Dark-Rumped Petrel
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Behavior and Attendance Patterns of the Fork-Tailed Storm-Petrel
BEHAVIOR AND ATTENDANCE PATTERNS OF THE FORK-TAILED STORM-PETREL THEODORE R. SIMONS Wildlife Science Group, Collegeof Forest Resources, University of Washington, Seattle, Washington 98195 USA ABSTRACT.--Behavior and attendance patterns of breeding Fork-tailed Storm-Petrels (Ocea- nodromafurcata) were monitored over two nesting seasonson the Barren Islands, Alaska. The asynchrony of egg laying and hatching shown by these birds apparently reflects the influence of severalfactors, including snow conditionson the breedinggrounds, egg neglectduring incubation, and food availability. Communication between breeding birds was characterized by auditory and tactile signals.Two distinct vocalizationswere identified, one of which appearsto be a sex-specific call given by males during pair formation. Generally, both adults were present in the burrow on the night of egg laying, and the male took the first incubation shift. Incubation shiftsranged from 1 to 5 days, with 2- and 3-day shifts being the most common. Growth parameters of the chicks, reproductive success, and breeding chronology varied considerably between years; this pre- sumably relates to a difference in conditions affecting the availability of food. Adults apparently responded to changes in food availability during incubation by altering their attendance patterns. When conditionswere good, incubation shifts were shorter, egg neglectwas reduced, and chicks were brooded longer and were fed more frequently. Adults assistedthe chick in emerging from the shell. Chicks became active late in the nestling stage and began to venture from the burrow severaldays prior to fledging. Adults continuedto visit the chick during that time but may have reducedthe amountof fooddelivered. Chicks exhibiteda distinctprefledging weight loss.Received 18 September1979, accepted26 July 1980. -
Pterodromarefs V1-5.Pdf
Index The general order of species follows the International Ornithological Congress’ World Bird List. A few differences occur with regard to the number and treatment of subspecies where some are treated as full species. Version Version 1.5 (5 May 2011). Cover With thanks to Kieran Fahy and Dick Coombes for the cover images. Species Page No. Atlantic Petrel [Pterodroma incerta] 5 Barau's Petrel [Pterodroma baraui] 17 Bermuda Petrel [Pterodroma cahow] 11 Black-capped Petrel [Pterodroma hasitata] 12 Black-winged Petrel [Pterodroma nigripennis] 18 Bonin Petrel [Pterodroma hypoleuca] 19 Chatham Islands Petrel [Pterodroma axillaris] 19 Collared Petrel [Pterodroma brevipes] 20 Cook's Petrel [Pterodroma cookii] 20 De Filippi's Petrel [Pterodroma defilippiana] 20 Desertas Petrel [Pterodroma deserta] 11 Fea's Petrel [Pterodroma feae] 8 Galapágos Petrel [Pterodroma phaeopygia] 17 Gould's Petrel [Pterodroma leucoptera] 19 Great-winged Petrel [Pterodroma macroptera] 3 Grey-faced Petrel [Pterodroma gouldi] 4 Hawaiian Petrel [Pterodroma sandwichensis] 17 Henderson Petrel [Pterodroma atrata] 16 Herald Petrel [Pterodroma heraldica] 14 Jamaica Petrel [Pterodroma caribbaea] 13 Juan Fernandez Petrel [Pterodroma externa] 13 Kermadec Petrel [Pterodroma neglecta] 14 Magenta Petrel [Pterodroma magentae] 6 Mottled Petrel [Pterodroma inexpectata] 18 Murphy's Petrel [Pterodroma ultima] 6 Phoenix Petrel [Pterodroma alba] 16 Providence Petrel [Pterodroma solandri] 5 Pycroft's Petrel [Pterodroma pycrofti] 21 Soft-plumaged Petrel [Pterodroma mollis] 7 Stejneger's Petrel [Pterodroma longirostris] 21 Trindade Petrel [Pterodroma arminjoniana] 15 Vanuatu Petrel [Pterodroma occulta] 13 White-headed Petrel [Pterodroma lessonii] 4 White-necked Petrel [Pterodroma cervicalis] 18 Zino's Petrel [Pterodroma madeira] 9 1 General Bailey, S.F. et al 1989. Dark Pterodroma petrels in the North Pacific: identification, status, and North American occurrence. -
The Taxonomy of the Procellariiformes Has Been Proposed from Various Approaches
山 階 鳥 研 報(J. Yamashina Inst. Ornithol.),22:114-23,1990 Genetic Divergence and Relationships in Fifteen Species of Procellariiformes Nagahisa Kuroda*, Ryozo Kakizawa* and Masayoshi Watada** Abstract The genetic analysis of 23 protein loci in 15 species of Procellariiformes was made The genetic distancesbetween the specieswas calculatedand a dendrogram was formulated of the group. The separation of Hydrobatidae from all other taxa including Diomedeidae agrees with other precedent works. The resultsof the present study support the basic Procellariidclassification system. However, two points stillneed further study. The firstpoint is that Fulmarus diverged earlier from the Procellariidsthan did the Diomedeidae. The second point is the position of Puffinuspacificus which appears more closely related to the Pterodroma petrels than to other Puffinus species. These points are discussed. Introduction The taxonomy of the Procellariiformes has been proposed from various approaches. The earliest study by Forbes (1882) was made by appendicular myology. Godman (1906) and Loomis (1918) studied this group from a morphological point of view. The taxonomy of the Procellariiformes by functional osteology and appendicular myology was studied by Kuroda (1954, 1983) and Klemm (1969), The results of the various studies agreed in proposing four families of Procellariiformes: Diomedeidae, Procellariidae, Hydrobatidae, and Pelecanoididae. They also pointed out that the Procellariidae was a heterogenous group among them. Timmermann (1958) found the parallel evolution of mallophaga and their hosts in Procellariiformes. Recently, electrophoretical studies have been made on the Procellariiformes. Harper (1978) found different patterns of the electromorph among the families. Bar- rowclough et al. (1981) studied genetic differentiation among 12 species of Procellari- iformes at 16 loci, and discussed the genetic distances among the taxa but with no consideration of their phylogenetic relationships. -
Acoustic Attraction of Grey-Faced Petrels (Pterodroma Macroptera Gouldi) and Fluttering Shearwaters (Puffinus Gavia) to Young Nick’S Head, New Zealand
166 Notornis, 2010, Vol. 57: 166-168 0029-4470 © The Ornithological Society of New Zealand, Inc. SHORT NOTE Acoustic attraction of grey-faced petrels (Pterodroma macroptera gouldi) and fluttering shearwaters (Puffinus gavia) to Young Nick’s Head, New Zealand STEVE L. SAWYER* Ecoworks NZ Ltd, 369 Wharerata Road, RD1, Gisborne 4071, New Zealand SALLY R. FOGLE Ecoworks NZ Ltd, 369 Wharerata Road, RD1, Gisborne 4071, New Zealand Burrow-nesting and surface-nesting petrels colonies at sites following extirpation or at novel (Families Procellariidae, Hydrobatidae and nesting habitats, as the attraction of prospecting Oceanitidae) in New Zealand have been severely non-breeders to a novel site is unlikely and the affected by human colonisation, especially through probabilities of recolonisation further decrease the introduction of new predators (Taylor 2000). as the remaining populations diminish (Gummer Of the 41 extant species of petrel, shearwater 2003). and storm petrels in New Zealand, 35 species are Both active (translocation) and passive (social categorised as ‘threatened’ or ‘at risk’ with 3 species attraction) methods have been used in attempts to listed as nationally critical (Miskelly et al. 2008). establish or restore petrel colonies (e.g. Miskelly In conjunction with habitat protection, habitat & Taylor 2004; Podolsky & Kress 1992). Methods enhancement and predator control, the restoration for the translocation of petrel chicks to new colony of historic colonies or the attraction of petrels to sites are now fairly well established, with fledging new sites is recognised as important for achieving rates of 100% achievable, however, the return of conservation and species recovery objectives translocated chicks to release sites is still awaiting (Aikman et al. -
Geographic Variation in Leach's Storm-Petrel
GEOGRAPHIC VARIATION IN LEACH'S STORM-PETREL DAVID G. AINLEY Point Reyes Bird Observatory, 4990 State Route 1, Stinson Beach, California 94970 USA ABSTRACT.-•A total of 678 specimens of Leach's Storm-Petrels (Oceanodroma leucorhoa) from known nestinglocalities was examined, and 514 were measured. Rump color, classifiedon a scale of 1-11 by comparison with a seriesof reference specimens,varied geographicallybut was found to be a poor character on which to base taxonomic definitions. Significant differences in five size charactersindicated that the presentlyaccepted, but rather confusing,taxonomy should be altered: (1) O. l. beali, O. l. willetti, and O. l. chapmani should be merged into O. l. leucorhoa;(2) O. l. socorroensisshould refer only to the summer breeding population on Guadalupe Island; and (3) the winter breeding Guadalupe population should be recognizedas a "new" subspecies,based on physiological,morphological, and vocal characters,with the proposedname O. l. cheimomnestes. The clinal and continuoussize variation in this speciesis related to oceanographicclimate, length of migration, mobility during the nesting season,and distancesbetween nesting islands. Why oceanitidsfrequenting nearshore waters during nestingare darker rumped than thoseoffshore remains an unanswered question, as does the more basic question of why rump color varies geographicallyin this species.Received 15 November 1979, accepted5 July 1980. DURING field studies of Leach's Storm-Petrels (Oceanodroma leucorhoa) nesting on Southeast Farallon Island, California in 1972 and 1973 (see Ainley et al. 1974, Ainley et al. 1976), several birds were captured that had dark or almost completely dark rumps. The subspecificidentity of the Farallon population, which at that time was O. -
The Rise and Fall of Bulwer's Petrel
A paper from the British Ornithologists’ Union Records Committee The rise and fall of Bulwer’s Petrel Andrew H. J. Harrop ABSTRACT This short paper examines two recent reviews of records of Bulwer’s Petrel Bulweria bulwerii in Britain by BOURC. Four records were assessed, including three specimen records from the nineteenth and early twentieth centuries and a modern-day sighting from Cumbria. None was found acceptable, and the reasons are discussed here. ulwer’s Petrel Bulweria bulwerii was By the time The Handbook was published, seven named after Rev. James Bulwer, an records were listed for Britain, all in England Bamateur Norfolk collector, naturalist and (Witherby et al. 1940), and these were repeated conchologist, who first collected it in Madeira, in Bannerman’s The Birds of the British Isles probably in 1825 during a short expedition to (1959). Of these seven, four (all from Sussex, Deserta Grande (Mearns & Mearns 1988). It between 1904 and 1914) were subsequently was first described by Sir William Jardine and rejected as ‘Hastings Rarities’ (Nicholson & Fer- Prideaux John Selby, in Illustrations of guson-Lees 1962; see plate 380) and a fifth, said Ornithology in 1828 (Jardine & Selby 1828). The to have been picked up at Beachy Head, Sussex, species has had a turbulent history as a British by an unnamed person on 3rd February 1903, bird. This paper provides a brief summary of escaped this fate only because it occurred records in the British ornithological literature, outside the area used to define ‘Hastings’ presents the results of two BOURC reviews, and records (Bourne 1967). -
Management Plan for Antarctic Specially Protected Area No
Measure 2 (2005) Annex E Management Plan for Antarctic Specially Protected Area No. 120 POINTE-GÉOLOGIE ARCHIPELAGO, TERRE ADÉLIE Jean Rostand, Le Mauguen (former Alexis Carrel), Lamarck and Claude Bernard Islands, The Good Doctor’s Nunatak and breeding site of Emperor Penguins 1. Description of Values to be Protected In 1995, four islands, a nunatak and a breeding ground for emperor penguins were classified as an Antarctic Specially Protected Area (Measure 3 (1995), XIX ATCM, Seoul) because they were a representative example of terrestrial Antarctic ecosystems from a biological, geological and aesthetics perspective. A species of marine mammal, the Weddell seal (Leptonychotes weddelli) and various species of birds breed in the area: emperor penguin (Aptenodytes forsteri); Antarctic skua (Catharacta maccormicki); Adélie penguins (Pygoscelis adeliae); Wilson’s petrel (Oceanites oceanicus); giant petrel (Macronectes giganteus); snow petrel (Pagodrama nivea), cape petrel (Daption capense). Well-marked hills display asymmetrical transverse profiles with gently dipping northern slopes compared to the steeper southern ones. The terrain is affected by numerous cracks and fractures leading to very rough surfaces. The basement rocks consist mainly of sillimanite, cordierite and garnet-rich gneisses which are intruded by abundant dikes of pink anatexites. The lowest parts of the islands are covered by morainic boulders with a heterogenous granulometry (from a few cm to more than a m across). Long-term research and monitoring programs of birds and marine mammals have been going on for a long time already (since 1952 or 1964 according to the species). A database implemented in 1981 is directed by the Centre d'Etudes Biologiques de Chize (CEBC-CNRS). -
Metadata for Hawaii Environmental Sensitivity Index (ESI)
HYDRO Hawaii ESI: HYDRO (Hydrology Polygons and Lines) Metadata: Identification_Information Data_Quality_Information Spatial_Data_Organization_Information Spatial_Reference_Information Entity_and_Attribute_Information Distribution_Information Metadata_Reference_Information Identification_Information: Citation: Citation_Information: Originator: National Oceanic and Atmospheric Administration (NOAA), National Ocean Service, Office of Response and Restoration, Hazardous Materials Response Division, Seattle, Washington Publication_Date: 200111 Title: Hawaii ESI: HYDRO (Hydrology Polygons and Lines) Edition: Second Geospatial_Data_Presentation_Form: Vector digital data Series_Information: Series_Name: None Issue_Identification: Hawaii Publication_Information: Publication_Place: Seattle, Washington Publisher: National Oceanic and Atmospheric Administration (NOAA), National Ocean Service, Office of Response and Restoration, Hazardous Materials Response Division, Seattle, Washington Other_Citation_Details: Prepared by Research Planning, Inc., Columbia, South Carolina for the National Oceanic and Atmospheric Administration (NOAA), National Ocean Service, Office of Response and Restoration, Hazardous Materials Response Division, Seattle, Washington Description: Abstract: This data set contains vector arcs and polygons representing coastal hydrography used in the creation of the Environmental Sensitivity Index (ESI) for Hawaii. The HYDRO data layer contains all annotation used in producing the atlas. The annotation features are categorized into -
Ecologically Distinct Populations of Hawaiian Petrel (Pterodroma
The University of Akron IdeaExchange@UAkron Williams Honors College, Honors Research The Dr. Gary B. and Pamela S. Williams Honors Projects College Spring 2020 Ecologically Distinct Populations of Hawaiian Petrel (Pterodroma sandwichensis): Quantitative Isotopic Analysis to Explore the Uniqueness of Foraging Habits in Kauai and Hawaii Populations Drew Casey [email protected] Follow this and additional works at: https://ideaexchange.uakron.edu/honors_research_projects Part of the Population Biology Commons Please take a moment to share how this work helps you through this survey. Your feedback will be important as we plan further development of our repository. Recommended Citation Casey, Drew, "Ecologically Distinct Populations of Hawaiian Petrel (Pterodroma sandwichensis): Quantitative Isotopic Analysis to Explore the Uniqueness of Foraging Habits in Kauai and Hawaii Populations" (2020). Williams Honors College, Honors Research Projects. 1046. https://ideaexchange.uakron.edu/honors_research_projects/1046 This Dissertation/Thesis is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The University of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Williams Honors College, Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more information, please contact [email protected], [email protected]. Ecologically Distinct Populations of Hawaiian Petrel (Pterodroma sandwichensis): Quantitative -
Post-Release Survival of Fallout Newell's Shearwater Fledglings From
Vol. 43: 39–50, 2020 ENDANGERED SPECIES RESEARCH Published September 3 https://doi.org/10.3354/esr01051 Endang Species Res OPEN ACCESS Post-release survival of fallout Newell’s shearwater fledglings from a rescue and rehabilitation program on Kaua‘i, Hawai‘i André F. Raine1,*, Tracy Anderson2, Megan Vynne1, Scott Driskill1, Helen Raine3, Josh Adams4 1Kaua‘i Endangered Seabird Recovery Project (KESRP), Pacific Cooperative Studies Unit (PCSU), University of Hawai‘i and Division of Forestry and Wildlife, State of Hawai‘i Department of Land and Natural Resources, Hanapepe, HI 96716, USA 2Save Our Shearwaters, Humane Society, 3-825 Kaumualii Hwy, Lihue, HI 96766, USA 3Archipelago Research and Conservation, 3861 Ulu Alii Street, Kalaheo, HI 96741, USA 4U.S. Geological Survey, Western Ecological Research Center, Santa Cruz Field Station 2885 Mission St., Santa Cruz, CA 95060, USA ABSTRACT: Light attraction impacts nocturnally active fledgling seabirds worldwide and is a par- ticularly acute problem on Kaua‘i (the northern-most island in the main Hawaiian Island archipel- ago) for the Critically Endangered Newell’s shearwater Puffinus newelli. The Save Our Shearwaters (SOS) program was created in 1979 to address this issue and to date has recovered and released to sea more than 30 500 fledglings. Although the value of the program for animal welfare is clear, as birds cannot simply be left to die, no evaluation exists to inform post-release survival. We used satellite transmitters to track 38 fledglings released by SOS and compared their survival rates (assessed by tag transmission duration) to those of 12 chicks that fledged naturally from the moun- tains of Kaua‘i. -
Albatross and Giant-Petrel Distribution Across the World's Tuna And
The Third Joint Tuna RFMOs meeting; La Jolla, July 11-15, 2011 s e l l e c s a L B - s e s s o r t b l a g n i y l F ; F T A / n e r o G M - e n li g n o l n o s s o r t a b l a Albatross and giant-petrel distribution across the world’s tuna and swordfish fisheries R. Alderman1, D. Anderson2, J. Arata3, P. Catry4, R. Cuthbert5, L. Deppe6, G. Elliot7, R. Gales1, J. Gonzales Solis9, J.P. Granadeiro10, M. Hester11, N. Huin12, D. Hyrenbach13, K. Layton14, D. Nicholls15, K. Ozak16, S. Peterson17, R.A. Phillips18, F. Quintana19, G. R. Balogh20, C. Robertson21, G. Robertson14, P. Sagar22, F. Sato16, S. Shaffer23, C. Small5, J. Stahl24, R. Suryan25, P. Taylor26, D. Thompson22, K. Walker7, R. Wanless27, S. Waugh24, H. Weimerskirch28 Summary More than 90% of albatross and giant Albatrosses are vulnerable to bycatch in tuna and swordfish longline fisheries. petrel global distribution overlaps Remote tracking data provide a key tool to identifying priority areas for with the areas managed by the tuna seabird bycatch mitigation. This paper presents an updated analysis of the global distribution of albatrosses and giant-petrels using data from the Global commissions Procellariiform Tracking Database. Overall, 91% of global albatross and giant- petrel distribution during the breeding season and 92% of global albatross and giant-petrel distribution during the non-breeding season, overlaps with the areas Results emphasise the importance of managed by the tuna commissions. -
Annotated Checklist of Birds of Haleakala National Park, Maui
WESTERN BIRDS Volume 15, Number 3, 1984 ANNOTATED CHECKLIST OF BIRDS OF HALEAKALA NATIONAL PARK, MAUl, HAWAII SHEILA CONANT, Department of General Science, University of Hawaii, 2450 Campus Road, Honolulu, Hawaii 96822 MAILE STEMMERMANN KJARGAARD, P.O. Box 476, Volcano, Hawaii 96785 HaleakalaNational Park (Figure1), especiallyits Crater District(Figure 2), is one of the naturalareas in Hawaii mostfrequently visited by backpackers, day hikersand motorists.The KipahuluDistrict (Figure 3) of the park, a for- mally designatedWilderness Area, is not open to publicaccess because it containssensitive ecosystems with rare plantsand animals.The park is Maui's largestnature reserve, and one of the largestsuch areas in the state.It con- tainsmany examplesof endangeredor rare plants,animals and ecosystems. The avifauna of the entire park, which consistsof these two districts,is the subjectof this paper. No recentstudies have focusedintensively on the distributionand abun- dance of birds in Haleakala National Park. Dunmire (1961) listed and describedthe bird speciespresent in Haleakalaand Hawaii Volcanoesnation- al parks, but gave little detailedinformation on distributionand abundance. The unpublishedreport (Warner1967) of an expeditionto KipahuluValley (now partly includedin the Kipahulu Districtof HaleakalaNational Park) describedthe rediscoveryof two endemicspecies of Hawaiian forestbirds, but no other avifaunalsurveys of Kipahulu took place until we began the work describedhere. Since our work was completed, the U.S. Fish and WildlifeService has also completed its surveys of forestbirds on the islandof Maul (Scottet al. ms.), but theircoverage of the park wasless comprehensive than ours, and they were unable to surveyareas repeatedly or at different seasonsof the year. In 1975 the Cooperative National Parks Resources StudiesUnit (CPSU) funded researchersat the Universityof Hawaii to con- duct inventoriesof the biotain Hawaii'stwo nationalparks.