NIH Public Access Author Manuscript J Thromb Haemost
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Identification of an Alpha-1 Antitrypsin Variant with Enhanced Specificity For
www.nature.com/scientificreports OPEN Identifcation of an alpha‑1 antitrypsin variant with enhanced specifcity for factor XIa by phage display, bacterial expression, and combinatorial mutagenesis Varsha Bhakta1, Mostafa Hamada2, Amy Nouanesengsy2, Jessica Lapierre2, Darian L. Perruzza2 & William P. Shefeld1,2* Coagulation Factor XIa (FXIa) is an emerging target for antithrombotic agent development. The M358R variant of the serpin alpha‑1 antitrypsin (AAT) inhibits both FXIa and other proteases. Our aim was to enhance the specifcity of AAT M358R for FXIa. We randomized two AAT M358R phage display libraries at reactive centre loop positions P13‑P8 and P7‑P3 and biopanned them with FXIa. A bacterial expression library randomized at P2′‑P3′ was also probed. Resulting novel variants were expressed as recombinant proteins in E. coli and their kinetics of FXIa inhibition determined. The most potent FXIa‑inhibitory motifs were: P13‑P8, HASTGQ; P7‑P3, CLEVE; and P2‑P3′, PRSTE (respectively, novel residues bolded). Selectivity for FXIa over thrombin was increased up to 34‑fold versus AAT M358R for these single motif variants. Combining CLEVE and PRSTE motifs in AAT‑RC increased FXIa selectivity for thrombin, factors XIIa, Xa, activated protein C, and kallikrein by 279‑, 143‑, 63‑, 58‑, and 36‑fold, respectively, versus AAT M358R. AAT‑RC lengthened human plasma clotting times less than AAT M358R. AAT‑RC rapidly and selectively inhibits FXIa and is worthy of testing in vivo. AAT specifcity can be focused on one target protease by selection in phage and bacterial systems coupled with combinatorial mutagenesis. Trombosis, the blockage of intact blood vessels by occlusive clots, continues to impose a heavy clinical burden, and is responsible for one quarter of deaths world-wide1. -
Letter to the Editors 85 View Metadata, Citation and Similar Papers at Core.Ac.Uk Brought to You by CORE
Letter to the editors 85 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Florence Research Letter to the editors Blood Coagulation and Fibrinolysis 2007, 18:85–89 Modifications of protein Z and interleukin-6 (eight men, two women; median age, 64 years) with acute during the acute phase of coronary coronary syndrome who underwent primary percutaneous artery disease coronary intervention (PCI) at the Catheterization Labora- Francesca Cesaria, Anna Maria Goria, Sandra Fedia, tory of the Department of Heart and Vessels of the Rosanna Abbatea, Gian Franco Gensinia,b and University of Florence. All the patients were followed Francesco Sofia up over several time-points [baseline (i.e. before PCI), 36 h, 72 h, 1 month and 3 months after PCI], remaining free aDepartment of Medical and Surgical Critical Care, Thrombosis Centre, University of Florence, Italy; Center for the Study at Molecular and Clinical Level from any adverse events throughout the follow-up period, of Chronic, Degenerative and Neoplastic Diseases to Develop Novel Therapies, and receiving standard therapy that included aspirin, clo- University of Florence and bCentro S. Maria agli Ulivi, Fondazione Don Carlo Gnocchi Onlus IRCCS, Impruneta, Florence, Italy pidogrel, low-molecular-weight heparin, intravenous nitrates, statins, b-blockers and angiotensin-converting Correspondence and requests for reprints to Francesca Cesari, BS, Department of Medical and Surgical Critical Care, Thrombosis Centre, University of Florence, enzyme inhibitors where appropriate. Study approval Azienda Ospedaliero-Universitaria Careggi, Viale Morgagni 85, 50134 Florence, was granted by the institutional ethics committee and Italy Tel: +39 55 7949420; fax: +39 55 7949418; all patients gave written informed consent. -
And Plasminogen Activator Inhibitor-1
JBUON 2017; 22(4): 1022-1031 ISSN: 1107-0625, online ISSN: 2241-6293 • www.jbuon.com E-mail: [email protected] ORIGINAL ARTICLE Protein Z (PZ) and plasminogen activator inhibitor-1 (PAI-1) plasma levels in patients with previously untreated Hodgkin lymphoma (HL) Georgios Boutsikas1, Evangelos Terpos2, Athanasios Markopoulos3, Athanasios Papatheo- dorou4, Angeliki Stefanou3, George Georgiou1, Zacharoula Galani1, Veroniki Komninaka1, Vasileios Telonis1, Ioannis Anagnostopoulos5, Lila Dimitrakopoulou5, Konstantinos An- argyrou6, Konstantinos Tsionos6, Dimitrios Christoulas6, Maria Gonianaki6, Theophanis Giannikos1, Styliani Kokoris7, Kostas Konstantopoulos1, John Meletis1, Maria K. Angelo- 1 7 1 poulou , Anthi Travlou , Theodoros P. Vassilakopoulos 1Department of Hematology, National and Kapodistrian University of Athens; 2Department of Clinical Therapeutics, National and Kapodistrian University of Athens; 31st Propaedeutic Department of Internal Medicine, National and Kapodistrian Universi- ty of Athens; 4Department of Biomedical Research, 251 Air Force General Hospital of Athens; 5Immunology Laboratory, Laikon General Hospital of Athens; 6Department of Hematology, 251 Air Force General Hospital of Athens; 7Hematology Laboratory, National and Kapodistrian University of Athens, Athens, Greece Summary Purpose: The role of Protein Z (PZ) in conditions, such as PZ levels at diagnosis were associated with presence of B thrombosis, inflammation or cancer, is under investigation. symptoms and positive final positron emission tomography Plasminogen Activator Inhibitor-1 (PAI-1) is an acute phase (PET) and higher baseline PAI-1 levels with positive final reactant that promotes thrombosis and tumorigenesis. Sub- PET, too. PZ had a declining trend, but PAI-1 increased ini- ject of this work was to study PZ and PAI-1 in patients with tially and decreased thereafter, during the treatment period. -
The Central Role of Fibrinolytic Response in COVID-19—A Hematologist’S Perspective
International Journal of Molecular Sciences Review The Central Role of Fibrinolytic Response in COVID-19—A Hematologist’s Perspective Hau C. Kwaan 1,* and Paul F. Lindholm 2 1 Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA 2 Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; [email protected] * Correspondence: [email protected] Abstract: The novel coronavirus disease (COVID-19) has many characteristics common to those in two other coronavirus acute respiratory diseases, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). They are all highly contagious and have severe pulmonary complications. Clinically, patients with COVID-19 run a rapidly progressive course of an acute respiratory tract infection with fever, sore throat, cough, headache and fatigue, complicated by severe pneumonia often leading to acute respiratory distress syndrome (ARDS). The infection also involves other organs throughout the body. In all three viral illnesses, the fibrinolytic system plays an active role in each phase of the pathogenesis. During transmission, the renin-aldosterone- angiotensin-system (RAAS) is involved with the spike protein of SARS-CoV-2, attaching to its natural receptor angiotensin-converting enzyme 2 (ACE 2) in host cells. Both tissue plasminogen activator (tPA) and plasminogen activator inhibitor 1 (PAI-1) are closely linked to the RAAS. In lesions in the lung, kidney and other organs, the two plasminogen activators urokinase-type plasminogen activator (uPA) and tissue plasminogen activator (tPA), along with their inhibitor, plasminogen activator 1 (PAI-1), are involved. The altered fibrinolytic balance enables the development of a hypercoagulable Citation: Kwaan, H.C.; Lindholm, state. -
A Concise Summary of Coagulation in Liver Disease
Mini Review J Anest & Inten Care Med Volume 6 Issue 1 - March 2018 Copyright © All rights are reserved by A Strachan DOI: 10.19080/JAICM.2018.06.555679 A Concise Summary of Coagulation in Liver Disease A Strachan*, L Abeysundara and SV Mallett Department of Anaesthesia, Royal Free Hospital, United Kingdom Submission: February 28, 2018; Published: March 20, 2018 *Corresponding author: A Strachan, Department of Anaesthesia, Royal Free Hospital, Royal Free Perioperative Research Group, London, Tel: 2037582000; Email: Abstract and vascular endothelial component. The liver plays a key role in coagulation and as such chronic liver disease can have a profound impact Balanced haemostasis is dependent on the complex interaction of procoagulant and anticoagulant factors, fibrinolytic proteins, platelets on the interplay of these components. The net result is a fragile rebalancing in the haemostatic profile of liver disease patients as a result of decreased synthesis of both pro and anticoagulant factors. However, due to the reduced haemostatic reserve, this balance can be easily tipped into a thrombotic or bleeding state. Conventional coagulation tests such as PT/INR reflect only the decreased synthesis of pro-coagulant factors seenand do in livernot adequately disease and reflect guide theclinical bleeding management or thrombotic supporting risk inthe these use, orpatients. indeed As avoidance, a consequence, of blood an products. intrinsic hypercoagulable state is often underestimated in patients with liver disease. Point of care tests, specifically viscoelastic tests, can illustrate the haemostatic changes that are Keywords: Liver disease; Cirrhosis; Haemostasis; Coagulation; Viscoelastic tests Abbreviations: tPA: Tissue Plasminogen Activator; CLD: Chronic Liver Disease; vWF: Willebrand Factor; TFPI: Tissue Factor Pathway Inhibitor; CCTs: Conventional Coagulation Tests; ACT: Activated Clotting Time; VETs: Viscoelastic Tests; ROTEM: Rotational Thromboelastometry Introduction changes to the coagulation system. -
Protein-Z-Deficiency As a Rare Case of Unexpected Perioperative Bleeding in a Patient with Spinal Cord Injury
Spinal Cord (2006) 44, 636–639 & 2006 International Spinal Cord Society All rights reserved 1362-4393/06 $30.00 www.nature.com/sc Case Report Protein-Z-deficiency as a rare case of unexpected perioperative bleeding in a patient with spinal cord injury KRo¨ hl*,1,DJa¨ ger2 and J Barth3 1Spinal Cord Injury Center, Berufsgenossenschaftliche Kliniken Bergmannstrost, Halle, Germany; 2Practise of Internal Medicine, Steinweg, Halle, Germany; 3Medical Hospital, Berufsgenossenschaftliche Kliniken Bergmannstrost, Halle, Germany Study design: Case report describing the management of repeated perioperative bleeding probably due to Protein-Z-deficiency in a post-traumatic paraplegic patient. Objectives: To describe the difficulty in diagnosing this rare form of hypocoagulability and the monitoring and substitution concept during three elective surgical interventions. Setting: Spinal Cord Injury Center, Bergmannstrost, Halle, Germany. Case report: A 19-year-old male suffering from a post-traumatic paraplegia sub Th8 (ASIA-A) since childhood had experienced two life-threatening intraoperative bleeding incidents before finally Protein-Z-deficiency as the underlying coagulation disorder was diagnosed. After substitution of 2000 IE PPSB (Beriplex P/N) a repeatedly postponed implantation of a sphincter-externus (Brindley-) stimulator could be performed without bleeding complications, and this was also true for two additional urological interventions 1 year later. Protein-Z levels were monitored before, during and after the operations. The preoperative application of between 1000 and 2000 IE PPSB was safe and sufficient to raise the patients’ plasma Protein-Z level to almost normal and so prevent excessive intraoperative blood loss. Conclusion: In case of repeated bleeding tendency of unknown origin it is mandatory to look for rare causes of hypocoagulability such as Protein-Z-deficiency. -
202439Orig1s000
CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 202439Orig1s000 MEDICAL REVIEW(S) Clinical Review: Nhi Beasley, Preston Dunnmon and Martin Rose Application type: Standard, NDA 22-439 Xarelto (rivaroxaban) CLINICAL REVIEW Application Type NDA Type 1 -- (505(b)(1)) Application Number(s) 202439 Priority or Standard Standard Submit Date(s) 4 January 2011 Received Date(s) 5 January 2011 PDUFA Goal Date 5 November 2011 Division / Office DCRP/ODE 1 Reviewer Name(s) Nhi Beasley, Preston Dunnmon (safety); Martin Rose (efficacy) Review Completion Date 10 August 2011 Established Name Rivaroxaban Trade Name Xarelto® Therapeutic Class Anticoagulant (factor Xa inhibitor) Applicant Johnson & Johnson Pharmaceutical Research & Development, LLC Formulation(s) Oral tablets – 15 & 20 mg Dosing Regimen 15 or 20 mg once daily, based on renal function Indication(s) Prevention of stroke and systemic embolism in patients with non-valvular atrial fibrillation Intended Population(s) Adults Template Version: March 6, 2009 1 Reference ID: 2998874 Clinical Review: Nhi Beasley, Preston Dunnmon and Martin Rose Application type: Standard, NDA 22-439 Xarelto (rivaroxaban) Note to Readers In this review, a high level summary of the efficacy, safety and risk-benefit data is found in Section 1.2 Individual summaries of the efficacy and safety data are found at the beginning of Section 6 and Section 7, respectively. Internal hyperlinks to other parts of the review are in blue font. The Tables of Contents, Tables, and Figures are also hyperlinked to their targets. Table of Contents NOTE TO READERS ...................................................................................................... 2 TABLE OF CONTENTS .................................................................................................. 2 1 RECOMMENDATIONS/RISK BENEFIT ASSESSMENT ....................................... 10 1.1 Recommendation on Regulatory Action .......................................................... -
Heparin/Heparan Sulfate Proteoglycans Glycomic Interactome in Angiogenesis: Biological Implications and Therapeutical Use
Molecules 2015, 20, 6342-6388; doi:10.3390/molecules20046342 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Heparin/Heparan Sulfate Proteoglycans Glycomic Interactome in Angiogenesis: Biological Implications and Therapeutical Use Paola Chiodelli, Antonella Bugatti, Chiara Urbinati and Marco Rusnati * Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy; E-Mails: [email protected] (P.C.); [email protected] (A.B.); [email protected] (C.U.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-030-371-7315; Fax: +39-030-371-7747. Academic Editor: Els Van Damme Received: 26 February 2015 / Accepted: 1 April 2015 / Published: 10 April 2015 Abstract: Angiogenesis, the process of formation of new blood vessel from pre-existing ones, is involved in various intertwined pathological processes including virus infection, inflammation and oncogenesis, making it a promising target for the development of novel strategies for various interventions. To induce angiogenesis, angiogenic growth factors (AGFs) must interact with pro-angiogenic receptors to induce proliferation, protease production and migration of endothelial cells (ECs). The action of AGFs is counteracted by antiangiogenic modulators whose main mechanism of action is to bind (thus sequestering or masking) AGFs or their receptors. Many sugars, either free or associated to proteins, are involved in these interactions, thus exerting a tight regulation of the neovascularization process. Heparin and heparan sulfate proteoglycans undoubtedly play a pivotal role in this context since they bind to almost all the known AGFs, to several pro-angiogenic receptors and even to angiogenic inhibitors, originating an intricate network of interaction, the so called “angiogenesis glycomic interactome”. -
Heparin EDTA Patent Application Publication Feb
US 20110027771 A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0027771 A1 Deng (43) Pub. Date: Feb. 3, 2011 (54) METHODS AND COMPOSITIONS FORCELL Publication Classification STABILIZATION (51) Int. Cl. (75)75) InventorInventor: tDavid Deng,eng, Mountain rView, V1ew,ar. CA C09KCI2N 5/073IS/00 (2006.01)(2010.01) C7H 2L/04 (2006.01) Correspondence Address: CI2O 1/02 (2006.01) WILSON, SONSINI, GOODRICH & ROSATI GOIN 33/48 (2006.01) 650 PAGE MILL ROAD CI2O I/68 (2006.01) PALO ALTO, CA 94304-1050 (US) CI2M I/24 (2006.01) rsr rr (52) U.S. Cl. ............ 435/2; 435/374; 252/397:536/23.1; (73) Assignee: Arts Health, Inc., San Carlos, 435/29: 436/63; 436/94; 435/6: 435/307.1 (21) Appl. No.: 12/847,876 (57) ABSTRACT Fragile cells have value for use in diagnosing many types of (22) Filed: Jul. 30, 2010 conditions. There is a need for compositions that stabilize fragile cells. The stabilization compositions of the provided Related U.S. Application Data inventionallow for the stabilization, enrichment, and analysis (60) Provisional application No. 61/230,638, filed on Jul. of fragile cells, including fetal cells, circulating tumor cells, 31, 2009. and stem cells. 14 w Heparin EDTA Patent Application Publication Feb. 3, 2011 Sheet 1 of 17 US 2011/0027771 A1 FIG. 1 Heparin EDTA Patent Application Publication Feb. 3, 2011 Sheet 2 of 17 US 2011/0027771 A1 FIG. 2 Cell Equivalent/10 ml blood P=0.282 (n=11) 1 hour 6 hours No Composition C Composition C Patent Application Publication Feb. -
Low Molecular Weight Heparin
LOW MOLECULAR WEIGHT HEPARIN (LMWH) AHFS ??? Indications: Prevention and treatment of deep vein thrombosis, pulmonary embolism, †thrombophlebitis migrans, †disseminated intravascular coagulation (DIC). Contra-indications: Active major bleeding, history of heparin-induced thrombocytopenia with unfractionated heparin, thrombocytopenia with positive anti- platelet antibody test, severe renal impairment ( certoparin, reviparin (not USA)). Pharmacology Several different varieties of low molecular weight heparin (LMWH) are now available (e.g. bemiparin , certoparin , dalteparin , enoxaparin , reviparin and tinzaparin ). Most are approved for the prevention of venous thrombo-embolism and some are also indicated for the treatment of deep vein thrombosis, pulmonary embolism, unstable coronary artery disease and for the prevention of clotting in extracorporeal circuits. All LMWH is derived from porcine heparin and some patients may need to avoid them because of hypersensitivity, or for religious or cultural reasons. The most appropriate non-porcine alternative is fondaparinux . LMWH acts by potentiating the inhibitory effect of antithrombin III on Factor Xa and thrombin. It has a relatively higher ability to potentiate Factor Xa inhibition than to prolong plasma clotting time (APTT) which cannot be used to guide dosage. Anti- factor Xa levels can be measured if necessary but routine monitoring is not required because the dose is determined by the patient’s weight. LMWH is as effective as unfractionated heparin for the treatment of deep vein thrombosis and pulmonary embolism and is now considered the initial treatment of choice. 1,2 Other advantages include a longer duration of action which allows administration q.d., and possibly a better safety profile, e.g. fewer major hemorrhages. 1-5 LMWH is the treatment of choice for chronic DIC; this commonly presents as recurrent thromboses in both superficial and deep veins which do not respond to warfarin . -
Prothrombotic Phenotype of Protein Z Deficiency
Prothrombotic phenotype of protein Z deficiency Zheng-Feng Yin*, Zhong-Fu Huang*, Jisong Cui†, Ryan Fiehler*, Nina Lasky*, David Ginsburg†, and George J. Broze, Jr.*‡ *Division of Hematology, Barnes-Jewish Hospital at Washington University School of Medicine, 216 South Kingshighway Boulevard, St. Louis, MO 63110; and †Howard Hughes Medical Institute and Departments of Human Genetics and Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109 Edited by Philip W. Majerus, Washington University School of Medicine, St. Louis, MO, and approved April 11, 2000 (received for review February 25, 2000) Protein Z (PZ) is a vitamin K-dependent plasma protein whose that the role of PZ, like that of PC or PS, is to limit the function has been uncertain. The structure of PZ is very similar to coagulation response. that of the coagulation-related factors VII, IX, and X and PC, but PZ differs from these other proteins in that it is not the zymogen of Methods a serine protease. We have shown recently that PZ forms a calcium Materials. Hepes, EDTA, barium chloride, sodium oxalate, BSA, ion-dependent complex with activated factor X at phospholipid and rabbit brain cephalin were from Sigma. Affigel-10 was surfaces and that this interaction leads to the inhibition of acti- purchased from Bio-Rad. vated factor X activity through, in part, the action of a previously unidentified plasma protein named PZ-dependent protease inhib- Proteins. PZ and ZPI were purified from human plasma as itor. Herein, we report that the presence of PZ dampens the described (10). Prothrombin, factor X, and factor IXa were coagulation response in human plasma and that concomitant PZ products of Enzyme Research Laboratories (South Bend, IN). -
Anticoagulant Synergism of Heparin and Activated Protein C in Vitro
Anticoagulant synergism of heparin and activated protein C in vitro. Role of a novel anticoagulant mechanism of heparin, enhancement of inactivation of factor V by activated protein C. J Petäjä, … , A Gruber, J H Griffin J Clin Invest. 1997;99(11):2655-2663. https://doi.org/10.1172/JCI119454. Research Article Interactions between standard heparin and the physiological anticoagulant plasma protein, activated protein C (APC) were studied. The ability of heparin to prolong the activated partial thromboplastin time and the factor Xa- one-stage clotting time of normal plasma was markedly enhanced by addition of purified APC to the assays. Experiments using purified clotting factors showed that heparin enhanced by fourfold the phospholipid-dependent inactivation of factor V by APC. In contrast to factor V, there was no effect of heparin on inactivation of thrombin-activated factor Va by APC. Based on SDS-PAGE analysis, heparin enhanced the rate of proteolysis of factor V but not factor Va by APC. Coagulation assays using immunodepleted plasmas showed that the enhancement of heparin action by APC was independent of antithrombin III, heparin cofactor II, and protein S. Experiments using purified proteins showed that heparin did not inhibit factor V activation by thrombin. In summary, heparin and APC showed significant anticoagulant synergy in plasma due to three mechanisms that simultaneously decreased thrombin generation by the prothrombinase complex. These mechanisms include: first, heparin enhancement of antithrombin III-dependent inhibition of factor V activation by thrombin; second, the inactivation of membrane-bound FVa by APC; and third, the proteolytic inactivation of membrane- bound factor V by APC, which is enhanced by heparin.