Beckmann, J. 1772a. Fulgora, Cicada. Caroli a Linné systema naturae ex editions duodecima in epitomen

redactum et praelectionibus academicis accomodatum 1: 1-240 [149-150].

Behura, B. K. 1951a. Habits of the common membracid (`tree-hopper')-Otinotus oneratus Walk. J. Bombay

Natur. Hist. Soc. 50: 299-304 [reprint paged 1-6].

Behura, B. K. 1955a. Miscellaneous note. 21. Adaptive coloration and camouflage of the common

membracid (`tree-hopper') Otinotus oneratus Walk. (Homoptera: Rhynchota). J. Bombay Natur. Hist.

Soc. 53: 145-146 [reprint paged 1-2].

Behura, B. K. 1962a. On the biology of Otinotus oneratus Walk. (Homoptera: Membracidae). J. Utkal Univ.

(Sci.), Bhubaneswar 2(2): 53-57.

469 Behura, B. K., and U. C. Panda. 1959a. Some unrecorded host plants of four common membracid species in

Orissa. Indian J. Entomol. 20(3): 236.

Behura, B. K., and G. C. Sengupta. 1951a. On a pest of jute new to Orissa. Sci. & Cult. 16: 572-573.

Behura, B. K., and V. Sinha. 1951a. 23. A record of the common membracid, Otinotus oneratus Walk.

(Homoptera: Rhynchota) from the City of Patna (Bihar). J. Bombay Natur. Hist. Soc. 50: 183-184

[reprint paged 1].

Bergevin, E. de. 1934b. Hémiptères in Mission du Hoggar. III (Février à Mai 1928). Etudes zoologiques sur

le Sahara Central par L.-G. Seurat. Mem. Soc. Hist. Natur. Afrique Nord 4: 119-133; Figs. 1-5.

Bhattacharya, A. K., and G. K. Manna. 1967a. A study of germinal chromosomes during meiosis in fifty

species of Homoptera (Hemiptera). Proc. Indian Sci. Congr. 54(3): [?618-619 (as cited by

Bhattacharya & Manna 1973a); reprint paged 418-[419].

Bhattacharya, A. K., and G. K. Manna. 1973a. Morphology, behaviour and metrical studies of the germinal

chromosomes of ten species of Membracidae (Homoptera). Cytologia (Tokyo) 38(4): 657-665.

Biswas, A., and A. K. Bhattacharya. 1989a. Cytotaxonomical evaluation of the tree-hopper Oxyrachis [sic]

taranda (Fabr.). (Membracidae: Homoptera). Environ. & Ecol. (Kalyani) 7(1): 132-135.

Boulard, M. 1966a. Sur un Monocentrus [Membracidae Centrotinae] nouveau nuisible au poivrier cultive en

Afrique centralé. Ann. Soc. Entomol. France (n.s.)2(3): 577-584.

Boulard, M. 1968b. Description de cinq Membracides nouveaux du genre Hamma accompagnée de précisions

sur H. rectum. Ann. Soc. Entomol. France (n.s.)4(4): 937-950.

Boulard, M. 1968d. Description du mâle et de la larve de Kallicrates bellicornis Capener

(Homoptera-Membracidae). Cahiers La Maboké 6(2): 127-131.

Boulard, M. 1969a. Hémiptéroïdes nuisibles ou associés aux cacaoyers en République Centrafricaine.

Deuxième partie. Homoptères Auchénorhynches. Café, Cacao, Thé (Paris) 13(4): 310-324.

Boulard, M. 1969c. Homoptères jassidomorphes nouveaux liés aux colatiers et aux autres plantes simulantes

cultivés en Afrique centrale. Café, Cacao, Thé (Paris) 13(2): 151-156.

Boulard, M. 1971c. Monocentrus nouveaux d'Afrique centrale [Hom. Membracidae]. Ann. Soc. Entomol.

France (n.s.)7(2): 287-324.

470 Boulard, M. [1979i (dated 1978)]. Genres nouveaux et espèces nouvelles de Membracides africains

(Homoptera Auchenorhyncha). Bull. Inst. Fondamental Afrique Noire (sér. A)40(1): 100-119.

Boulard, M. [1979j (dated 1978)]. Oxyrhachiens nouveaux du Sahara (Homoptera Membracidae). Bull. Inst.

Fondamental Afrique Noire (sér. A)40(2): 428-436.

Boulard, M. 1983b. Un genre nouveau de Membracides associés aux plantes stimulantes en Afrique centrale.

Café, Cacao, Thé (Paris) 27(3): 191-194.

Boulard, M. 1995d [dated 1994-1995]. Membracidés nouveaux des îles Seychelles. Création d'une tribu

nouvelle (Homoptera Membracoidea Membracidae). École Pratique Hautes Études), Travaux Lab.

Biol. & Evol. Insectes 7-8: 179-187.

Briggs, J. C. 1995a. Global Biogeography. Elsevier Science, Amsterdam, The Netherlands. xvii + 452 pp.

Brummitt, R. K. 1992a. Vascular Plant Families and Genera. Kew: Royal Botanic Garderns, Kew, United

Kingdom. 804 p.

Buckley, R. C. 1982a. Ant-plant interactions: a world review. pp. 111-162. In Buckley, R. C. (ed.). Ant-Plant

Interactions in Australia. Junk, The Hague. ix + 162 pp.

Buckley, R. [C.]. 1983a. Interaction between ants and membracid bugs decreases growth and seed set of host

plant bearing extrafloral nectaries. Oecologia (Berlin) 58(1): 132-136.

Buckton, G. B. 1903a. A monograph of the Membracidae 1903: 181-296; PIs. 39-60.

Capener, A. L. 1950a. A new genus and species of membracid from South Africa. J. Entomol. Soc. South

Africa 13: 99-102; Figs. 1-9.

Capener, A. L. 1951a. Sexually dimorphic Membracidae from Southern Africa. J. Entomol. Soc. South Africa

14: 152-164; Figs. 1-50.

Capener, A. L. 1952b. Notes on the classification of certain African Membracidae with the addition of three

new genera and four new species (Hemipt.- Homopt.). J. Entomol. Soc. South Africa 15: 101-121;

Figs. 1-39.

Capener, A. L. 1953b. African Membracidae I. J. Entomol. Soc. South Africa 16: 112-131; Pls. I-IV.

Capener, A. L. 1962a. The taxonomy of the African Membracidae. Part 1. The Oxyrhachinae. Repub. South

Africa, Dep. Agric. Tech. Serv., Entomol. Mem. 6: [i], [1]-164.

471 Capener, A. L. 1966a. Contribution à la fauna du Congo (Brazzaville). Mission A. Villiers et A.

Descarpentries. XLI. Homoptères Membracidae. Bull. Inst. Français Afrique Noire (sér. A)28(4):

1708-1709.

Capener, A. L. 1968a. The taxonomy of the African Membracidae. Part 2. The Centrotinae. Repub. South

Africa, Dep. Agric. Tech. Serv., Entomol. Mem. 17: [i-iii], [1-124].

Capener, A. L. 1968b. The genus Gargara Amyot and Serville (Homoptera: Membracidae) in South Africa. J.

Entomol. Soc. South Africa 31(1): 181-183.

Capener, A. L. 1968c. Six new species of Membracidae (Hemiptera: Homoptera) from South Africa. J.

Entomol. Soc. South Africa 31(1): 197-207.

Capener, A. L. 1971a. New African Membracidae (Hemiptera: Homoptera). J. Entomol. Soc. South Africa

34(1): 17-31.

Capener, A. L. 1972a. New genera and species of African Membracidae (Hemiptera-Homoptera). Repub.

South Africa, Dep. Agric. Tech. Serv., Entomol. Mem. 24. iii + 52 pp.

Capener, A. L. 1972b. Some South African species of Anchon (Hemiptera-Homoptera: Membracidae). J.

Entomol. Soc. South Africa 35(1): 97-110.

Capener, A. L. 1972c. Further new African Membracidae (Hemiptera: Homoptera). J. Entomol. Soc. South

Africa 35(2): 181-199.

Carver, M., G. F. Gross, and T. E. Woodward. 1991a. Hemiptera (bugs, leafhoppers, cicadas, aphis, scale

insects etc.). pp. 429-509. In CSIRO (ed.), The Insects of Australia. A Textbook for Students and

Research Workers. 2nd ed. Cornell University Press, Ithaca, New York. 1137 + xvii (vol. 1) + vi (vol.

2) pp.

Chatterjee, N. C. 1933c. Investigations on the spike-disease of sandal. Entomological investigations by the

Forest Research Institute. Work done at Dehra Dun. Indian Inst. Sci. 1933 (7): 19-21.

Chatterjee, N. C., and M. Bose. 1933a. Entomological investigations on the spike disease of sandal (13).

Membracidae and Cercopidae (Homopter.). Indian For. Rec. 19(2): 1-14.

Cheo, M. T. 1935b. A preliminary list of the insects and arachnids injurious to economic plants in China.

Peking Natur. Hist. Bull. 10: 93-114.

472 Chitra, S., and K. S. Ananthasubramanian. 1999a. Mutualistic association between the treehopper,

Eucoccosterphus tuberculatus (De Motschulsky) and the ant, Camponotus compressus Fabricus. J.

Entomol. Res. 23(2): 89-98.

Cookson, L., and T. R. New. 1980a. Observations on the biology of Sextius virescens (Fairmaire) (Homoptera,

Membracidae) on Acacia in Victoria. Australian Entomol. Mag. 7(1): 4-10.

Cranston, P. S., and I. D. Naumann. 1991a. Biogeography. pp. 180-197. In CSIRO (ed.), The Insects of

Australia. A Textbook for Students and Research Workers. 2nd ed. Cornell University Press, Ithaca,

New York. 1137 + xvii (vol. 1) + vi (vol. 2) pp.

Creão-Duarte, A. J. 1992a. Sobre a provável parafilia de Centrotinae Amyot & Serville (Homoptera,

Membracidae). [About the probable paraphyly of Centrotinae Amyot & Serville (Homoptera,

Membracidae).] Rev. Brasileira Zool. 9(3/4): 197-201.

Cryan, J. R. 1999a. Molecular Systematic Investigation of the Higher Relationships within the Family

Membracidae (Insecta: Hemiptera). Unpublished Ph.D Dissertation, Entomology, North Carolina

State University, Raleigh, North Carolina. x + 140 pp.

Cryan, J. R., B. M. Wiegmann, L. L. Deitz, and C. H. Dietrich. 2000a. Phylogeny of the treehoppers (Insecta:

Hemiptera: Membracidae): evidence from two nuclear genes. Mol. Phylogenet. & Evol. 17(2): 317-

334.

Dallwitz, M. J. 1980. A general system for coding taxonomic descriptions. Taxon 29, 41–6.

Dallwitz, M. J., T. A. Paine, and E. J. Zurcher. 1993a. User’s guide to the DELTA System: a general system for

processing taxonomic descriptions. 4th edition. http://biodiversity.uno.edu/delta/.

Dallwitz, M. J., T. A. Paine, and E. J. Zurcher. 1999a. User’s guide to the DELTA Editor.

http://biodiversity.uno.edu/delta/.

Davli, C. S., R. B. Dumbre, and V. G. Khanvilkar. 1992a. Record of mango hopper species and their

composition in the Konkan region. J. Maharashtra Agric. Univ. 17(3): 404-406.

Day, M. F. 1999a. The genera of Australian Membracidae (Hemiptera: Auchenorrhyncha). Invertebr. Taxon.

13(4): 629-747.

473 Deitz, L. L. 1975a. Classification of the higher categories of the New World treehoppers (Homoptera:

Membracidae). North Carolina Agric. Exp. Sta. Tech. Bull. 225. 177 pp.

Deitz, L. L. 1985a. Placement of the genera Abelus Stål and Hemicentrus Melichar in the subfamily

Centrotinae (Homoptera: Membracidae). Proc. Entomol. Soc. Washington 87(1): 161-170.

Deitz, L. L., and C. H. Dietrich. 1993a. Superfamily Membracoidea (Homoptera: Auchenorrhyncha). I.

Introduction and revised classification with new family-group taxa. System. Entomol. 18(4):287-296.

Dejean, A., and T. Bourgoin. 1998a. Relationships between ants (Hymenoptera: Formicidae) and

Euphyonarthex phyllostoma (Hemiptera: Tettigometridae). Sociobiology 32(1): 91-100.

Dietrich, C. H. 1989a. Surface sculpturing of the abdominal integument of Membracidae and other

Auchenorrhyncha (Homoptera). Proc. Entomol. Soc. Washington 91(2):143-152.

Dietrich, C. H., and L. L. Deitz. 1993a. Superfamily Membracoidea (Homoptera: Auchenorrhyncha). II.

Cladistic analysis and conclusions. Syst. Entomol. 18(4): 297-311.

Dietrich, C. H., S. H. McKamey, and L. L. Deitz. 2001a. Morphology-based phylogeny of the treehopper

family Membracidae (Hemiptera: : Membracoidea). Syst. Entomol. 26: 213-239.

Distant, W. L. 1879e. Rhynchota. Scientific results of the second Yankand mission; based upon the

collections and notes of the late Ferdinand Stoliczka, Ph.D. 1879: 1-15; 1 pl.

Distant, W. L. 1908g. Rhynchota-Homoptera. The fauna of British India including Ceylon and Burma.

Published under the authority of the Secretary of State for India in Council. Edited by Lt. Col. C. T.

Bingham 4: i-xiv, 1-501; Figs. 1-282. [1-419; Figs. 1-255].

Distant, W. L. 1915b. Rhynchotal notes.-LVI. Ann. & Mag. Natur. Hist. (8)16: 322-328.

Distant, W. L. 1916a. Rhynchota. Homoptera: Appendix. The fauna of British India, including Ceylon and

Burma. Published under the authority of the Secretary of State for India in Council. Edited by A. E.

Shipley, assisted by Guy A. K. Marshall 6: i-vii, 1-248; Figs. 1-177.

Distant, W. L. 1916c. Rhynchotal notes.-LIX. Ann. & Mag. Natur. Hist. (8)17: 313- 330; 1 fig.

Distant, W. L. 1916d. Rhynchotal notes.-LX. Ann. & Mag. Natur. Hist. (8)18: 19-44; 1 fig.

Dlabola, J. 1979b. Insects of Saudia Arabia. Homoptera. Fauna Saudi Arabia 1: 115-139.

Enslin, E. 1911a. Gargara genistae F. und Formica cinerea Mayr. Z. Wiss. Insektenbiol. 7: 19-21; Figs. 1-2.

474 Enslin, E. 1911b. [Gargara genistae F. und Formica cinerea, Mayr.] Z. Wiss. Insektenbiol. 7: 56-58.

Esaki, T., and T. Ishihara. 1950a. Hemiptera of Shansi, North China. Hemiptera I. Homoptera. Mushi 21:

39-48; Pls. 5-7; Text figs. A-B.

Evans, J. W. 1948b. Some observations on the classification of the Membracidae and on the ancestry,

phylogeny and distribution of the Jassoidea. Trans. R. Entomol. Soc., London 99: 497-515; Figs. 1-10.

Evans, J. W. 1966a. The leafhoppers and froghoppers of Australia and New Zealand (Homoptera:

Cicadelloidea and Cercopoidea). Australian Mus. Mem. 12: 1-347.

Eyles, A. C. 1970a. Hemiptera. [In symposium: "The Present Status of Taxonomic Entomology in New

Zealand"]. New Zealand Entomol. 4(3): 34-37

Eyles, A. C. 1971a. The family Membracidae (Homoptera) present in New Zealand. New Zealand Entomol.

5(1): 47-48.

Froggatt, W. W. 1902a. Insects of the wattle trees. Misc. Pub. Dep. Agric. New South Wales 581: 16-18.

Funkhouser, W. D. 1919a. A new Tylocentrus from Arizona (Membracidae: Homoptera). Entomol. News 30:

2l7-219; Pl. 10.

Funkhouser, W. D. 1919d. New records and species of Philippine Membracidae. Philippine J. Sci. 15: 15-29;

Pl. 1.

Funkhouser, W. D. 1927b. Fauna sumatrensis. (Beitrag Nr. 30). Membracidae (Homoptera) Suppl. Entomol.

15: 1-22; Figs. 1-29.

Funkhouser, W. D. 1927f. Membracidae. General Catalogue of the Hemiptera. Fasc. 1: 1-581.

Funkhouser, W. D. 1929b. New Archipelagic Membracidae. Philippine J. Sci. 40: 111-131; Pls. 1-2.

Funkhouser, W. D. 1935b. New records and species of Membracidae in the Buitenzorg Museum Collection.

Treubia 15: 119-130; Figs. 1-7.

Funkhouser, W. D. 1951a. Homoptera Fam. Membracidae. Gen. Insectorum 208: 1-383; Pls.I-XIV; Text figs.

1-9.

Futuyuma, D. J. 1998a. Evolutionary Biology. 3rd edit. Sinauer Associates, Sunderland, Massachusetts. xviii

+ 763 + [64] pp.

475 Gersani, M., and A. A. Degen. 1988a. Daily energy intake and expenditure of the weaver ant Polyrhachis

simplex (Hymenoptera: Formicidae) collecting honeydew from the cicada Oxyrrhachis [sic] versicolor

(Homoptera: Membracidae). J. Arid Environ. 15(1): 75-80.

Goding, F. W. 1892a. A synopsis of the subfamilies and genera of the Membracidae of North America. Trans.

Amer. Entomol. Soc. 19: 253-260.

Goding, F. W. 1892c. Studies in North American Membracidae, II. Entomol. News 3: 200-201.

Goding, F. W. 1893d. Food plants of some N. A. Membracidae. Insect Life 5: 92-93.

Goding, F. W. 1895a. Studies in N. A. Membracidae-III. Canad. Entomol. 27: 274-277.

Goding, F. W. 1903a. A monograph of the Australian Membracidae. Proc. Linn. Soc. New South Wales 28:

2-41; Pl. 1.

Goding, F. W. 1926e. Classification of the Membracidae of America. J. New York Entomol. Soc. 34:

295-317.

Goding, F. W. 1928a The Membracidae of South America and the Antilles, II. Subfamily Centrotinae. J. New

York Entomol. Soc. 35: 391-408; Pls. 19-20.

Goding, F. W. 1930a. New Membracidae, X. J. New York Entomol. Soc. 38: 89-92.

Goding, F. W. 1930b. Membracidae in the American Museum of Natural History. Amer. Mus. Novitates 421:

1-27; Fig. 1.

Goding, F. W. 1931a. Classification of the Old World Membracidae. J. New York Entomol. Soc. 39: 299-313.

Goding, F. W. 1934a. The Old World Membracidae. J. New York Entomol. Soc. 42: 451-480.

Goidanich, A. 1946a. La scoperta della bubalus in Italia. Italia Agric. 83(12): 717-719; 3 figs.

Green, E. E. 1900a. Note on the attractive properties of certain larval Hemiptera. Entomol. Mon. Mag. 36:

185; 1 fig.

Gunji, Y., and S. Nagai. 1994a. A new subspecies of Giganthorhabdus [sic] enderleini Schmidt from the

Malay Peninsula (Homoptera: Membracidae). Trans. Shikoku Entomol. Soc. 20(3-4): 125-127.

Günthart, H. 1987b. Oekologische Untersuchungen im Unterengadin. D8. Zikaden (Auchenorrhyncha).

Ergeb. Wiss. Unters. Schweizerischen Nationalpark (N.F.)12(12): D203-D299.

476 Halkka, O. 1959a. Chromosome studies on the Hemiptera Homoptera Auchenorrhyncha. Ann. Acad. Sci.

Fennicae (ser. A)(4. Biol.) 43: 1-[73].

Halkka, O. 1962a. The chromosomes of the Membracidae. Hereditas 48: 215-219.

Halkka, O. 1964a. Recombination in six homopterous families. Evolution 18(1): 81-88.

Hall, R. 1998a. The plate tectonics of Cenozoic SE Asia and the distribution of land and sea. pp. 99-132. In

Hall, R., and J. D. Holloway (eds.) Biogeography and Geological Evolution of SE Asia. Backhuys

Publishers, Leiden, The Netherlands. 417 pp.

Hargreaves, E. 1937a. Some insects and their food-plants in . Bull. Entomol. Res. 28: 505-520.

Haupt, H. 1929c. Neueinteilung der Homoptera-Cicadina nach phylogenetisch zu wertenden Merkmalen.

Zool. Jahrb. Abt. System., Ökol. & Biol. Tiere 58: 173-286; Figs. 1-86.

Hayashi, M., and T. Endo. 1985b. Some biological notes on Japanese treehoppers (Homoptera, Membracidae).

Rostria (Trans. Hemipterol. Soc. Japan) 37: 533-542.

Hedges, S. B. 2001a. Biogeography of the West Indies: An overview. pp. 15-33. In Woods, C. A., and F. E.

Sergile (eds.). Biogeography of the West Indies. CRC Press, Boca Raton, Florida. 582 pp.

Helmore, D. W. 1982a. Drawings of New Zealand insects. Bull. Entomol. Soc. New Zealand 8: 1-52.

Hinton, H. E. 1977a. Subsocial behavior and biology of some Mexican membracid bugs. Ecol. Entomol. 2(1):

61-79.

Hoffmann, W. E. 1942a. Bugs or Homoptera. The cicadas, plant hoppers, plant lice, scale insects, and others.

Spec. Publ. Lingnan Natur. Hist. Surv. & Mus. 9: 1-20; Pls. 1-30.

Hölldobler, B., and E. O. Wilson. 1990a. The Ants. Belknap Press of Harvard University Press, Cambridge,

Massachusetts. [xiv] + 732 pp.

Huntley, B. 1993a. Species-richness in north-temperate zone forests. J. Biogeog. 20: 163-180.

International Commission on Zoological Nomenclature (ICZN). 1999a. International Code of Zoological

Nomenclature. 4th edtion. International Trust for Zoological Nomenclature, c/o The Natural History

Museum, London. xxix + 306 pp.

Iturralde-Vinent, M. A., and R. D. E. MacPhee. 1999a. Paleogeography of the Caribbean region: Implications

for Cenozoic biogeography. Bull. Amer. Mus. Nat. Hist. 238: 1-95.

477 Jacobs, D. H. 1985a. Order Hemiptera (bugs, leafhoppers, cicadas, aphids, scale-insects, etc.). Introduction.

pp. 112-117. In Scholtz, C. H., and E. Holm (eds.). Insects of Southern Africa. Butterworths, Durban,

South Africa. [viii] + 502 pp.

Jankoviƒ, L. 1975a. Fauna Homoptera: Auchenorrhyncha SR Srbije. Zbornik Radova o Entomofauni SR

Srbije, I: Srpska Akad. Nauka i Umetn. -- Odeljenje Prir.-Matem. Nauka (Beograd). pp. 85-217.

Kato, M. 1935e. Description of a new Membracidae from Chosen. Entomol. World 3: 476-478; 1 fig.

[Reprint paged 2-4; 1 fig.].

Kenne, M., and A. Dejean. 1997a. Caste polyethism and honeydew collection activity in foraging workers of

Myrmicaria opaciventris (Hymenoptera: Formicidae: Myrmicinae). Sociobiology 30(3): 247-255.

Kirillova, V. I. 1987a. Chromosome numbers of the leafhoppers (Homoptera, Auchenorrhyncha) of the world

fauna. II. Karyotypic peculiarities of leafhoppers of the superfamily Cicadelloidea. Entomol. Obozr.

66(2): 321-337.

Kirillova, V. I. 1988a. Chromosome numbers of world Homoptera Auchenorrhyncha II. Cicadelloidea.

Entomol. Rev. 67(1): 80-108.

Kirkaldy, G. W. 1906c. Leaf-hoppers and their natural enemies. (Pt. IX Leaf-hoppers. Hemiptera). Bull.

Hawaii. Sugar Planters' Assoc., Div. Entomol. 1 (9): 271-479; Pls. 21-32.

Kitching, R. L., and B. K. Filshie. 1974a. The morphology and mode of action of the anal apparatus of

membracid nymphs with special reference to Sextius virescens (Fairmaire) (Homoptera). J. Entomol.

(ser. A)49(1): 81-88.

Kitching, R. L. 1987a. Aspects of the natural history of the lycaenid butterfly Allotinus major in Sulawesi. J.

Natur. Hist. 21(3): 535-544.

Koningsberger, J. C. 1915a. Java zoölogisch en biologisch 1915: 1-663 [104-106].

Kosztarab, M. 1982a. Homoptera. pp. 447-470. In S. P. Parker (ed.). Synopsis and Classification of Living

Organisms. McGraw Hill, New York. Vol. 2. 1232 pp.

Krauss, N. L. H. 1965a. Investigations on biological control of melastoma (Melastoma malabathricum L.).

Proc. Hawaiian Entomol. Soc. 19(1): 97-101.

478 Labandeira, C. C., K. R. Johnson, and P. Wilf. 2002a. Impact of the terminal Cretaceous event on plant-insect

interactions. Proc. Nat. Acad. Sci. 99(4): 2061-2066.

Labandeira, C. C., and J. J. Seposki, Jr. 1993a. Insect diversity in the fossil record. Science 261: 310-315.

Lallemand, V. 1925a. Hemiptera Homoptera in Zoological results of the Swedish Expedition to Central Africa

1921. Insecta. Arkiv Zool. 18: 1-8.

Lamborn, W. A. 1914a. On the relationship between certain West African insects, especially ants, Lycaenidae

and Homoptera. With an appendix containing descriptions of new species. Tran. R. Entomol. Soc.

London 1913: 436-498; Pl. XXVI; 1 text fig.

Lin, C. P. 2003a. Phylogeny and Evolution of Subsocial Behavior and Life History Traits in the Neotropical

Treehopper Subfamily Membracinae (Hemiptera: Membracidae) Molecular Phylogeny of the

Enchenopa binotata Species Complex (Homoptera: Membracidae). Unpublished Ph.D Dissertation,

Cornell University, Ithaca, New York. xiii + 330 pp.

Lodos, N., and A. Kalkandelen. 1981a. Preliminary list of Auchenorrhyncha with notes on distribution and

importance of species in Turkey. VI. Families Cercopidae and Membracidae. Turkiye Bitki Koruma

Dergisi 5(3): 133-149.

Loye, J. E. 1992a. Ecological diversity and host plant relationships of treehoppers in a lowland tropical

rainforest (Homoptera: Membracidae and Nicomiidae). pp. 280-289, 659-660. In, Quintero, D., and

A. Aiello (eds.), Insects of Panama and Mesoamerica. Selected Studies. Oxford University Press,

Oxford. xxii + 692 pp.

Maes, J-M. 1998a. Superfamilia Membracoidea. pp. 146-157. In, Catalogo de los Insectos y Artropodos

Terrestres de Nicaragua. [two volumes, publisher not indicated, Nicaragua]. [xlvi] + 1898 pp.

Matsumura, S. 1912a Die Cicadinen Japans II. Annot. Zool. Japonenses, Tokyo, 8: 15-51.

McKamey, S. H. 1997a. Nomenclatural changes in the Membracidae and Aetalionidae (Hemiptera:

Membracoidea): species-group names and Sphongophorus Fairmaire, revised status. Steenstrupia 22:

1-11.

479 McKamey, S. H. 1998a. Taxonomic Catalogue of the Membracoidea (exclusive of leafhoppers): Second

Supplement to Fascicle 1, Membracidae, of the General Catalogue of the Hemiptera. Mem. American

Entomol. Institute 60: 1-377.

McKamey, S. H., and L. L. Deitz. 1996a. Generic revision of the New World tribe Hoplophorionini

(Hemiptera: Membracidae: Membracinae). Syst. Entomol. 21(4): 295-342.

McLoughlin, S. 2001a. The breakup history of Gondwana and its impact on pre-Cenozoic floristic

provincialism. Aust. J. Bot. 49: 271-300.

Melichar, L. 1914b. Homopteren von Java, gesammelt von Herrn. Edw. Jacobson. Leyden Mus. Notes 36:

91-147; Pl. 3.

Menon, P. S. 1958a. Studies on the chromosome behaviour in three species of Indian Homoptera. Caryologia

(Florence) 11(1): 57-67.

Menon, P. S. 1959a. On the chromosome behaviour in a membracid, Leptocentrus substitutus Walker.

Genetica 29(5-6): 312-318.

Metcalf, Z. P., and V. Wade. 1965a. General Catalogue of the Homoptera. A Supplement to Fascicle I -

Membracidae of the General Catalogue of Hemiptera. Membracoidea. In Two Sections. North

Carolina State Univ., Raleigh. 1552 pp.

Mohammad, F. A., and I. Ahmad. 1991a. Redescription of Otinotus oneratus (Walker) and Otinotus

pallescens Distant (Hemiptera: Membracidae: Centrotinae: Leptocentrini) pests of sunflower and other

crops from Indo-Pakistan subcontinent and their relationships. Proc. Pakistan Cong. Zool. 11: 315-

323.

Mohammad, F. A., and I. Ahmad. 1995a. A new species of Leucaspis group of the tree hopper's genus

Leptocentrus Stål (Homoptera: Auchenorrhyncha: Membracidae: Centrotine) from Punjab, Pakistan

and its cladistic relationship. Biol. Res. J. 2: 23-26.

Morley, C. 1905b. Homoptera. The Hemiptera of Suffolk 1905: i-x, 1-34 (23-31).

Nast, J. 1972a. Palaearctic Auchenorrhyncha (Homoptera). An Annotated Check List. Polish Sci. Publ.,

Warsaw. 550 pp.

Nixon, K. C. 1999a. Winclada (BETA) ver. 0.9.9. K. C. Nixon, Ithaca, New York.

480 Okáli, I., and V. Janský. 1998a. Treehoppers (Auchenorrhyncha, Membracidae) of Slovakia. Zborník

Slovenského Národného Múzea Prírodne Vedy 44: 50-60.

Olmstead, K. L., and T. K. Wood. 1990a. Altitudinal patterns in species richness of Neotropical treehoppers

(Homoptera: Membracidae): the role of ants. Proc. Entomol. Soc. Washington 92(3): 552-560.

Panda, U. C. 1968a. Protective adaptation of some membracids of Orissa. Prakruti-Utkal Univ. J. Sci. 5(2):

17-22.

Panda, U. C., and B. K. Behura. 1956a. Further observations on the biology of the common 'tree-hopper'

Otinotus oneratus Walk. (Homoptera, Membracidae) in Orissa. J. Bombay Natur. Hist. Soc. 54(1):

160-163.

Panda, U. C., and B. K. Behura. 1957a. Notes on the three common tree-hoppers (Membracidae: Hemiptera) in

Orissa. J. Bombay Natur. Hist. Soc. 54: 958-960.

Parida, B. B., and B. K. Dalua. 1981a. Preliminary studies on the chromosome constitution in 72 species of

auchenorrhynchan Homoptera from India. CIS (Chromosome Inform. Serv., Soc. Chromosome Res.,

Tokyo) 31: 13-16.

Peláez, D. 1941b. Estudios sobre membrácidos. III. El genero Platycentrus Stål (Hem. Homopt.). Rev. Soc.

Mex. Hist. Natur. 2: 51-67; Pl. II.

Peláez, D. 1970a. Estudios sobre membracidos, X. Pieltainellus boneti nov. gen. et sp. de la subfamilia

Centrotinae (Hem., Hom.). An. Esc. Nacl. Cienc. Biol. (Mexico City) 17(1-4): 81-89.

Plummer, C. C. 1935a. Descriptions of new Membracidae from Mexico. J. New York Entomol. Soc. 43:

373-385; Pls. 27-28.

Poinar, G. O., Jr. 1992a. Life in Amber. Stanford University Press, Stanford, California. xiii + 350 pp.

Rafinesque, C. S. 1815a. Analyse de la nature ou tableau de l'univers et des corps organisés 1815: 1-224.

Ramos, J. A. 1957a. A review of the auchenorhynchous Homoptera of Puerto Rico. J. Agric. Univ. Puerto

Rico 41(1): 38-117.

Ramos, J. A. 1979a. Membracidae de la República Dominicana (Homoptera: Auchenorhyncha). Univ. Puerto

Rico (Mayagüez), Esta. Exp. Agric. Bol. 260. 71 pp.

481 Ramos, J. A. 1988a. Zoogeography of the auchenorrhynchous Homoptera of the Greater Antilles (Hemiptera).

pp. 61-70. In Liebherr, J. K. (ed.). Zoogeography of Caribbean Insects. Cornell University Press,

Ithaca. xii + 285 pp.

Rao, S. R. V. 1956a. Studies on the spermatogenesis of some Indian Homoptera. Part III: A study of

chromosomes in two members of the family Membracidae. Caryologia (Florence) 8(2): 309-315.

Rao, M. S., C. A. Viraktamath, and V. Muniyappa. 1988a. Incidence of leafhoppers, treehoppers and

froghopper (Homoptera) in sandal forests of Karnataka in relation to sandal spike disease. Ann.

Entomol. 6(2): 25-34.

Raut, S. K., and S. S. Bhattacharya. 1999a. Pests and diseases of betelvine (Piper beetle) and their natural

enemies in India. Exp. & Appl. Acarol. 23(4): 319-325.

Ray-Chaudhuri, S. P., S. Kakati, S. Pathak, and T. Sharma. 1967a. Studies on the chromosomes of four species

of Indian Homoptera [Auchenorrhyncha]. Proc. Zool. Soc., Calcutta 20(1): 25-31.

Reid, E. M. 1935a. British floras antecedent to the Great Ice Age. Discussion on the origin and relationship of

the British flora. Proceedings of the Royal Society of London, B. 118: 97.

Richter, L. 1942c. Catalogo de los Membracidoos de Columbia. Rev. Acad. Colombia 4: 405-409; Pls. I-III.

Sanderson, M. J., and M. J. Donoghue. 1989a. Patterns of variation in levels of homoplasy. Evolution 43:

1781-1795.

Schlee, D. 1990a. Das Bernstein-Kabinett. Begleitheft zur Bernsteinausstellung im Museum am Löwentor,

Stuttgart. Stuttgarter Beitr. Naturk. (Serie C) 28: 1-100.

Schmidt, E. 1922i. Beiträge zur Kenntnis aussereuropäischer Zikaden (Rhynchota, Homoptera). XXII.

Kanada grandis, eine neue Membracide von Ostindien. Arch. Naturgesch. 88: 265-266.

Schmidt, E. 1926b. Neue Membraciden der Unterfamilie Centrotinae des indo-malayischen Faunengebietes.

(Hemiptera-Homoptera). Wien. Entomol. Zeitung 43: 181-189.

Schmidt, E. 1926d. Neue Membraciden. Soc. Entomol. 41: 21-22.

Schmidt, E. 1928b. Die Zikaden des Buitenzorger Museums. (Hemipt.-Homopt.). I. Treubia 10: 107-144.

Sharma, T., S. K. Pandha, S. Kakati, B. J. Moitra, and J. K. Patnaik. 1964a. On the study of chromosomes of

eight Indian species of Homoptera (Auchenorrhyncha). Proc. 50th Indian Sci. Congr. Pt. 3: 480.

482 Singh, M. M. 1986a. Notes on the behaviour of Oxyrhachis tarandus [taranda] Fabr. (Homoptera:

Membracidae). pp. 303-308. In Pathak, S. C., and Y. N. Sahai (eds.). Recent Advances in Insect

Physiology, Morphology and Ecology. Today & Tomorrow's Printers & Publishers, New Dehi, India.

xlii + 324 pp. + 2 plates.

Smithers, C. N. 1985a. New records of Pogonella bispinus (Stål) (Homoptera: Membracidae) from eastern

Australia and Barrow Island, Western Australia. Australian Entomol. Mag. 12(2): 35-36.

Stål, C. 1866a. Hemiptera Homoptera Latr. Hemiptera Africana 4: 1-276; Pl. 1.

Stegmann, U. E., and K. E. Linsenmair. 2002a. Subsocial and aggregating behaviour in Southeast Asian

treehoppers (Homoptera: Membracidae: Centrotinae). Eur. J. Entomol. 99(1): 29-34.

Strümpel, H. 1972a. Beitrag zur Phylogenie der Membracidae Rafinesque. Zool. Jahrb., Abt. Syst., Ökol. &

Geogr. Tiere 99(3): 313-407.

Swezey, O. H. 1942a. Membracidae of Guam. Bull. Bernice P. Bishop Mus. 172: 19.

Swofford, D. L. 2002a. PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Version 4.

Sinauer Associates, Sunderland, Massachusetts.

Tallamy, D. W., and C. [W.] Schaefer. 1997a. Maternal care in the Hemiptera: ancestry, alternatives, and

current adaptive value. pp. 94-115. In Choe, J. C., and B. J. Crespi (eds.). The Evolution of Social

Behavior in Insects and Arachnids. Cambridge Univ. Press. xiii + 541 pp.

Thakur, S. S. 1973a. Observations of the mutualism between Acacia arabica Willd., Camponotus ligniperda

Latr., and Oxyrhachis tarandus [taranda] Fabr. Labdev J. Sci. & Tech. 11-B(3-4): 76-77.

Thirumalai, G. 1986a. Further studies on the membracids from Silent Valley, Kerala (Insecta: Homoptera).

Rec. Zool. Surv. India 84(1-4): 97-105.

Thirumalai, G., and K. S. Ananthasubramanian. 1981a. Taxonomic studies on the membracids collected from

Silent Valley, Kerala (Insecta: Homoptera). Bull. Zool. Surv. India 4(1): 27-35.

Thirumalai, G., and K. S. Ananthasubramanian. 1985a. Taxonomic studies on the Membracidae of southern

India (Homoptera: Insecta)--I. Entomon 10(3): 223-233.

Tian, R., and F. Yuan. 1997a. Chromosomes in twenty-five species of Chinese membracids (Homoptera:

Membracidae). Entomol. Sinica 4(2): 150-158.

483 Tillyard, R. J. 1926d. Suborder Homoptera (Cicadas, plant-hopppers, plant-lice, scale insects). The insects of

Australia and New Zealand. 1926: i-xv, 1-560; Pls. 1-44; Text figs. A1-ZB4 [158-170; Pls. 11-12;

Text figs. Q19-Q35].

Uhler, P. R. 1896a. Summary of the Hemiptera of Japan presented to the United States National Museum by

Professor Mitzukuri. Proc. U. S. Natl. Mus. 19: 255-297 [276-297].

Ushijima, K., and S. Nagai. 1979a. Some notes on the life history of Gigantorhabdus enderleini Schmidt in

Borneo (Hemiptera: Membracidae). Trans. Shikoku Entomol. Soc. 14(3-4): 191-194.

Vilbaste, J. 1968a. Über die Zikadenfauna des Primorje Gebietes. Valgus, Tallin. (Acad. Sci. Estonian SSR,

Inst. Zool. Bot.) [180 pp.]

Ward, P. S. 2001a. Taxonomy, phylogeny and biogeography of the ant genus Tetraponera (Hymenoptera:

Formicidae) in the Oriental and Australian regions. Invert. Tax. 15: 589-665.

Weiss, H. B., and E. L. Dickerson. 1921a. Gargara genistae Fabr., a European Membracid in New Jersey

(Homop.). Entomol. News 32: 108-112; Figs. 1-3.

Whitten, M. J. 1965a. Chromosome numbers in some Australian leafhoppers (Homoptera Auchenorrhyncha).

Proc. Linnean Soc. New South Wales 90(1): 78-85.

Wise, K. A. J. 1977a. A synonymic checklist of the of the New Zealand sub-region. The smaller

orders. Auckland Inst. & Mus. Bull. 11. iii + 176 pp.

Wolcott, G. N. 1941a. A supplement to "Insectae Borinquenses." J. Agric. Univ. Puerto Rico 25: 33-158.

Wood, T. K. 1984a. Life history patterns of tropical membracids (Homoptera: Membracidae). Sociobiology

8(3): 299-344

Wood, T. K. 1993a. Diversity in the New World Membracidae. Ann. Rev. Entomol. 38: 409-435.

Yousuf, M., S. I. Ahmed, and M. Gaur. 1997a. Brachygrammatella aligarhensis, a potential egg parasitoid of

Oxyrachis tarandus (Fabricius). Bull. Pure & Appl. Sci. A (Zool.) 16(1-2): 53-58.

Yuan, F., and I. Chou. 1988a. Advances in the research of systematics of Membracoidea from China

(Homoptera: Auchenorrhyncha). pp. 71-78. In, Vidano, C., and A. Arzone (eds.), 6th

Auchenorrhyncha Meeting, Turin, Italy, September 7-11, 1987, Proceedings. Consiglio Nazionale

delle Ricerche, Incremento Produttivita Risorse Agricole (CNR-IPRA), Torino. 652 pp.

484 Yuan, F., and I. Chou. 2002a. Homoptera Membracoidea Aetalionidae Membracidae. Fauna Sinica, Insecta,

28: [i-v], [i]-xix, [1]-590 pp., plates I-IV.

Yuan, F., and Z. Cui. 1987a. Homoptera: Membracidae. pp. 133-147. In, Shimei, Z. (ed.), Agricultural

Insects, Spiders, Plant Diseases and Weeds of Xizang. Vol. 1. Xizang People Publishing House,

China.

Yuan, F., and Z. Cui. 1988a. Homoptera: Membracidae. pp. 141-148. In, Huang, F. - S. (chief ed.), Insects of

Mt. Namjagbarwa Region of Xizang. The Mountaineering and Scientific Expedition, Academia

Sinica. Science Press, Beijing. [6] + xii + 621 pp.

Zimmerman, E. C. 1948a. Homoptera: Auchenorhyncha. Insects of Hawaii. A manual of the insects of the

Hawaiian Islands, including an enumeration of the species and notes on their origin, distribution, hosts,

parasites, etc. 4: i-vii, 1-268; Figs. 1-92.

485