Micrornas in Tumorigenesis, Metastasis, Diagnosis and Prognosis of Gastric Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Micrornas in Tumorigenesis, Metastasis, Diagnosis and Prognosis of Gastric Cancer Cancer Gene Therapy (2015) 22, 291–301 © 2015 Nature America, Inc. All rights reserved 0929-1903/15 www.nature.com/cgt REVIEW MicroRNAs in tumorigenesis, metastasis, diagnosis and prognosis of gastric cancer C Jiang1, X Chen2, M Alattar3,JWei4 and H Liu5 MicroRNAs (miRNAs), which are small single-stranded RNA molecules composed of 18–23 nucleotides, act as oncogenes or tumor suppressor genes playing important roles in tumor formation, infiltration and metastasis. Subsequently, miRNAs expression contributes to cancer diagnosis and prognosis. Gastric cancer currently has high morbidity and mortality among all malignant tumors, yet it lacks early specific diagnostic markers and effective treatments. In gastric cancer, many studies have detected abnormal expression forms of miRNAs and confirmed their involvement in its tumorigenesis, progression, invasion and metastasis. They may become valuable diagnostic markers and therapeutic targets for gastric cancer. Studying the role of miRNAs in gastric cancer and its relationship with diagnostic and prognostic parameters might help to improve the sensitivity of diagnosis as well as the efficacy of gastric cancer treatment. This review aims to highlight the advancements which might provide new methods for early clinical diagnosis and effective therapeutic options, along with predict response to treatment for gastric cancer. Cancer Gene Therapy (2015) 22, 291–301; doi:10.1038/cgt.2015.19; published online 22 May 2015 Gastric cancer is the most common gastrointestinal malignant act as a tumor suppressor, whereas targeting tumor suppressor tumor which poses a serious threat to human health. According genes could be a potential oncogene. At the same time, the to statistical data in CA2010, there are 934 000 newly diagnosed expression and function of microRNAs were regulated by various cases of gastric cancer patients each year, and two-thirds of them factors, such as gene sequence, phosphorylation level, miRNAs are located in Eastern Europe, South America and Asia. The inci- modification enzyme and so on. Many recent studies on miRNA dence of gastric cancer in Asian countries is higher than revealed its involvement in pathogenesis of different tumors others, furthermore, Chinese account for 42% of Asian patients.1 including gastric carcinoma. The prognosis of gastric cancer depends on the stage when diagnosed, and the later stage carries poor prognosis. In general, about 50% of these patients have had metastasis at miRNAs AND TUMORIGENESIS OF GASTRIC CANCER the time of diagnosis. Subsequently, the long-term curative effect As a post-transcriptional gene regulator, miRNAs are involved in is poor. Though great progress has been made in the examination many cellular processes, including the development, differentia- and treatment, it could only improve curative effect of early tion, proliferation, apoptosis and stress reaction and so on. Human detection, but not the curative effect in case of middle and late malignant tumors including gastric cancer are usually character- stages. Current treatment still cannot significantly prolong the ized by abnormal expression of a large number of genes. Some of survival time of gastric cancer patients. them may lead to tumorgenesis as a consequence.3 MicroRNAs (miRNAs) are endogenous non-coding small miR-106-25b family including miR-25, miR-106 and miR-93b molecule RNAs, a subset of 19–24 ribonucleotide in length. shows higher expression in primary tumors of stomach and in miRNA was firstly discovered in nematode Caenorhabditis elegans, all of gastric cancer cell lines, which may take part in the process and then a variety of such molecules were found in plants of the occurrence of gastric cancer.4 In a study on 365 cases of and animals. In living cells, the miRNA molecules are modified gastric cancer, 15 miRNAs and 24 families of miRNAs were isolated by Drosha and Dicer enzyme to induce degradation or silence by application of 133 labeled-single nucleotide polymorphisms. of target mRNAs after transcription, thus inhibiting protein The results suggest that miR-25, miR-29, miR-93 and miR-106-b synthesis.2 may have an important role in the genetic susceptibility and the It is predicted that about 30% of the mRNAs in the human body molecular mechanisms of gastric cancer.5 miR-181-c is critical to are the miRNA targets, and each miRNA can regulate hundreds of the occurrence of gastric cancer through regulating oncogenes genes. They have a role on the organ development, differentiation NOTCH4 and KRAS.6 When exposed to N-nitrose compound and function, as well as tumor formation, progression, invasion (MNNG (N-methyl-N-nitro-N'-nitrosoguanidine)) in vivo or in vitro, and metastasis. Studies on function of miRNA proved that it could miR-21 is activated during the process of malignant transforma- be an oncogene or a tumor suppressor gene. The role of miRNA tion and tumorigenesis, which could induce gastric tumor. After depends on its target genes. MicroRNA targeting oncogenes could activation, miR-21 expression level is time- and dose-dependent 1Department of Thoracic Surgery & Tumor Research Institute, Tianjin Union Medicine Centre, Tianjin, China; 2Department of Microbiology & Infectious Disease Center, School of Basic Medical Science, Peking University Health Science Center, Beijing, China; 3Department of Cardiothoracic Surgery, Zagazig University Hospital, Faculty of Medicine, Zagazig University, Sharkia, Egypt; 4Department of Basic Medical Sciences, Medical College, Xiamen University, Xiamen, China and 5Office of Clinical Drug Trial Institution, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China. Correspondence: Dr. H Liu, Office of Clinical Drug Trial Institution, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi 830011, China. E-mail: [email protected] Received 8 January 2015; revised 15 March 2015; accepted 16 March 2015; published online 22 May 2015 Role of MicroRNAs in gastric cancer C Jiang et al 292 and it may have a role in chemical tumorigenesis through the miR-223 acts as a proto-oncogene through post-transcription regulation of death receptor Fas ligand and BTG2 (B-cell trans- regulation of its target gene FBXW7/hCdc4 (a cancer suppressor location gene 2).7 Genetic variations of miR-25, miR-29, miR-93 gene regulating apoptosis, proliferation and invasion of gastric and miR-106-b may induce increased genetic susceptibility of cancer cells).21 miR-301a can directly suppress RUNX3 (Runt- gastric cancer, and participate in the molecular mechanisms of related transcription factor 3) expression and accordingly advance gastric tumorigenesis.5 cell growth, migration and invasion.22 miR-363, via raising the Disturbance of pro-oxidant–antioxidant balance can enhance expression of MBP-1 (c-Myc promoter binding protein 1) in gastric the oxidative damage to gastric tissues and then promote the cancer SC-M1 cells, causes cell growth, progression, epithelial– occurrence of cancer. Reactive oxygen species induced by raising mesenchymal transformation and tumor formation. Endogenous miR-21 expression level in gastric cells, which cut the expression of miR-363 knockout in SC-M1 cells, by downregulating MBP-1, PDCD4 (programmed cell death protein 4), may eventually bring inhibits tumorigenesis and progression.23 about tumorigenesis.8 Both the overexpression of miR-21 and low The reduced level of miR-365 in human gastric cancer tissue expression of PDCD4 are significantly related to the degree of related to poorly differentiated tumor tissues, infiltration depth gastric cancer differentiation, clinical stage, as well as local and and progress stages, and also to the deficiency of PTEN, distant lymph node metastasis. phosphorylated Akt, p53, cyclin D1 and cdc25A. The PTEN–Akt– The gene polymorphism of G/A in miR-27a suppresses the p53–miR-365–cyclin D1/cdc25A axis serves as a new mechanism expression of mature miR-27a, which could reduce the genetic underlying gastric tumorigenesis.24 miR-372 produces its tumor- susceptibility to gastric cancer.9 In addition, in eight kinds of promoting effect by downregulating the tumor suppressor gene gastric cancer cell lines and human gastric cancer tissues, the LATS2 (large tumor suppressor 2), which can regulate gastric obviously downregulated miR-212 suppresses its target gene cancer cell cycle and apoptosis, and thus contributes to gastric MeCP2 (methyl-CpG-binding protein) expression which is asso- oncogenesis.25 ciated with occurrence of gastric cancer.10 miR-544 is another cancerogenic miRNA which can promote gastric cancer cell proliferation and cell cycle progression in vitro. Tumor-promoting effects of miRNAs Overexpression of miR-544 can inactivate the tumor suppressor gene IRX1 (iroquois homeobox 1) and diminish its expression level The aberrant expressions of miR-17-5p, miR-20a, miR-21, miR-92, in gastric cancer.26 After combining with the 3ʹ untranslated miR-106-a and miR-155 are associated with tumorigenicity, and region of GC-associated CLDN18 (claudin-18 gene) mRNA, the their elevated levels can be detected in many types of cancers. expression of miR-1303 is reduced, which will accordingly ’ In addition, inhibition of miR-27a s expression can depress the promote the occurrence and migration of gastric cancer. In growth of gastric adenocarcinoma, which proved that it could be 11 parallel, suppressed miR-1303 can inhibit proliferation, migration a gastric oncogene. and invasion of gastric cancer cells.27 Some miRNAs can promote the development of gastric cancer The gastric tumorigenesis promoting effect for miRNAs may through direct or indirect regulation of oncogenes or tumor be associated with gene polymorphism. One study on single suppressor genes. Increased expressions of miR-17, miR-18a/b, nucleotide polymorphisms of miR-196a-2 shows that the variant miR-19a, miR-20a/b, miR-21, miR-106-a/b, miR-340, miR-421 and homozygote CC can markedly increase the risk of gastric cancer, miR-658 in gastric cancer are related to downregulated levels which clearly indicates that miR-196a-2 gene mutation may of tumor suppressor genes Rb and PTEN (phosphatase and play an important role in the occurrence and progression of tensin homolog).
Recommended publications
  • BMP Signaling Orchestrates a Transcriptional Network to Control the Fate of Mesenchymal Stem Cells (Mscs)
    bioRxiv preprint doi: https://doi.org/10.1101/104927; this version posted February 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. BMP signaling orchestrates a transcriptional network to control the fate of mesenchymal stem cells (MSCs) Jifan Feng1, Junjun Jing1,2, Jingyuan Li1, Hu Zhao1, Vasu Punj3, Tingwei Zhang1,2, Jian Xu1 and Yang Chai1,* 1Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA 2State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China 3Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA *Corresponding author: Yang Chai 2250 Alcazar Street – CSA 103 Center for Craniofacial Molecular Biology University of Southern California Los Angeles, CA Phone number: 323-442-3480 [email protected] Running Title: BMP regulates cell fate of MSCs Key Words: BMP, mesenchymal stem cells (MSCs), odontogenesis, Gli1 Summary Statement: BMP signaling activity is required for the lineage commitment of MSCs and transcription factors downstream of BMP signaling may determine distinct cellular identities within the dental mesenchyme. 1 bioRxiv preprint doi: https://doi.org/10.1101/104927; this version posted February 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.
    [Show full text]
  • Genome-Wide DNA Methylation Analysis of KRAS Mutant Cell Lines Ben Yi Tew1,5, Joel K
    www.nature.com/scientificreports OPEN Genome-wide DNA methylation analysis of KRAS mutant cell lines Ben Yi Tew1,5, Joel K. Durand2,5, Kirsten L. Bryant2, Tikvah K. Hayes2, Sen Peng3, Nhan L. Tran4, Gerald C. Gooden1, David N. Buckley1, Channing J. Der2, Albert S. Baldwin2 ✉ & Bodour Salhia1 ✉ Oncogenic RAS mutations are associated with DNA methylation changes that alter gene expression to drive cancer. Recent studies suggest that DNA methylation changes may be stochastic in nature, while other groups propose distinct signaling pathways responsible for aberrant methylation. Better understanding of DNA methylation events associated with oncogenic KRAS expression could enhance therapeutic approaches. Here we analyzed the basal CpG methylation of 11 KRAS-mutant and dependent pancreatic cancer cell lines and observed strikingly similar methylation patterns. KRAS knockdown resulted in unique methylation changes with limited overlap between each cell line. In KRAS-mutant Pa16C pancreatic cancer cells, while KRAS knockdown resulted in over 8,000 diferentially methylated (DM) CpGs, treatment with the ERK1/2-selective inhibitor SCH772984 showed less than 40 DM CpGs, suggesting that ERK is not a broadly active driver of KRAS-associated DNA methylation. KRAS G12V overexpression in an isogenic lung model reveals >50,600 DM CpGs compared to non-transformed controls. In lung and pancreatic cells, gene ontology analyses of DM promoters show an enrichment for genes involved in diferentiation and development. Taken all together, KRAS-mediated DNA methylation are stochastic and independent of canonical downstream efector signaling. These epigenetically altered genes associated with KRAS expression could represent potential therapeutic targets in KRAS-driven cancer. Activating KRAS mutations can be found in nearly 25 percent of all cancers1.
    [Show full text]
  • Single Cell Regulatory Landscape of the Mouse Kidney Highlights Cellular Differentiation Programs and Disease Targets
    ARTICLE https://doi.org/10.1038/s41467-021-22266-1 OPEN Single cell regulatory landscape of the mouse kidney highlights cellular differentiation programs and disease targets Zhen Miao 1,2,3,8, Michael S. Balzer 1,2,8, Ziyuan Ma 1,2,8, Hongbo Liu1,2, Junnan Wu 1,2, Rojesh Shrestha 1,2, Tamas Aranyi1,2, Amy Kwan4, Ayano Kondo 4, Marco Pontoglio 5, Junhyong Kim6, ✉ Mingyao Li 7, Klaus H. Kaestner2,4 & Katalin Susztak 1,2,4 1234567890():,; Determining the epigenetic program that generates unique cell types in the kidney is critical for understanding cell-type heterogeneity during tissue homeostasis and injury response. Here, we profile open chromatin and gene expression in developing and adult mouse kidneys at single cell resolution. We show critical reliance of gene expression on distal regulatory elements (enhancers). We reveal key cell type-specific transcription factors and major gene- regulatory circuits for kidney cells. Dynamic chromatin and expression changes during nephron progenitor differentiation demonstrates that podocyte commitment occurs early and is associated with sustained Foxl1 expression. Renal tubule cells follow a more complex differentiation, where Hfn4a is associated with proximal and Tfap2b with distal fate. Mapping single nucleotide variants associated with human kidney disease implicates critical cell types, developmental stages, genes, and regulatory mechanisms. The single cell multi-omics atlas reveals key chromatin remodeling events and gene expression dynamics associated with kidney development. 1 Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA. 2 Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
    [Show full text]
  • Automatic Detection of the Circulating Cell-Free Methylated DNA Pattern
    Supplementary Files Automatic Detection of the Circulating Cell‐Free Methylated DNA Pattern of GCM2, ITPRIPL1 and CCDC181 for Detection of Early Breast Cancer and Surgical Treatment Response Sheng‐Chao Wang, Li‐Min Liao, Muhamad Ansar, Shih‐Yun Lin, Wei‐Wen Hsu and Chih‐Ming Su, Yu‐Mei Chung, Cai‐Cing Liu, Chin‐Sheng Hung and Ruo‐Kai Lin Figure S1. Representative standard sequencing diagram for bisulfite direct sequencing of the CCDC181, GCM2, ITPRIPL1, ENPP2, LOC643719, ZNF177, ADCY4 and RASSF1 genes. Figure S2. Representative figures showing the DNA methylation levels of the candidate genes CCDC181, GCM2, ITPRIPL1, ENPP2, LOC643719, ZNF177, ADCY4 and RASSF1 using qMSP in breast cancer patients. Table S1. The clinical parameters of breast cancer patients for plasma ccfDNA analysis. Automatic Automatic Manual Manual Labturbo Duo Prime Characteristics 0.2 mL Plasma 0.5 mL Plasma 1.6 mL Plasma 1.6 mL Plasma N (%) N (%) N (%) N (%) Overall 45 34 63 57 Type 45 19(42.2) 13(38.2) 9(14.3) 10(17.5) 45 26(57.8) 21(61.8) 54(85.7) 47(82.5) Type DCIS 3(6.7) 10(29.4) 7(11.1) 1(1.8) IDC 40(88.9) 22(64.7) 47(74.6) 48(84.2) ILC 1(2.2) 2(5.9) 1(1.6) 2(3.5) Others 1(2.2) 0 8(12.7) 6(10.5) Tumor Stage 0, I and II 32(71.1) 29(85.3) 52(82.5) 44(77.2) III and IV 13(28.9) 5(14.7) 11(17.5) 13(22.8) Tumor Size T0–T2 38(84.4) 31(91.2) 56(88.9) 49(86.0) T3–T4 7(15.6) 3(8.8) 7(11.1) 8(14.0) Lymph node N = 0 16(35.6) 22(64.7) 31(49.2) 30(52.6) N > 0 29(64.4) 1235.3) 32(50.8) 27(47.4) ER Negative 21(46.7) 7(20.6) 19(30.2) 19(33.3) Positive 24(53.3) 27(79.4) 44(69.8) 38(66.7) PR Negative 20(44.4) 11(32.4) 21(33.3) 22(38.6) Positive 25(55.6) 23(67.6) 42(66.7) 35(61.4) HER2 Negative 35(77.8) 26(76.5) 46(73.0) 35(61.4) Positive 10(22.2) 8(23.5) 17(27.0) 22(38.6) Ki‐67 High 24(53.3) 24(70.6) 39(61.9) 39(68.4) Low 21(46.7) 10(29.4) 24(38.1) 12(21.1) n.d.
    [Show full text]
  • Pancreatic Α- and Β-Cellular Clocks Have Distinct Molecular Properties and Impact on Islet Hormone Secretion and Gene Expression
    Downloaded from genesdev.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Pancreatic α- and β-cellular clocks have distinct molecular properties and impact on islet hormone secretion and gene expression Volodymyr Petrenko,1,2,3 Camille Saini,1,2,3,9 Laurianne Giovannoni,1,2,3,9 Cedric Gobet,4,5,9 Daniel Sage,6 Michael Unser,6 Mounia Heddad Masson,1 Guoqiang Gu,7 Domenico Bosco,8 Frédéric Gachon,4,5,10 Jacques Philippe,1,10 and Charna Dibner1,2,3 1Endocrinology, Diabetes, Hypertension, and Nutrition, University Hospital of Geneva, CH-1211 Geneva, Switzerland; 2Department of Cellular Physiology and Metabolism, Diabetes Center, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; 3Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1211 Geneva, Switzerland; 4Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland; 5School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; 6Biomedical Imaging Group, EPFL, CH-1015 Lausanne, Switzerland; 7Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37240, USA; 8Department of Surgery, Cell Isolation and Transplantation Centre, University Hospital of Geneva, CH-1211 Geneva, Switzerland A critical role of circadian oscillators in orchestrating insulin secretion and islet gene transcription has been dem- onstrated recently. However, these studies focused on whole islets and did not explore the interplay between α-cell and β-cell clocks. We performed a parallel analysis of the molecular properties of α-cell and β-cell oscillators using a mouse model expressing three reporter genes: one labeling α cells, one specific for β cells, and a third monitoring circadian gene expression.
    [Show full text]
  • Clinical Significance of Iroquois Homeobox Gene - IRX1 in Human Glioma
    MOLECULAR MEDICINE REPORTS 17: 4651-4656, 2018 Clinical significance of Iroquois Homeobox Gene - IRX1 in human glioma PENGXING ZHANG1*, NAN LIU1*, XIAOSHAN XU1, ZHEN WANG1, YINGDUAN CHENG1,2, WEILIN JIN3, XIN WANG4, HONGWEI YANG4, HUI LIU1, YONGSHENG ZHANG1 and YANYANG TU1 1Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China; 2Department of Research, Cipher Ground, 675 Rt 1 South, North Brunswick, NJ 08902, USA; 3Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R China; 4Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA Received April 7, 2017; Accepted January 2, 2018 DOI: 10.3892/mmr.2018.8404 Abstract. The present study aimed to investigate the location, able, IRX1 expression was positively correlated with the overall expression and clinical significance of Iroquois homeobox survival of glioma patients. IRX1 gene may therefore exhibit an gene (IRX1) in human glioma. The expression of IRX1 gene oncogenic role in glioma condition, and thus may be of clinical in glioma cell lines (U87, U373, LN229 and T98G) and normal importance as a future therapeutic target. brain tissue was detected via reverse transcription-polymerase chain reaction. The IRX1 protein in fresh glioma specimens, Introduction with the adjacent normal brain tissue, was quantified through western blotting. The archived glioma only specimens from the Malignant glioma, a malignant neoplasm of the central present hospital and glioma specimens with adjacent normal nervous system, is a devastating condition associated with brain tissue, from Alenabio biotechnology, were subjected to poor prognosis.
    [Show full text]
  • AAM Symeonidou and Ottersbach AAMS All Files
    Edinburgh Research Explorer HOXA9/IRX1 expression pattern defines two sub-groups of infant MLL-AF4-driven Acute Lymphoblastic Leukemia Citation for published version: Symeonidou, V & Ottersbach, K 2020, 'HOXA9/IRX1 expression pattern defines two sub-groups of infant MLL-AF4-driven Acute Lymphoblastic Leukemia', Experimental Hematology. https://doi.org/10.1016/j.exphem.2020.10.002 Digital Object Identifier (DOI): 10.1016/j.exphem.2020.10.002 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Experimental Hematology General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 09. Oct. 2021 HOXA9/IRX1 expression pattern defines two sub-groups of infant MLL-AF4-driven Acute Lymphoblastic Leukemia Symeonidou V.1, Ottersbach K.1 1 Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK Contact information for corresponding author Dr. Katrin Ottersbach Centre for Regenerative Medicine Institute for Regeneration and Repair University of Edinburgh Edinburgh BioQuarter 5 Little France Drive Edinburgh EH16 4UU UK Tel.: +44 131 651 9516 Fax: +44 131 651 9501 [email protected] Category: Malignant Hematopoiesis Word count: 1,485 Keywords: infant acute lymphoblastic leukemia, MLL-AF4, HOXA9, IRX1, RNA Sequencing, leukemia subgroups.
    [Show full text]
  • Engineered Type 1 Regulatory T Cells Designed for Clinical Use Kill Primary
    ARTICLE Acute Myeloid Leukemia Engineered type 1 regulatory T cells designed Ferrata Storti Foundation for clinical use kill primary pediatric acute myeloid leukemia cells Brandon Cieniewicz,1* Molly Javier Uyeda,1,2* Ping (Pauline) Chen,1 Ece Canan Sayitoglu,1 Jeffrey Mao-Hwa Liu,1 Grazia Andolfi,3 Katharine Greenthal,1 Alice Bertaina,1,4 Silvia Gregori,3 Rosa Bacchetta,1,4 Norman James Lacayo,1 Alma-Martina Cepika1,4# and Maria Grazia Roncarolo1,2,4# Haematologica 2021 Volume 106(10):2588-2597 1Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA; 2Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA; 3San Raffaele Telethon Institute for Gene Therapy, Milan, Italy and 4Center for Definitive and Curative Medicine, Stanford School of Medicine, Stanford, CA, USA *BC and MJU contributed equally as co-first authors #AMC and MGR contributed equally as co-senior authors ABSTRACT ype 1 regulatory (Tr1) T cells induced by enforced expression of interleukin-10 (LV-10) are being developed as a novel treatment for Tchemotherapy-resistant myeloid leukemias. In vivo, LV-10 cells do not cause graft-versus-host disease while mediating graft-versus-leukemia effect against adult acute myeloid leukemia (AML). Since pediatric AML (pAML) and adult AML are different on a genetic and epigenetic level, we investigate herein whether LV-10 cells also efficiently kill pAML cells. We show that the majority of primary pAML are killed by LV-10 cells, with different levels of sensitivity to killing. Transcriptionally, pAML sensitive to LV-10 killing expressed a myeloid maturation signature.
    [Show full text]
  • Irx Clusters Facilitates Enhancer Sharing and Coregulation
    ARTICLE Received 15 Dec 2010 | Accepted 4 Apr 2011 | Published 10 May 2011 DOI: 10.1038/ncomms1301 An evolutionarily conserved three-dimensional structure in the vertebrate Irx clusters facilitates enhancer sharing and coregulation Juan J. Tena1 , M. Eva Alonso2 , Elisa de la Calle-Mustienes1 , Erik Splinter3 , Wouter de Laat3 , Miguel Manzanares2 & Jos é Luis G ó mez-Skarmeta 1 Developmental gene clusters are paradigms for the study of gene regulation; however, the mechanisms that mediate phenomena such as coregulation and enhancer sharing remain largely elusive. Here we address this issue by analysing the vertebrate Irx clusters. We fi rst present a deep enhancer screen of a 2-Mbp span covering the IrxA cluster. Using chromosome conformation capture, we show that enhancer sharing is widespread within the cluster, explaining its evolutionarily conserved organization. We also identify a three-dimensional architecture, probably formed through interactions with CCCTC-binding factor, which is present within both Irx clusters of mouse, Xenopus and zebrafi sh. This architecture brings the promoters of the fi rst two genes together in the same chromatin landscape. We propose that this unique and evolutionarily conserved genomic architecture of the vertebrate Irx clusters is essential for the coregulation of the fi rst two genes and simultaneously maintains the third gene in a partially independent regulatory landscape. 1 Centro Andaluz de Biolog í a del Desarrollo, Consejo Superior de Investigaciones Cient í fi cas and Universidad Pablo de Olavide, Carretera de Utrera Km1 , 41013 Sevilla , Spain . 2 CNIC, Fundaci ó n Centro Nacional de Investigaciones Cardiovasculares Carlos III, Melchor Fernandez Almagro 3 , 28029 Madrid , Spain .
    [Show full text]
  • Discerning the Role of Foxa1 in Mammary Gland
    DISCERNING THE ROLE OF FOXA1 IN MAMMARY GLAND DEVELOPMENT AND BREAST CANCER by GINA MARIE BERNARDO Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Dissertation Adviser: Dr. Ruth A. Keri Department of Pharmacology CASE WESTERN RESERVE UNIVERSITY January, 2012 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of Gina M. Bernardo ______________________________________________________ Ph.D. candidate for the ________________________________degree *. Monica Montano, Ph.D. (signed)_______________________________________________ (chair of the committee) Richard Hanson, Ph.D. ________________________________________________ Mark Jackson, Ph.D. ________________________________________________ Noa Noy, Ph.D. ________________________________________________ Ruth Keri, Ph.D. ________________________________________________ ________________________________________________ July 29, 2011 (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. DEDICATION To my parents, I will forever be indebted. iii TABLE OF CONTENTS Signature Page ii Dedication iii Table of Contents iv List of Tables vii List of Figures ix Acknowledgements xi List of Abbreviations xiii Abstract 1 Chapter 1 Introduction 3 1.1 The FOXA family of transcription factors 3 1.2 The nuclear receptor superfamily 6 1.2.1 The androgen receptor 1.2.2 The estrogen receptor 1.3 FOXA1 in development 13 1.3.1 Pancreas and Kidney
    [Show full text]
  • North Carolina Macular Dystrophy Is Caused by Dysregulation of the Retinal Transcription Factor PRDM13
    HHS Public Access Author manuscript Author Manuscript Author ManuscriptOphthalmology Author Manuscript. Author Author Manuscript manuscript; available in PMC 2017 January 01. Published in final edited form as: Ophthalmology. 2016 January ; 123(1): 9–18. doi:10.1016/j.ophtha.2015.10.006. North Carolina Macular Dystrophy is caused by dysregulation of the retinal transcription factor PRDM13 Kent W. Small, M.D.1, Adam P. DeLuca, Ph.D.2, S. Scott Whitmore, Ph.D.2, Thomas Rosenberg, M.D.3, Rosemary Silva-Garcia, M.D.1, Nitin Udar, Ph.D.1, Bernard Puech, M.D.4, Charles A. Garcia, M.D.5, Thomas A. Rice, M.D.6, Gerald A. Fishman, M.D.7, Elise Héon, M.D.8, James C. Folk, M.D.2, Luan M. Streb, B.A.2, Christine M. Haas, B.A.2, Luke A. Wiley, Ph.D.2, Todd E. Scheetz, Ph.D.2, John H. Fingert, M.D., Ph.D.2, Robert F. Mullins, Ph.D.2, Budd A. Tucker, Ph.D.2, and Edwin. M. Stone, M.D., Ph.D.2 1Molecular Insight Research Foundation, Glendale, CA 2Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, IA 3National Eye Clinic, Kennedy Center, Glostrup, Denmark, Institute of Clinical Medicine, University of Copenhagen, Denmark 4Service d’Exploration de la vision et Neuro-ophtalmologie CHRU, Lille, France 5University of Texas Health Science Center at Houston, Houston, TX 6Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 7The Pangere Center for Inherited Retinal Diseases, The Chicago Lighthouse for People Who Are Blind or Visually Impaired, Chicago, IL 8Department of Ophthalmology and Vision Sciences, Programme of Genetics and Genomic Medicine, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada Abstract Purpose—To identify specific mutations causing North Carolina Macular Dystrophy (NCMD).
    [Show full text]
  • Homeobox Gene IRX1 Is a Tumor Suppressor Gene in Gastric Carcinoma
    Oncogene (2010) 29, 3908–3920 & 2010 Macmillan Publishers Limited All rights reserved 0950-9232/10 www.nature.com/onc ORIGINAL ARTICLE Homeobox gene IRX1 is a tumor suppressor gene in gastric carcinoma X Guo1,3, W Liu1,3, Y Pan1,PNi2,JJi1, L Guo1, J Zhang1,JWu1, J Jiang1, X Chen1, Q Cai1, JLi1, J Zhang1,QGu1, B Liu1, Z Zhu1 and Y Yu1 1Department of Surgery of Shanghai Ruijin Hospital and Shanghai Institute of Digestive Surgery, Shanghai, PR China and 2Department of Clinical Biochemistry, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, PR China The IRX1 tumor suppressor gene is located on 5p15.33, a locatedonLOHloci.Ourgrouppreviouslycharacterized cancer susceptibility locus. Loss of heterozygosity of a high frequency of LOH at 5p15.33 in human gastric 5p15.33 in gastric cancer was identified in our previous cancer. We hypothesized that genes located on this locus work. In this study, we analyzed the molecular features may contribute to the pathogenesis of gastric cancer (Lu and function of IRX1. We found that IRX1 expression et al., 2005). IRX1 is harbored in this chromosome locus was lost or reduced in gastric cancer. However, no and belongs to the Iroquois homeobox gene family, which mutations were identified in IRX1-encoding regions. IRX1 has six members from IRX1 to IRX6. IRX1 is closely transcription was suppressed by hypermethylation, and the related to embryonic development, including foregut expression of IRX1 mRNA was partially restored in organs such as the lung (Ferguson et al.,1998;Becker gastric cancer cells after 5-Aza-dC treatment. Restoring et al., 2001; van Tuyl et al., 2006; Alarcon et al., 2008).
    [Show full text]