Serpin Inhibition Mechanism: a Delicate Balance Between Native Metastable State and Polymerization
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ONCOGENOMICS Through the Use of Chemotherapeutic Agents
Oncogene (2002) 21, 7749 – 7763 ª 2002 Nature Publishing Group All rights reserved 0950 – 9232/02 $25.00 www.nature.com/onc Expression profiling of primary non-small cell lung cancer for target identification Jim Heighway*,1, Teresa Knapp1, Lenetta Boyce1, Shelley Brennand1, John K Field1, Daniel C Betticher2, Daniel Ratschiller2, Mathias Gugger2, Michael Donovan3, Amy Lasek3 and Paula Rickert*,3 1Target Identification Group, Roy Castle International Centre for Lung Cancer Research, University of Liverpool, 200 London Road, Liverpool L3 9TA, UK; 2Institute of Medical Oncology, University of Bern, 3010 Bern, Switzerland; 3Incyte Genomics Inc., 3160 Porter Drive, Palo Alto, California, CA 94304, USA Using a panel of cDNA microarrays comprising 47 650 Introduction transcript elements, we have carried out a dual-channel analysis of gene expression in 39 resected primary The lack of generally effective therapies for lung cancer human non-small cell lung tumours versus normal lung leads to the high mortality rate associated with this tissue. Whilst *11 000 elements were scored as common disease. Recorded 5-year survival figures vary, differentially expressed at least twofold in at least one to some extent perhaps reflecting differences in sample, 96 transcripts were scored as over-represented ascertainment methods, but across Europe are approxi- fourfold or more in at least seven out of 39 tumours mately 10% (Bray et al., 2002). Whilst surgery is an and 30 sequences 16-fold in at least two out of 39 effective strategy for the treatment of localized lesions, tumours, including 24 transcripts in common. Tran- most patients present with overtly or covertly dissemi- scripts (178) were found under-represented fourfold in nated disease. -
Supplementary Information Changes in the Plasma Proteome At
Supplementary Information Changes in the plasma proteome at asymptomatic and symptomatic stages of autosomal dominant Alzheimer’s disease Julia Muenchhoff1, Anne Poljak1,2,3, Anbupalam Thalamuthu1, Veer B. Gupta4,5, Pratishtha Chatterjee4,5,6, Mark Raftery2, Colin L. Masters7, John C. Morris8,9,10, Randall J. Bateman8,9, Anne M. Fagan8,9, Ralph N. Martins4,5,6, Perminder S. Sachdev1,11,* Supplementary Figure S1. Ratios of proteins differentially abundant in asymptomatic carriers of PSEN1 and APP Dutch mutations. Mean ratios and standard deviations of plasma proteins from asymptomatic PSEN1 mutation carriers (PSEN1) and APP Dutch mutation carriers (APP) relative to reference masterpool as quantified by iTRAQ. Ratios that significantly differed are marked with asterisks (* p < 0.05; ** p < 0.01). C4A, complement C4-A; AZGP1, zinc-α-2-glycoprotein; HPX, hemopexin; PGLYPR2, N-acetylmuramoyl-L-alanine amidase isoform 2; α2AP, α-2-antiplasmin; APOL1, apolipoprotein L1; C1 inhibitor, plasma protease C1 inhibitor; ITIH2, inter-α-trypsin inhibitor heavy chain H2. 2 A) ADAD)CSF) ADAD)plasma) B) ADAD)CSF) ADAD)plasma) (Ringman)et)al)2015)) (current)study)) (Ringman)et)al)2015)) (current)study)) ATRN↓,%%AHSG↑% 32028% 49% %%%%%%%%HC2↑,%%ApoM↓% 24367% 31% 10083%% %%%%TBG↑,%%LUM↑% 24256% ApoC1↓↑% 16565% %%AMBP↑% 11738%%% SERPINA3↓↑% 24373% C6↓↑% ITIH2% 10574%% %%%%%%%CPN2↓%% ↓↑% %%%%%TTR↑% 11977% 10970% %SERPINF2↓↑% CFH↓% C5↑% CP↓↑% 16566% 11412%% 10127%% %%ITIH4↓↑% SerpinG1↓% 11967% %%ORM1↓↑% SerpinC1↓% 10612% %%%A1BG↑%%% %%%%FN1↓% 11461% %%%%ITIH1↑% C3↓↑% 11027% 19325% 10395%% %%%%%%HPR↓↑% HRG↓% %%% 13814%% 10338%% %%% %ApoA1 % %%%%%%%%%GSN↑% ↓↑ %%%%%%%%%%%%ApoD↓% 11385% C4BPA↓↑% 18976%% %%%%%%%%%%%%%%%%%ApoJ↓↑% 23266%%%% %%%%%%%%%%%%%%%%%%%%%%ApoA2↓↑% %%%%%%%%%%%%%%%%%%%%%%%%%%%%A2M↓↑% IGHM↑,%%GC↓↑,%%ApoB↓↑% 13769% % FGA↓↑,%%FGB↓↑,%%FGG↓↑% AFM↓↑,%%CFB↓↑,%% 19143%% ApoH↓↑,%%C4BPA↓↑% ApoA4↓↑%%% LOAD/MCI)plasma) LOAD/MCI)plasma) LOAD/MCI)plasma) LOAD/MCI)plasma) (Song)et)al)2014)) (Muenchhoff)et)al)2015)) (Song)et)al)2014)) (Muenchhoff)et)al)2015)) Supplementary Figure S2. -
Serpinb2 Is Involved in Cellular Response Upon UV Irradiation
www.nature.com/scientificreports OPEN SerpinB2 is involved in cellular response upon UV irradiation Hajnalka Majoros1, Zsuzsanna Ujfaludi1, Barbara Nikolett Borsos1, Viktória Vivien Hudacsek1, Zita Nagy3, Frederic Coin3, Krisztina Buzas2, Ilona Kovács4, Tamás Bíró5,6, Imre Miklós Boros1,2 1 Received: 20 August 2018 & Tibor Pankotai Accepted: 10 December 2018 Ultraviolet light induced pyrimidine dimer is a helix distortion DNA damage type, which recruits repair Published: xx xx xxxx complexes. However, proteins of these complexes that take part in both DNA damage recognition and repair have been well-described, the regulation of the downstream steps of nucleotide excision repair (NER) have not been clearly clarifed yet. In a high-throughput screen, we identifed SerpinB2 (SPB2) as one of the most dramatically upregulated gene in keratinocytes following UV irradiation. We found that both the mRNA and the protein levels of SPB2 were increased upon UV irradiation in various cell lines. Additionally, UV damage induced translocation of SPB2 from the cytoplasm to the nucleus as well as the damage induced foci formation of it. Here we show that SPB2 co-localizes with XPB involved in the NER pathway at UV-induced repair foci. Finally, we demonstrated that UV irradiation promoted the association of SPB2 with ubiquitylated proteins. In basal cell carcinoma tumour cells, we identifed changes in the subcellular localization of SPB2. Based on our results, we conclude that SPB2 protein has a novel role in UV-induced NER pathway, since it regulates the removal of the repair complex from the damaged site leading to cancerous malformation. Our genome is constantly exposed to endogenous and exogenous sources leading to DNA damage and impair- ment of genome integrity. -
The Central Role of Fibrinolytic Response in COVID-19—A Hematologist’S Perspective
International Journal of Molecular Sciences Review The Central Role of Fibrinolytic Response in COVID-19—A Hematologist’s Perspective Hau C. Kwaan 1,* and Paul F. Lindholm 2 1 Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA 2 Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; [email protected] * Correspondence: [email protected] Abstract: The novel coronavirus disease (COVID-19) has many characteristics common to those in two other coronavirus acute respiratory diseases, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). They are all highly contagious and have severe pulmonary complications. Clinically, patients with COVID-19 run a rapidly progressive course of an acute respiratory tract infection with fever, sore throat, cough, headache and fatigue, complicated by severe pneumonia often leading to acute respiratory distress syndrome (ARDS). The infection also involves other organs throughout the body. In all three viral illnesses, the fibrinolytic system plays an active role in each phase of the pathogenesis. During transmission, the renin-aldosterone- angiotensin-system (RAAS) is involved with the spike protein of SARS-CoV-2, attaching to its natural receptor angiotensin-converting enzyme 2 (ACE 2) in host cells. Both tissue plasminogen activator (tPA) and plasminogen activator inhibitor 1 (PAI-1) are closely linked to the RAAS. In lesions in the lung, kidney and other organs, the two plasminogen activators urokinase-type plasminogen activator (uPA) and tissue plasminogen activator (tPA), along with their inhibitor, plasminogen activator 1 (PAI-1), are involved. The altered fibrinolytic balance enables the development of a hypercoagulable Citation: Kwaan, H.C.; Lindholm, state. -
Mechanism of Interleukin-1- and Tumor Necrosis Factor Α-Dependent Regulation of the Α1-Antichymotrypsin Gene in Human Astrocyt
The Journal of Neuroscience, October 15, 2000, 20(20):7510–7516 Mechanism of Interleukin-1- and Tumor Necrosis Factor ␣- ␣ Dependent Regulation of the 1-Antichymotrypsin Gene in Human Astrocytes Tomasz Kordula,1 Marcin Bugno,1 Russell E. Rydel,2 and James Travis3 1Institute of Molecular Biology, Jagiellonian University, 31-120 Krako´ w, Poland, 2Elan Pharmaceuticals, South San Francisco, California 94080, and 3Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia 30602 ␣ The expression of 1-antichymotrypsin (ACT) is significantly en- which bind nuclear factor kB (NF-kB) and one that binds activat- hanced in affected brain regions in Alzheimer’s disease. This ing protein 1 (AP-1). All of these elements contribute to the full serine proteinase inhibitor specifically colocalizes with filamen- responsiveness of the ACT gene to both cytokines, as deter- tous -amyloid deposits and recently has been shown to influ- mined by deletion and mutational analysis. The 5Ј NF-kB high- ence both formation and destabilization of -amyloid fibrils. In affinity binding site and AP-1 element contribute most to the the brain, ACT is expressed in astrocytes, and interleukin-1 (IL-1), enhancement of gene transcription in response to TNF and IL-1. tumor necrosis factor ␣ (TNF), oncostatin M (OSM), and IL-6/ In addition, we demonstrate that the 5Ј untranslated region of the soluble IL-6 receptor complexes control synthesis of this inhibi- ACT mRNA does not contribute to cytokine-mediated activation. tor. Here, we characterize a molecular mechanism responsible Finally, we find that overexpression of the NF-kB inhibitor (IkB) for both IL-1 and TNF-induced expression of ACT gene in astro- totally inhibits any activation mediated by the newly identified cytes. -
SERPINB3/4 Polyclonal Antibody
PRODUCT DATA SHEET Bioworld Technology,Inc. SERPINB3/4 polyclonal antibody Catalog: BS60990 Host: Rabbit Reactivity: Human,Mouse,Rat BackGround: Swiss-Prot: Metastasis of a primary tumor to a distant site is deter- P29508/P48594 mined through signaling cascades that break down inter- Purification&Purity: actions between the cell and extracellular matrix proteins. The antibody was affinity-purified from rabbit antiserum Among the proteins mediating metastasis are serine by affinity-chromatography using epitope-specific im- prote-ases, such as neutrophil elastase. In 1985, Dr. Jim munogen and the purity is > 95% (by SDS-PAGE). Travis and Dr. R.W. Carrell designated an emerging fam- Applications: ily of serine protease inhibitors as the serpin fam-ily, WB: 1:500~1:1000 which share homology in both primary amino acid se- Storage&Stability: quence and tertiary structure. Serpins contain a stretch of Store at 4°C short term. Aliquot and store at -20°C long peptide that mimics a true substrate for a corresponding term. Avoid freeze-thaw cycles. serine protease. Serine proteases bind to this substrate Specificity: mimic in a 1:1 stoichiometric fashion and become cata- SERPINB3/4 polyclonal antibody detects endogenous lytically inactive. Aberrant ex-pression of serpin family levels of SERPINB3/4 protein. members can contribute to a number of conditions, in- DATA: cluding emphysema (a-1 antitrypsin deficiency), fatal bleeding (elastase to thrombin specificity) and thrombosis (antithrombin deficiency), and are indicators of cancer stage phenotypes (circulating levels of squamous cell car- cinoma antigen, known as SCCA1, increase in advancing stages of some cervical, lung, esophageal and head and neck cancers). -
Tissue-Type Plasminogen Activator Is a Target of the Tumor Suppressor Gene Maspin
Proc. Natl. Acad. Sci. USA Vol. 95, pp. 499–504, January 1998 Biochemistry Tissue-type plasminogen activator is a target of the tumor suppressor gene maspin SHIJIE SHENG*†,BINH TRUONG*, DEREK FREDRICKSON*, RUILIAN WU*, ARTHUR B. PARDEE‡, AND RUTH SAGER* *Division of Cancer Genetics and ‡Division of Cell Growth and Regulation, Dana–Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115 Contributed by Arthur B. Pardee, November 10, 1997§ ABSTRACT The maspin protein has tumor suppressor that PAI-1 also inhibits cell motility via an integrin-mediated activity in breast and prostate cancers. It inhibits cell motility pathway by its interaction with cell surface-bound uPA and and invasion in vitro and tumor growth and metastasis in nude vitronectin (8, 9). mice. Maspin is structurally a member of the serpin (serine The RSL of maspin is shorter than that of other serpins (1), protease inhibitors) superfamily but deviates somewhat from casting doubt on its ability to act as a classical inhibitory serpin. classical serpins. We find that single-chain tissue plasmino- Pemberton et al. (10) reported that purified rMaspin(i) is a gen activator (sctPA) specifically interacts with the maspin substrate instead of an inhibitor to an array of serine proteases, reactive site loop peptide and forms a stable complex with including uPA and tissue-type plasminogen activator (tPA). recombinant maspin [rMaspin(i)]. Major effects of rMas- However, our evidence that the RSL is crucial for the biolog- pin(i) are observed on plasminogen activation by sctPA. First, ical activity of maspin would be consistent with maspin acting rMaspin(i) activates free sctPA. -
The Surface of Prostate Carcinoma DU145 Cells Mediates the Inhibition of Urokinase-Type Plasminogen Activator by Maspin1
[CANCER RESEARCH 60, 4771–4778, September 1, 2000] The Surface of Prostate Carcinoma DU145 Cells Mediates the Inhibition of Urokinase-type Plasminogen Activator by Maspin1 Richard McGowen, Hector Biliran, Jr., Ruth Sager,2 and Shijie Sheng3 Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan 48201 [R. M., H. B., S. S.], and Division of Cancer Genetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02115 [R. S.] ABSTRACT relation between maspin expression and the progression of breast cancer (1, 4). In addition, maspin expression is down-regulated in Maspin is a novel serine protease inhibitor (serpin) with tumor prostate carcinoma cells compared with that in immortalized normal suppressive potential in breast and prostate cancer, acting at the level of tumor invasion and metastasis. It was subsequently demonstrated prostate epithelial cells (5, 6). that maspin inhibits tumor invasion, at least in part, by inhibiting cell Biological studies demonstrate a tumor-suppressive role of maspin, motility. Interestingly, in cell-free solutions, maspin does not inhibit acting at the levels of tumor invasion and metastases. Mammary several serine proteases including tissue-type plasminogen activator carcinoma MDA-MB-435 cells transfected with maspin cDNA are and urokinase-type plasminogen activator (uPA). Despite the recent significantly inhibited in invasion and motility assays in vitro and are biochemical evidence that maspin specifically inhibits tissue-type plas- inhibited in tumor growth and metastasis in nude mice (1, 5, 7). It has minogen activator that is associated with fibrinogen or poly-L-lysine, been shown independently that induction of maspin expression in four the molecular mechanism underlying the tumor-suppressive effect of different breast tumor cell lines by ␥-linolenic acid dramatically maspin remains elusive. -
Characterisation of Serpinb2 As a Stress Response Modulator
University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 2015 Characterisation of SerpinB2 as a stress response modulator Jodi Anne Lee University of Wollongong Follow this and additional works at: https://ro.uow.edu.au/theses University of Wollongong Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong. Recommended Citation Lee, Jodi Anne, Characterisation of SerpinB2 as a stress response modulator, Doctor of Philosophy thesis, School of Biological Sciences, University of Wollongong, 2015. https://ro.uow.edu.au/theses/4538 Research Online is the open access institutional repository for the University of Wollongong. -
Adaptive Evolution and Divergence of SERPINB3: a Young Duplicate in Great Apes
Adaptive Evolution and Divergence of SERPINB3: A Young Duplicate in Great Apes Sı´lvia Gomes1*, Patrı´cia I. Marques1,2, Rune Matthiesen3, Susana Seixas1* 1 Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal, 2 Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal, 3 National Health Institute Doutor Ricardo Jorge (INSA), Lisboa, Portugal Abstract A series of duplication events led to an expansion of clade B Serine Protease Inhibitors (SERPIN), currently displaying a large repertoire of functions in vertebrates. Accordingly, the recent duplicates SERPINB3 and B4 located in human 18q21.3 SERPIN cluster control the activity of different cysteine and serine proteases, respectively. Here, we aim to assess SERPINB3 and B4 coevolution with their target proteases in order to understand the evolutionary forces shaping the accelerated divergence of these duplicates. Phylogenetic analysis of primate sequences placed the duplication event in a Hominoidae ancestor (,30 Mya) and the emergence of SERPINB3 in Homininae (,9 Mya). We detected evidence of strong positive selection throughout SERPINB4/B3 primate tree and target proteases, cathepsin L2 (CTSL2) and G (CTSG) and chymase (CMA1). Specifically, in the Homininae clade a perfect match was observed between the adaptive evolution of SERPINB3 and cathepsin S (CTSS) and most of sites under positive selection were located at the inhibitor/protease interface. Altogether our results seem to favour a coevolution hypothesis for SERPINB3, CTSS and CTSL2 and for SERPINB4 and CTSG and CMA1.A scenario of an accelerated evolution driven by host-pathogen interactions is also possible since SERPINB3/B4 are potent inhibitors of exogenous proteases, released by infectious agents. -
Alpha -Antitrypsin Deficiency
The new england journal of medicine Review Article Dan L. Longo, M.D., Editor Alpha1-Antitrypsin Deficiency Pavel Strnad, M.D., Noel G. McElvaney, D.Sc., and David A. Lomas, Sc.D. lpha1-antitrypsin (AAT) deficiency is one of the most common From the Department of Internal Med genetic diseases. Most persons carry two copies of the wild-type M allele icine III, University Hospital RWTH of SERPINA1, which encodes AAT, and have normal circulating levels of the (Rheinisch–Westfälisch Technische Hoch A schule) Aachen, Aachen, Germany (P.S.); protein. Ninety-five percent of severe cases of AAT deficiency result from the homo- the Irish Centre for Genetic Lung Dis zygous substitution of a single amino acid, Glu342Lys (the Z allele), which is present ease, Royal College of Surgeons in Ire in 1 in 25 persons of European descent (1 in 2000 persons of European descent land, Beaumont Hospital, Dublin (N.G.M.); and UCL Respiratory, Division of Medi are homozygotes). Mild AAT deficiency typically results from a different amino cine, Rayne Institute, University College acid replacement, Glu264Val (the S allele), which is found in 1 in 4 persons in the London, London (D.A.L.). Address re Iberian peninsula. However, many other alleles have been described that have vari- print requests to Dr. Lomas at UCL Re spiratory, Rayne Institute, University Col able effects, such as a lack of protein production (null alleles), production of mis- lege London, London WC1E 6JF, United folded protein, or no effect on the level or function of circulating AAT (Table 1). Kingdom, or at d . -
The Plasmin–Antiplasmin System: Structural and Functional Aspects
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Bern Open Repository and Information System (BORIS) Cell. Mol. Life Sci. (2011) 68:785–801 DOI 10.1007/s00018-010-0566-5 Cellular and Molecular Life Sciences REVIEW The plasmin–antiplasmin system: structural and functional aspects Johann Schaller • Simon S. Gerber Received: 13 April 2010 / Revised: 3 September 2010 / Accepted: 12 October 2010 / Published online: 7 December 2010 Ó Springer Basel AG 2010 Abstract The plasmin–antiplasmin system plays a key Plasminogen activator inhibitors Á a2-Macroglobulin Á role in blood coagulation and fibrinolysis. Plasmin and Multidomain serine proteases a2-antiplasmin are primarily responsible for a controlled and regulated dissolution of the fibrin polymers into solu- Abbreviations ble fragments. However, besides plasmin(ogen) and A2PI a2-Antiplasmin, a2-Plasmin inhibitor a2-antiplasmin the system contains a series of specific CHO Carbohydrate activators and inhibitors. The main physiological activators EGF-like Epidermal growth factor-like of plasminogen are tissue-type plasminogen activator, FN1 Fibronectin type I which is mainly involved in the dissolution of the fibrin K Kringle polymers by plasmin, and urokinase-type plasminogen LBS Lysine binding site activator, which is primarily responsible for the generation LMW Low molecular weight of plasmin activity in the intercellular space. Both activa- a2M a2-Macroglobulin tors are multidomain serine proteases. Besides the main NTP N-terminal peptide of Pgn physiological inhibitor a2-antiplasmin, the plasmin–anti- PAI-1, -2 Plasminogen activator inhibitor 1, 2 plasmin system is also regulated by the general protease Pgn Plasminogen inhibitor a2-macroglobulin, a member of the protease Plm Plasmin inhibitor I39 family.