Pancreatic Α- and Β-Cellular Clocks Have Distinct Molecular Properties and Impact on Islet Hormone Secretion and Gene Expression
Downloaded from genesdev.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Pancreatic α- and β-cellular clocks have distinct molecular properties and impact on islet hormone secretion and gene expression Volodymyr Petrenko,1,2,3 Camille Saini,1,2,3,9 Laurianne Giovannoni,1,2,3,9 Cedric Gobet,4,5,9 Daniel Sage,6 Michael Unser,6 Mounia Heddad Masson,1 Guoqiang Gu,7 Domenico Bosco,8 Frédéric Gachon,4,5,10 Jacques Philippe,1,10 and Charna Dibner1,2,3 1Endocrinology, Diabetes, Hypertension, and Nutrition, University Hospital of Geneva, CH-1211 Geneva, Switzerland; 2Department of Cellular Physiology and Metabolism, Diabetes Center, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; 3Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1211 Geneva, Switzerland; 4Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland; 5School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; 6Biomedical Imaging Group, EPFL, CH-1015 Lausanne, Switzerland; 7Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37240, USA; 8Department of Surgery, Cell Isolation and Transplantation Centre, University Hospital of Geneva, CH-1211 Geneva, Switzerland A critical role of circadian oscillators in orchestrating insulin secretion and islet gene transcription has been dem- onstrated recently. However, these studies focused on whole islets and did not explore the interplay between α-cell and β-cell clocks. We performed a parallel analysis of the molecular properties of α-cell and β-cell oscillators using a mouse model expressing three reporter genes: one labeling α cells, one specific for β cells, and a third monitoring circadian gene expression.
[Show full text]