Alpha -Antitrypsin Deficiency

Total Page:16

File Type:pdf, Size:1020Kb

Alpha -Antitrypsin Deficiency The new england journal of medicine Review Article Dan L. Longo, M.D., Editor Alpha1-Antitrypsin Deficiency Pavel Strnad, M.D., Noel G. McElvaney, D.Sc., and David A. Lomas, Sc.D.​​ lpha1-antitrypsin (AAT) deficiency is one of the most common From the Department of Internal Med­ genetic diseases. Most persons carry two copies of the wild-type M allele icine III, University Hospital RWTH of SERPINA1, which encodes AAT, and have normal circulating levels of the (Rheinisch–Westfälisch Technische Hoch­ A schule) Aachen, Aachen, Germany (P.S.); protein. Ninety-five percent of severe cases of AAT deficiency result from the homo- the Irish Centre for Genetic Lung Dis­ zygous substitution of a single amino acid, Glu342Lys (the Z allele), which is present ease, Royal College of Surgeons in Ire­ in 1 in 25 persons of European descent (1 in 2000 persons of European descent land, Beaumont Hospital, Dublin (N.G.M.); and UCL Respiratory, Division of Medi­ are homozygotes). Mild AAT deficiency typically results from a different amino cine, Rayne Institute, University College acid replacement, Glu264Val (the S allele), which is found in 1 in 4 persons in the London, London (D.A.L.). Address re­ Iberian peninsula. However, many other alleles have been described that have vari- print requests to Dr. Lomas at UCL Re­ spiratory, Rayne Institute, University Col­ able effects, such as a lack of protein production (null alleles), production of mis- lege London, London WC1E 6JF, United folded protein, or no effect on the level or function of circulating AAT (Table 1). Kingdom, or at d . lomas@ ucl . ac . uk. AAT is synthesized in the liver and secreted into the circulation, where its pri- N Engl J Med 2020;382:1443-55. mary role is to protect lung tissue against attack by the enzyme neutrophil elas- DOI: 10.1056/NEJMra1910234 tase. Point mutations can lead to retention of AAT in the liver, causing liver disease Copyright © 2020 Massachusetts Medical Society. through a toxic “gain of function,” whereas the lack of an important circulating proteinase inhibitor predisposes homozygotes with severe deficiency to early-onset emphysema (“loss of function”). The high frequency of genetic variants suggests that AAT mutations confer a selective advantage, perhaps by amplifying the in- flammatory response to invasive respiratory and gastrointestinal infection.2 We review the current understanding of the pathophysiology of AAT deficiency and discuss how this knowledge has led to new therapeutic strategies. Pathophysiology and Clinical Features of Liver Disease AAT is synthesized within hepatocytes, intestinal and pulmonary alveolar cells, neutrophils, macrophages, and the cornea. The liver produces approximately 34 mg of AAT per kilogram of body weight per day, leading to a plasma level of 0.9 to 1.75 mg per milliliter, with a half-life of 3 to 5 days. AAT levels can rise by 100% in persons with a normal proteinase inhibitor (PI) genotype (MM) during the acute-phase response, but the increase is markedly attenuated in persons with severe deficiency alleles. AAT is synthesized within the endoplasmic reticulum and secreted through the Golgi apparatus. Severe deficiency alleles — such as the com- mon Z (Glu342Lys) allele and the rare Siiyama (Ser53Phe), Mmalton (∆Phe52), and King’s (His334Asp) alleles — do not affect synthesis but cause approximately 70% of the mutant AAT to be degraded in the endoplasmic reticulum within hepatocytes,3 15% to be secreted, and 15% to form ordered polymers.4,5 These polymers are partially degraded by autophagy6,7 and a small amount is secreted,8,9 but a propor- tion persists within the endoplasmic reticulum as inclusions that are positive on periodic acid–Schiff staining and resistant to diastase; such inclusions are the n engl j med 382;15 nejm.org April 9, 2020 1443 1444 Table 1. Key Alleles Associated with Alpha1-Antitrypsin (AAT) Deficiency.* Mutation Variant† and rs Number‡ Molecular Basis of Disease Clinical Features Epidemiology Deficiency alleles F Arg223Cys Reduced association rate constant with Coinheritance with the Z deficiency allele Case report neutrophil elastase; slow formation may confer a predisposition to em­ of polymers physema I Arg39Cys Protein misfolding; can form hetero­ No clear disease association Disease reported only in compound heterozy­ rs28931570 polymers; reduced serum protein gotes The new england journal england new Iners Gly349Arg Type II mutant (i.e., normal secretion Not known Case report n engljmed382;15 but functionally deficient) King’s Hisp334Asp Rapid polymerization in hepatocyte Neonatal jaundice; presumed high risk of Case report endoplasmic reticulum; delayed emphysema in homozygote or com­ secretion pound Z heterozygote Mmalton Δ52Phe (M2 variant) Intracellular degradation and polymer­ Well­established association with liver dis­ Most common rare deficiency allele in Sardinia; rs775982338 ization; low serum level ease and emphysema in homozygotes seen sporadically in the United Kingdom and nejm.org Canada Mmineral springs Gly67Glu Abnormal posttranslational biosyn­ Emphysema in homozygotes Unusual; described in an Afro­Caribbean person rs28931568 thesis but no polymerization; low in the United States serum level April 9,2020 Mprocida Leu41Pro Unstable protein structure leading to High risk of emphysema in homozygotes Case report of rs28931569 intracellular degradation; reduced medicine catalytic activity of circulating protein Pittsburgh Met358Arg Function altered to an antithrombin Fatal bleeding disorder Case report rs121912713 Queen’s Lys154Asn Polymer formation Compound heterozygote with Z Case report S Glu264Val Protein misfolding and reduced secre­ Emphysema seen in SZ heterozygotes Most common deficiency variant; carrier fre­ rs17580 tion; can form heteropolymers with but less severe than in ZZ; cirrhosis quency: 1 in 5 persons in southern Europe, 1 Z AAT reported in SZ heterozygotes in 30 in the United States, 1 in 23 among per­ sons of European descent in Australia, 1 in 26 among those of European descent in New Zealand; rare or nonexistent in Asia, Africa, and Aboriginal Australians Siiyama Ser53Phe Intracellular degradation and polymer­ Liver disease and emphysema in homo­ Rare, but most common deficiency allele in rs55819880 ization; low serum level zygotes Japan Mutation Variant† and rs Number‡ Molecular Basis of Disease Clinical Features Epidemiology Trento Glu75Val Nonclassical polymer formation Emphysema in compound heterozygote Case report with Z Z Glu342Lys Intracellular degradation and polymer­ In homozygotes, well­established asso­ Most common severe deficiency variant; car­ rs28929474 ization; low serum level ciation with liver disease and emphy­ rier frequency: 1 in 27 persons in northern sema; MZ heterozygotes may be more Europe, 1 in 83 in the United States, 1 in 75 susceptible to airflow obstruction and persons of European descent in Australia, 1 chronic liver disease in 46 persons of European descent in New Zealand; not seen in China, Japan, Korea, Malaysia, or northern and western Africa Null (QO) alleles QObellingham Lys217 stop codon No detectable AAT mRNA High risk of emphysema in homozygotes Case report rs199422211 and compound heterozygotes n engljmed382;15 Alpha QObolton Δ1bpPro362, causing stop Truncated protein; intracellular degra­ High risk of emphysema in homozygotes Case report codon at 373 dation and no secreted protein and compound heterozygotes 1 QOgranitefalls Δ1bpTyr160, causing stop No detectable AAT mRNA Severe emphysema reported in Z com­ Case report -Antitrypsin Deficiency codon pound heterozygote rs267606950 QOhongkong Δ2bpLeu318, causing stop Truncated protein; intracellular aggre­ High risk of emphysema in homozygotes Case reports (persons of Chinese descent) nejm.org codon at 334 gation (no polymerization), degra­ and compound heterozygotes rs1057519610 dation, and no secreted protein 1 * The information is from Lomas et al. AAT deficiency alleles with different functional effects are listed. The delta symbol denotes deletion, and mRNA messenger RNA. April 9,2020 † The single or initial letter in each name reflects the position of migration of the variant on isoelectric­focusing gels (e.g., A indicates the fastest migration, M moderate migration, and Z the slowest migration); the rest of the name represents the site of the first description (in the case of Iners, the site is unknown). Deficiency results from a range of effects on the pro­ tein: rapid polymerization of the Z, Siiyama, Mmalton, and King’s variants; slower polymer formation of S, I, and Queen’s AAT; a change in the inhibitory activity of Pittsburgh AAT; secre­ tion of an inactive protein, Iners AAT; and some of the many null variants that result in no secreted protein. ‡ The rs number is the reference SNP cluster identification number. 1445 The new england journal of medicine “Gain of function” Neonatal hepatitis or cirrhosis Proteotoxic stress ↓Circulating AAT PAS-D–positive inclusions Misfolded AAT Polymerization ↓AAT function “Loss of function” Emphysema Macrophage Neutrophil • Cysteinyl TNF cathepsins Up-regulation TNF- receptor Proteolytic • MMP 1 or 2 lung damage Activation NE NE NE NE • Lactoferrin • MMP BLT1 Neutrophil • hCAP-18 elastase LTB CXCR1 4 Inhibition NE by AAT Lactoferrin ROS Autoantibody AIRWAY TLR TACE EGFR MUCUS EPITHELIUM Panlobular Interleukin-8 emphysema CXCR1 BLOOD VESSEL histologic hallmark of the disease (Fig. 1). deficiency1 (Table 1). The rate at which most Milder deficiency alleles, such as the S (Glu- AAT mutants form polymers correlates
Recommended publications
  • Types of Acute Phase Reactants and Their Importance in Vaccination (Review)
    BIOMEDICAL REPORTS 12: 143-152, 2020 Types of acute phase reactants and their importance in vaccination (Review) RAFAAT H. KHALIL1 and NABIL AL-HUMADI2 1Department of Biology, College of Science and Technology, Florida Agricultural and Mechanical University, Tallahassee, FL 32307; 2Office of Vaccines, Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD 20993, USA Received May 10, 2019; Accepted November 25, 2019 DOI: 10.3892/br.2020.1276 Abstract. Vaccines are considered to be one of the most human and veterinary medicine. Proteins which are expressed cost-effective life-saving interventions in human history. in the acute phase are potential biomarkers for the diagnosis The body's inflammatory response to vaccines has both of inflammatory disease, for example, acute phase proteins desired effects (immune response), undesired effects [(acute (APPs) are indicators of successful organ transplantation phase reactions (APRs)] and trade‑offs. Trade‑offs are and can be used to predict the ameliorative effect of cancer more potent immune responses which may be potentially therapy (1,2). APPs are primarily synthesized in hepatocytes. difficult to separate from potent acute phase reactions. The acute phase response is a spontaneous reaction triggered Thus, studying acute phase proteins (APPs) during vaccina- by disrupted homeostasis resulting from environmental distur- tion may aid our understanding of APRs and homeostatic bances (3). Acute phase reactions (APRs) usually stabilize changes which can result from inflammatory responses. quickly, after recovering from a disruption to homeostasis Depending on the severity of the response in humans, these within a few days to weeks; however, APPs expression levels reactions can be classified as major, moderate or minor.
    [Show full text]
  • Lactoferrin and Its Detection Methods: a Review
    nutrients Review Lactoferrin and Its Detection Methods: A Review Yingqi Zhang, Chao Lu and Jin Zhang * Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada; [email protected] (Y.Z.); [email protected] (C.L.) * Correspondence: [email protected] Abstract: Lactoferrin (LF) is one of the major functional proteins in maintaining human health due to its antioxidant, antibacterial, antiviral, and anti-inflammatory activities. Abnormal levels of LF in the human body are related to some serious diseases, such as inflammatory bowel disease, Alzheimer’s disease and dry eye disease. Recent studies indicate that LF can be used as a biomarker for diagnosis of these diseases. Many methods have been developed to detect the level of LF. In this review, the biofunctions of LF and its potential to work as a biomarker are introduced. In addition, the current methods of detecting lactoferrin have been presented and discussed. We hope that this review will inspire efforts in the development of new sensing systems for LF detection. Keywords: lactoferrin; biomarkers; immunoassay; instrumental analysis; sensor 1. Introduction Lactoferrin (known as lactotransferrin, LF), with a molecular weight of about 80 kDa, is a functional glycoprotein, which contains about 690 amino acid residues. It was first isolated from bovine milk by Sorensen in 1939 and was first isolated from human milk by Citation: Zhang, Y.; Lu, C.; Zhang, J. Johanson in 1960 [1,2]. The three-dimensional structure of LF has been unveiled by high Lactoferrin and Its Detection resolution X-ray crystallographic analysis, and it consists of two homologous globular lobes Methods: A Review.
    [Show full text]
  • Influence of Infection and Inflammation on Biomarkers of Nutritional Status
    A2.4 INFLUENCE OF INFECTION AND INFLAMMATION ON BIOMARKERS OF NUTRITIONAL STATUS A2.4 Influence of infection and inflammation on biomarkers of nutritional status with an emphasis on vitamin A and iron David I. Thurnham1 and George P. McCabe2 1 Northern Ireland Centre for Food and Health, University of Ulster, Coleraine, United Kingdom of Great Britain and Northern Ireland 2 Statistics Department, Purdue University, West Lafayette, Indiana, United States of America Corresponding author: David I. Thurnham; [email protected] Suggested citation: Thurnham DI, McCabe GP. Influence of infection and inflammation on biomarkers of nutritional status with an emphasis on vitamin A and iron. In: World Health Organization. Report: Priorities in the assessment of vitamin A and iron status in populations, Panama City, Panama, 15–17 September 2010. Geneva, World Health Organization, 2012. Abstract n Many plasma nutrients are influenced by infection or tissue damage. These effects may be passive and the result of changes in blood volume and capillary permeability. They may also be the direct effect of metabolic alterations that depress or increase the concentration of a nutrient or metabolite in the plasma. Where the nutrient or metabolite is a nutritional biomarker as in the case of plasma retinol, a depression in retinol concentrations will result in an overestimate of vitamin A deficiency. In contrast, where the biomarker is increased due to infection as in the case of plasma ferritin concentrations, inflammation will result in an underestimate of iron deficiency. Infection and tissue damage can be recognized by their clinical effects on the body but, unfortunately, subclinical infection or inflammation can only be recognized by measur- ing inflammation biomarkers in the blood.
    [Show full text]
  • Pleiotropic Effects of Antithrombin Strand 1C Substitution Mutations
    Pleiotropic effects of antithrombin strand 1C substitution mutations. D A Lane, … , E Thompson, G Sas J Clin Invest. 1992;90(6):2422-2433. https://doi.org/10.1172/JCI116133. Research Article Six different substitution mutations were identified in four different amino acid residues of antithrombin strand 1C and the polypeptide leading into strand 4B (F402S, F402C, F402L, A404T, N405K, and P407T), and are responsible for functional antithrombin deficiency in seven independently ascertained kindreds (Rosny, Torino, Maisons-Laffitte, Paris 3, La Rochelle, Budapest 5, and Oslo) affected by venous thromboembolic disease. In all seven families, variant antithrombins with heparin-binding abnormalities were detected by crossed immunoelectrophoresis, and in six of the kindreds there was a reduced antigen concentration of plasma antithrombin. Two of the variant antithrombins, Rosny and Torino, were purified by heparin-Sepharose and immunoaffinity chromatography, and shown to have greatly reduced heparin cofactor and progressive inhibitor activities in vitro. The defective interactions of these mutants with thrombin may result from proximity of s1C to the reactive site, while reduced circulating levels may be related to s1C proximity to highly conserved internal beta strands, which contain elements proposed to influence serpin turnover and intracellular degradation. In contrast, s1C is spatially distant to the positively charged surface which forms the heparin binding site of antithrombin; altered heparin binding properties of s1C variants may therefore reflect conformational linkage between the reactive site and heparin binding regions of the molecule. This work demonstrates that point mutations in and immediately adjacent to strand 1C have multiple, or pleiotropic, […] Find the latest version: https://jci.me/116133/pdf Pleiotropic Effects of Antithrombin Strand 1C Substitution Mutations David A.
    [Show full text]
  • Human <X2-Macroblobulin and Plasmin. (459) Antithrombin III
    924 Abstracts added before the incubation of CPA positive plasma at 0° C for 20 hours. Addition of CIINH after CPA generation did not affect the shortened Thrombotest Time (TT). Synthetic amidino compounds (diOHstilbamidine, dibromopropamidine}, which have b een cla imed as sp ecific inhibitors of CI est e rase, were al so effective inhib i tors of CPA in final concentrations of l0- 4 - lO- • M . Alike to CliNH t h ey h ad no effect on a TT shortened by previous gen eration of CPA. In 8 subjects with CIINH d eficiency the shortening of t.he TT of plasma incubated at 0° C for 20 hours exeeeded that in a control group of 48 men and women not us ing oestrogenic drugs (p 0.05). CIINH activity proved to be consumed during CPA probably by binding of kallikrein, since purified CPA-kallikrein blocked purified CIINH activity. The antigen level of CIINH was n ot affected by CPA. This finding h as diagnostic importa nce since fal se low levels of CfiNH activity may b e detected in serum samples exp osed to CPA favouring conditions. In fact t his proved to be the case in a l arge proport ion of subjects t h ou ght to be suffering from so-called acquir ed angioneurotic oed em a (Quincke's oedema urticaria) on ground of low CfiNH activity determined in a frozen and thawed serum sample. C1INH activity proved to b e completely normal in fresh samples. P . Lambin, J. ll!J.. Fine, R. Audran and M.
    [Show full text]
  • The Biology of Lactoferrin, an Iron-Binding Protein That Can Help Defend Against Viruses and Bacteria
    Downloaded from orbit.dtu.dk on: Oct 02, 2021 The Biology of Lactoferrin, an Iron-Binding Protein That Can Help Defend Against Viruses and Bacteria Kell, Douglas B.; Heyden, Eugene L.; Pretorius, Etheresia Published in: Frontiers in Immunology Link to article, DOI: 10.3389/fimmu.2020.01221 Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Kell, D. B., Heyden, E. L., & Pretorius, E. (2020). The Biology of Lactoferrin, an Iron-Binding Protein That Can Help Defend Against Viruses and Bacteria. Frontiers in Immunology, 11, [1221]. https://doi.org/10.3389/fimmu.2020.01221 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. HYPOTHESIS AND THEORY published: 28 May 2020 doi: 10.3389/fimmu.2020.01221 The Biology of Lactoferrin, an Iron-Binding Protein That Can Help Defend Against Viruses and Bacteria Douglas B.
    [Show full text]
  • The Central Role of Fibrinolytic Response in COVID-19—A Hematologist’S Perspective
    International Journal of Molecular Sciences Review The Central Role of Fibrinolytic Response in COVID-19—A Hematologist’s Perspective Hau C. Kwaan 1,* and Paul F. Lindholm 2 1 Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA 2 Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; [email protected] * Correspondence: [email protected] Abstract: The novel coronavirus disease (COVID-19) has many characteristics common to those in two other coronavirus acute respiratory diseases, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). They are all highly contagious and have severe pulmonary complications. Clinically, patients with COVID-19 run a rapidly progressive course of an acute respiratory tract infection with fever, sore throat, cough, headache and fatigue, complicated by severe pneumonia often leading to acute respiratory distress syndrome (ARDS). The infection also involves other organs throughout the body. In all three viral illnesses, the fibrinolytic system plays an active role in each phase of the pathogenesis. During transmission, the renin-aldosterone- angiotensin-system (RAAS) is involved with the spike protein of SARS-CoV-2, attaching to its natural receptor angiotensin-converting enzyme 2 (ACE 2) in host cells. Both tissue plasminogen activator (tPA) and plasminogen activator inhibitor 1 (PAI-1) are closely linked to the RAAS. In lesions in the lung, kidney and other organs, the two plasminogen activators urokinase-type plasminogen activator (uPA) and tissue plasminogen activator (tPA), along with their inhibitor, plasminogen activator 1 (PAI-1), are involved. The altered fibrinolytic balance enables the development of a hypercoagulable Citation: Kwaan, H.C.; Lindholm, state.
    [Show full text]
  • 2: Genetic Aspects of a Antitrypsin Deficiency
    259 REVIEW SERIES Thorax: first published as 10.1136/thx.2003.006502 on 25 February 2004. Downloaded from a1-Antitrypsin deficiency ? 2: Genetic aspects of a1- antitrypsin deficiency: phenotypes and genetic modifiers of emphysema risk D L DeMeo, E K Silverman ............................................................................................................................... Thorax 2004;59:259–264. doi: 10.1136/thx.2003.006502 The genetic aspects of AAT deficiency and the variable globin locus which results in haemoglobin S. This mutant haemoglobin assumes a sickle shape manifestations of lung disease in PI Z individuals are when deoxygenated, causing an array of clinical reviewed. The role of modifying genetic factors which may consequences. However, affected individuals interact with environmental factors (such as cigarette vary widely in disease severity. One known genetic modifier of sickle cell disease is heredi- smoking) is discussed, and directions for future research tary persistence of fetal haemoglobin in which are presented. continued production of Hb F impairs sickling ........................................................................... and limits disease severity. In pulmonary medicine, cystic fibrosis and AAT deficiency—classic monogenic disorders he susceptibility to develop chronic obstruc- that display marked variability in disease sus- tive pulmonary disease (COPD) results from ceptibility—demonstrate elements of genetic Ta combination of genetic and environmental complexity. In severe AAT deficiency the Z factors. The most important environmental risk mutation leads to low serum protein levels, but factor for COPD is cigarette smoking, but PI Z individuals vary markedly in lung and liver individuals vary in their susceptibility to the disease development and severity. The altered effects of cigarette smoke and only a minority of AAT protein is the product of a single gene, but smokers will develop COPD.
    [Show full text]
  • Characterisation of Serpinb2 As a Stress Response Modulator
    University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 2015 Characterisation of SerpinB2 as a stress response modulator Jodi Anne Lee University of Wollongong Follow this and additional works at: https://ro.uow.edu.au/theses University of Wollongong Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong. Recommended Citation Lee, Jodi Anne, Characterisation of SerpinB2 as a stress response modulator, Doctor of Philosophy thesis, School of Biological Sciences, University of Wollongong, 2015. https://ro.uow.edu.au/theses/4538 Research Online is the open access institutional repository for the University of Wollongong.
    [Show full text]
  • The Plasmin–Antiplasmin System: Structural and Functional Aspects
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Bern Open Repository and Information System (BORIS) Cell. Mol. Life Sci. (2011) 68:785–801 DOI 10.1007/s00018-010-0566-5 Cellular and Molecular Life Sciences REVIEW The plasmin–antiplasmin system: structural and functional aspects Johann Schaller • Simon S. Gerber Received: 13 April 2010 / Revised: 3 September 2010 / Accepted: 12 October 2010 / Published online: 7 December 2010 Ó Springer Basel AG 2010 Abstract The plasmin–antiplasmin system plays a key Plasminogen activator inhibitors Á a2-Macroglobulin Á role in blood coagulation and fibrinolysis. Plasmin and Multidomain serine proteases a2-antiplasmin are primarily responsible for a controlled and regulated dissolution of the fibrin polymers into solu- Abbreviations ble fragments. However, besides plasmin(ogen) and A2PI a2-Antiplasmin, a2-Plasmin inhibitor a2-antiplasmin the system contains a series of specific CHO Carbohydrate activators and inhibitors. The main physiological activators EGF-like Epidermal growth factor-like of plasminogen are tissue-type plasminogen activator, FN1 Fibronectin type I which is mainly involved in the dissolution of the fibrin K Kringle polymers by plasmin, and urokinase-type plasminogen LBS Lysine binding site activator, which is primarily responsible for the generation LMW Low molecular weight of plasmin activity in the intercellular space. Both activa- a2M a2-Macroglobulin tors are multidomain serine proteases. Besides the main NTP N-terminal peptide of Pgn physiological inhibitor a2-antiplasmin, the plasmin–anti- PAI-1, -2 Plasminogen activator inhibitor 1, 2 plasmin system is also regulated by the general protease Pgn Plasminogen inhibitor a2-macroglobulin, a member of the protease Plm Plasmin inhibitor I39 family.
    [Show full text]
  • Prolastin.18 the Mean in Vivo Recovery 18,19 of Alpha1-PI Was 4.2 Mg (Immunologic)/Dl Per Mg (Functional)/Kg Body Weight Administered
    08937789 (Rev. January 2005) ipated in a study of acute and/or chronic replacement therapy with Prolastin.18 The mean in vivo recovery 18,19 of alpha1-PI was 4.2 mg (immunologic)/dL per mg (functional)/kg body weight administered. The 18,19 Alpha1-Proteinase Inhibitor (Human) half-life of alpha1-PI in vivo was approximately 4.5 days. Based on these observations, a program of chronic replacement therapy was developed. Nineteen of the subjects in these studies received w Prolastin replacement therapy, 60 mg/kg body weight, once weekly for up to 26 weeks (average 24 weeks Prolastin of therapy). With this schedule of replacement therapy, blood levels of alpha1-PI were maintained above 18-20 80 mg/dL (based on the commercial standards for alpha1-PI immunologic assay). Within a few FOR INTRAVENOUS USE ONLY weeks of commencing this program, bronchoalveolar lavage studies demonstrated significantly increased levels of alpha -PI and functional antineutrophil elastase capacity in the epithelial lining fluid 1 5 8 1 of the lower respiratory tract of the lung, as compared to levels prior to commencing the program of 18-20 chronic replacement therapy with Alpha1-Proteinase Inhibitor (Human), Prolastin. All 23 individuals who participated in the investigations were immunized with Hepatitis B Vaccine and received a single dose of Hepatitis B Immune Globulin (Human) on entry into the investigation. Although no other steps were taken to prevent hepatitis, neither hepatitis B nor non-A, non-B hepatitis occurred in any of the subjects.18,19 All subjects remained seronegative for HIV antibody. None of the subjects developed any detectable antibody to alpha1-PI or other serum protein.
    [Show full text]
  • Antiplasmin the Main Plasmin Inhibitor in Blood Plasma
    1 From Department of Surgical Sciences, Division of Clinical Chemistry and Blood Coagu- lation, Karolinska University Hospital, Karolinska Institutet, S-171 76 Stockholm, Sweden ANTIPLASMIN THE MAIN PLASMIN INHIBITOR IN BLOOD PLASMA Studies on Structure-Function Relationships Haiyao Wang Stockholm 2005 2 ABSTRACT ANTIPLASMIN THE MAIN PLASMIN INHIBITOR IN BLOOD PLASMA Studies on Structure-Function Relationships Haiyao Wang Department of Surgical Sciences, Division of Clinical Chemistry and Blood Coagulation, Karo- linska University Hospital, Karolinska Institute, S-171 76 Stockholm, Sweden Antiplasmin is an important regulator of the fibrinolytic system. It inactivates plasmin very rapidly. The reaction between plasmin and antiplasmin occurs in several steps: first a lysine- binding site in plasmin interacts with a complementary site in antiplasmin. Then, an interac- tion occurs between the substrate-binding pocket in the plasmin active site and the scissile peptide bond in the RCL of antiplasmin. Subsequently, peptide bond cleavage occurs and a stable acyl-enzyme complex is formed. It has been accepted that the COOH-terminal lysine residue in antiplasmin is responsible for its interaction with the plasmin lysine-binding sites. In order to identify these structures, we constructed single-site mutants of charged amino ac- ids in the COOH-terminal portion of antiplasmin. We found that modification of the COOH- terminal residue, Lys452, did not change the activity or the kinetic properties significantly, suggesting that Lys452 is not involved in the lysine-binding site mediated interaction between plasmin and antiplasmin. On the other hand, modification of Lys436 to Glu decreased the reaction rate significantly, suggesting this residue to have a key function in this interaction.
    [Show full text]