Serpins in Hemostasis As Therapeutic Targets for Bleeding Or Thrombotic Disorders
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Letter to the Editors 85 View Metadata, Citation and Similar Papers at Core.Ac.Uk Brought to You by CORE
Letter to the editors 85 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Florence Research Letter to the editors Blood Coagulation and Fibrinolysis 2007, 18:85–89 Modifications of protein Z and interleukin-6 (eight men, two women; median age, 64 years) with acute during the acute phase of coronary coronary syndrome who underwent primary percutaneous artery disease coronary intervention (PCI) at the Catheterization Labora- Francesca Cesaria, Anna Maria Goria, Sandra Fedia, tory of the Department of Heart and Vessels of the Rosanna Abbatea, Gian Franco Gensinia,b and University of Florence. All the patients were followed Francesco Sofia up over several time-points [baseline (i.e. before PCI), 36 h, 72 h, 1 month and 3 months after PCI], remaining free aDepartment of Medical and Surgical Critical Care, Thrombosis Centre, University of Florence, Italy; Center for the Study at Molecular and Clinical Level from any adverse events throughout the follow-up period, of Chronic, Degenerative and Neoplastic Diseases to Develop Novel Therapies, and receiving standard therapy that included aspirin, clo- University of Florence and bCentro S. Maria agli Ulivi, Fondazione Don Carlo Gnocchi Onlus IRCCS, Impruneta, Florence, Italy pidogrel, low-molecular-weight heparin, intravenous nitrates, statins, b-blockers and angiotensin-converting Correspondence and requests for reprints to Francesca Cesari, BS, Department of Medical and Surgical Critical Care, Thrombosis Centre, University of Florence, enzyme inhibitors where appropriate. Study approval Azienda Ospedaliero-Universitaria Careggi, Viale Morgagni 85, 50134 Florence, was granted by the institutional ethics committee and Italy Tel: +39 55 7949420; fax: +39 55 7949418; all patients gave written informed consent. -
And Plasminogen Activator Inhibitor-1
JBUON 2017; 22(4): 1022-1031 ISSN: 1107-0625, online ISSN: 2241-6293 • www.jbuon.com E-mail: [email protected] ORIGINAL ARTICLE Protein Z (PZ) and plasminogen activator inhibitor-1 (PAI-1) plasma levels in patients with previously untreated Hodgkin lymphoma (HL) Georgios Boutsikas1, Evangelos Terpos2, Athanasios Markopoulos3, Athanasios Papatheo- dorou4, Angeliki Stefanou3, George Georgiou1, Zacharoula Galani1, Veroniki Komninaka1, Vasileios Telonis1, Ioannis Anagnostopoulos5, Lila Dimitrakopoulou5, Konstantinos An- argyrou6, Konstantinos Tsionos6, Dimitrios Christoulas6, Maria Gonianaki6, Theophanis Giannikos1, Styliani Kokoris7, Kostas Konstantopoulos1, John Meletis1, Maria K. Angelo- 1 7 1 poulou , Anthi Travlou , Theodoros P. Vassilakopoulos 1Department of Hematology, National and Kapodistrian University of Athens; 2Department of Clinical Therapeutics, National and Kapodistrian University of Athens; 31st Propaedeutic Department of Internal Medicine, National and Kapodistrian Universi- ty of Athens; 4Department of Biomedical Research, 251 Air Force General Hospital of Athens; 5Immunology Laboratory, Laikon General Hospital of Athens; 6Department of Hematology, 251 Air Force General Hospital of Athens; 7Hematology Laboratory, National and Kapodistrian University of Athens, Athens, Greece Summary Purpose: The role of Protein Z (PZ) in conditions, such as PZ levels at diagnosis were associated with presence of B thrombosis, inflammation or cancer, is under investigation. symptoms and positive final positron emission tomography Plasminogen Activator Inhibitor-1 (PAI-1) is an acute phase (PET) and higher baseline PAI-1 levels with positive final reactant that promotes thrombosis and tumorigenesis. Sub- PET, too. PZ had a declining trend, but PAI-1 increased ini- ject of this work was to study PZ and PAI-1 in patients with tially and decreased thereafter, during the treatment period. -
The Central Role of Fibrinolytic Response in COVID-19—A Hematologist’S Perspective
International Journal of Molecular Sciences Review The Central Role of Fibrinolytic Response in COVID-19—A Hematologist’s Perspective Hau C. Kwaan 1,* and Paul F. Lindholm 2 1 Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA 2 Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; [email protected] * Correspondence: [email protected] Abstract: The novel coronavirus disease (COVID-19) has many characteristics common to those in two other coronavirus acute respiratory diseases, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). They are all highly contagious and have severe pulmonary complications. Clinically, patients with COVID-19 run a rapidly progressive course of an acute respiratory tract infection with fever, sore throat, cough, headache and fatigue, complicated by severe pneumonia often leading to acute respiratory distress syndrome (ARDS). The infection also involves other organs throughout the body. In all three viral illnesses, the fibrinolytic system plays an active role in each phase of the pathogenesis. During transmission, the renin-aldosterone- angiotensin-system (RAAS) is involved with the spike protein of SARS-CoV-2, attaching to its natural receptor angiotensin-converting enzyme 2 (ACE 2) in host cells. Both tissue plasminogen activator (tPA) and plasminogen activator inhibitor 1 (PAI-1) are closely linked to the RAAS. In lesions in the lung, kidney and other organs, the two plasminogen activators urokinase-type plasminogen activator (uPA) and tissue plasminogen activator (tPA), along with their inhibitor, plasminogen activator 1 (PAI-1), are involved. The altered fibrinolytic balance enables the development of a hypercoagulable Citation: Kwaan, H.C.; Lindholm, state. -
Differential Gene Expression of Serine Protease Inhibitors in Bovine
Hayashi et al. Reproductive Biology and Endocrinology 2011, 9:72 http://www.rbej.com/content/9/1/72 RESEARCH Open Access Differential gene expression of serine protease inhibitors in bovine ovarian follicle: possible involvement in follicular growth and atresia Ken-Go Hayashi, Koichi Ushizawa, Misa Hosoe and Toru Takahashi* Abstract Background: SERPINs (serine protease inhibitors) regulate proteases involving fibrinolysis, coagulation, inflammation, cell mobility, cellular differentiation and apoptosis. This study aimed to investigate differentially expressed genes of members of the SERPIN superfamily between healthy and atretic follicles using a combination of microarray and quantitative real-time PCR (QPCR) analysis. In addition, we further determined mRNA and protein localization of identified SERPINs in estradiol (E2)-active and E2-inactive follicles by in situ hybridization and immunohistochemistry. Methods: We performed microarray analysis of healthy (10.7 +/- 0.7 mm) and atretic (7.8 +/- 0.2 mm) follicles using a custom-made bovine oligonucleotide microarray to screen differentially expressed genes encoding SERPIN superfamily members between groups. The expression profiles of six identified SERPIN genes were further confirmed by QPCR analysis. In addition, mRNA and protein localization of four SERPINs was investigated in E2- active and E2-inactive follicles using in situ hybridization and immunohistochemistry. Results: We have identified 11 SERPIN genes expressed in healthy and atretic follicles by microarray analysis. QPCR analysis confirmed that mRNA expression of four SERPINs (SERPINA5, SERPINB6, SERPINE2 and SERPINF2) was greater in healthy than in atretic follicles, while two SERPINs (SERPINE1 and SERPING1) had greater expression in atretic than in healthy follicles. In situ hybridization showed that SERPINA5, SERPINB6 and SERPINF2 mRNA were localized in GCs of E2-active follicles and weakly expressed in GCs of E2-inactive follicles. -
The Plasmin–Antiplasmin System: Structural and Functional Aspects
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Bern Open Repository and Information System (BORIS) Cell. Mol. Life Sci. (2011) 68:785–801 DOI 10.1007/s00018-010-0566-5 Cellular and Molecular Life Sciences REVIEW The plasmin–antiplasmin system: structural and functional aspects Johann Schaller • Simon S. Gerber Received: 13 April 2010 / Revised: 3 September 2010 / Accepted: 12 October 2010 / Published online: 7 December 2010 Ó Springer Basel AG 2010 Abstract The plasmin–antiplasmin system plays a key Plasminogen activator inhibitors Á a2-Macroglobulin Á role in blood coagulation and fibrinolysis. Plasmin and Multidomain serine proteases a2-antiplasmin are primarily responsible for a controlled and regulated dissolution of the fibrin polymers into solu- Abbreviations ble fragments. However, besides plasmin(ogen) and A2PI a2-Antiplasmin, a2-Plasmin inhibitor a2-antiplasmin the system contains a series of specific CHO Carbohydrate activators and inhibitors. The main physiological activators EGF-like Epidermal growth factor-like of plasminogen are tissue-type plasminogen activator, FN1 Fibronectin type I which is mainly involved in the dissolution of the fibrin K Kringle polymers by plasmin, and urokinase-type plasminogen LBS Lysine binding site activator, which is primarily responsible for the generation LMW Low molecular weight of plasmin activity in the intercellular space. Both activa- a2M a2-Macroglobulin tors are multidomain serine proteases. Besides the main NTP N-terminal peptide of Pgn physiological inhibitor a2-antiplasmin, the plasmin–anti- PAI-1, -2 Plasminogen activator inhibitor 1, 2 plasmin system is also regulated by the general protease Pgn Plasminogen inhibitor a2-macroglobulin, a member of the protease Plm Plasmin inhibitor I39 family. -
07-101 Phrma NM Heart
200R9ep ort M EDICINES IN D EVELOPMENT FOR Heart Disease and Stroke PRESENTED BY AMERICA ’ S PHARMACEUTICAL RESEARCH COMPANIES More Than 300 Medicines in Testing for Two Leading Causes of Death in Americans harmaceutical and biotechnology researchers are MEDICINES IN DEVELOPMENT FOR HEART DISEASE AND STROKE * working on 312 medicines for two of the three Pleading causes of death in Americans—heart disease Acute Coronary Syndrome 21 and stroke—keeping up the momentum of drug discovery Adjunctive Therapies 5 Angina 2 that has helped cut deaths from these diseases by more Arrhythmia/Atrial Fibrillation 20 than a quarter between 1999 and 2005. All of the medicines Atherosclerosis 18 are either in clinical trials or awaiting approval by the Coronary Artery Disease 11 Heart Attack 16 Food and Drug Administration. Heart Failure 33 Hypertension 36 According to the National Center for Health Statistics, Imaging Agents 10 heart disease has topped the list of killer diseases every Ischemic Disorders 18 Lipid Disorders 26 year but one since 1900. (The exception was 1918, Peripheral Vascular Disease 27 when an influenza epidemic killed more than 450,000 Pulmonary Vascular Disease 16 Stroke Americans.) In 2002, cancer surpassed heart disease as 22 Thrombosis 40 the top killer of Americans under age 85, who account Other 39 for 98.4 percent of the U.S. population. Stroke is the *S ome medicines are listed in more than one category. third leading cause of death. Thanks in large part to new drug treatments, death rates cost of these diseases to American society is more than from heart disease and stroke are falling. -
A Concise Summary of Coagulation in Liver Disease
Mini Review J Anest & Inten Care Med Volume 6 Issue 1 - March 2018 Copyright © All rights are reserved by A Strachan DOI: 10.19080/JAICM.2018.06.555679 A Concise Summary of Coagulation in Liver Disease A Strachan*, L Abeysundara and SV Mallett Department of Anaesthesia, Royal Free Hospital, United Kingdom Submission: February 28, 2018; Published: March 20, 2018 *Corresponding author: A Strachan, Department of Anaesthesia, Royal Free Hospital, Royal Free Perioperative Research Group, London, Tel: 2037582000; Email: Abstract and vascular endothelial component. The liver plays a key role in coagulation and as such chronic liver disease can have a profound impact Balanced haemostasis is dependent on the complex interaction of procoagulant and anticoagulant factors, fibrinolytic proteins, platelets on the interplay of these components. The net result is a fragile rebalancing in the haemostatic profile of liver disease patients as a result of decreased synthesis of both pro and anticoagulant factors. However, due to the reduced haemostatic reserve, this balance can be easily tipped into a thrombotic or bleeding state. Conventional coagulation tests such as PT/INR reflect only the decreased synthesis of pro-coagulant factors seenand do in livernot adequately disease and reflect guide theclinical bleeding management or thrombotic supporting risk inthe these use, orpatients. indeed As avoidance, a consequence, of blood an products. intrinsic hypercoagulable state is often underestimated in patients with liver disease. Point of care tests, specifically viscoelastic tests, can illustrate the haemostatic changes that are Keywords: Liver disease; Cirrhosis; Haemostasis; Coagulation; Viscoelastic tests Abbreviations: tPA: Tissue Plasminogen Activator; CLD: Chronic Liver Disease; vWF: Willebrand Factor; TFPI: Tissue Factor Pathway Inhibitor; CCTs: Conventional Coagulation Tests; ACT: Activated Clotting Time; VETs: Viscoelastic Tests; ROTEM: Rotational Thromboelastometry Introduction changes to the coagulation system. -
Protein-Z-Deficiency As a Rare Case of Unexpected Perioperative Bleeding in a Patient with Spinal Cord Injury
Spinal Cord (2006) 44, 636–639 & 2006 International Spinal Cord Society All rights reserved 1362-4393/06 $30.00 www.nature.com/sc Case Report Protein-Z-deficiency as a rare case of unexpected perioperative bleeding in a patient with spinal cord injury KRo¨ hl*,1,DJa¨ ger2 and J Barth3 1Spinal Cord Injury Center, Berufsgenossenschaftliche Kliniken Bergmannstrost, Halle, Germany; 2Practise of Internal Medicine, Steinweg, Halle, Germany; 3Medical Hospital, Berufsgenossenschaftliche Kliniken Bergmannstrost, Halle, Germany Study design: Case report describing the management of repeated perioperative bleeding probably due to Protein-Z-deficiency in a post-traumatic paraplegic patient. Objectives: To describe the difficulty in diagnosing this rare form of hypocoagulability and the monitoring and substitution concept during three elective surgical interventions. Setting: Spinal Cord Injury Center, Bergmannstrost, Halle, Germany. Case report: A 19-year-old male suffering from a post-traumatic paraplegia sub Th8 (ASIA-A) since childhood had experienced two life-threatening intraoperative bleeding incidents before finally Protein-Z-deficiency as the underlying coagulation disorder was diagnosed. After substitution of 2000 IE PPSB (Beriplex P/N) a repeatedly postponed implantation of a sphincter-externus (Brindley-) stimulator could be performed without bleeding complications, and this was also true for two additional urological interventions 1 year later. Protein-Z levels were monitored before, during and after the operations. The preoperative application of between 1000 and 2000 IE PPSB was safe and sufficient to raise the patients’ plasma Protein-Z level to almost normal and so prevent excessive intraoperative blood loss. Conclusion: In case of repeated bleeding tendency of unknown origin it is mandatory to look for rare causes of hypocoagulability such as Protein-Z-deficiency. -
Anti-Mullerian-Hormone-Dependent Regulation of the Brain Serine-Protease Inhibitor Neuroserpin
Research Article 3357 Anti-Mullerian-hormone-dependent regulation of the brain serine-protease inhibitor neuroserpin Nathalie Lebeurrier 1,2,3,*, Séverine Launay 1,2,3,*, Richard Macrez 1,2,3, Eric Maubert 1,2,3, Hélène Legros 4, Arnaud Leclerc 5,6, Soazik P. Jamin 5,6, Jean-Yves Picard 5,6, Stéphane Marret 4, Vincent Laudenbach 4, Philipp Berger 7,‡, Peter Sonderegger 7, Carine Ali 1,2,3, Nathalie di Clemente 5,6, Denis Vivien 1,2,3,§ 1INSERM, INSERM U919, Serine Proteases and Pathophysiology of the neurovascular Unit (SP2U), Cyceron, 2CNRS, UMR CNRS 6232 Ci-NAPs ʻCenter for imaging Neurosciences and Applications to PathologieSʼ, Cyceron, 3University of Caen Basse-Normandie, Caen Cedex, F-14074 France 4INSERM-Avenir, Institute for Biomedical Research, IFRMP23, University of Rouen & Department of Neonatal Pediatrics and Intensive Care, Rouen University Hospital, Rouen, F-76183, France 5INSERM, U782, 6University of Paris-Sud, UMR-S0782, Clamart, F-92140 7Department of Biochemistry, University of Zurich, Zurich, CH-8057, Switzerland *These authors contributed equally to this work ‡Present address: ETH Zurich, Institute of Cell Biology, Zurich, CH-8093, Switzerland §Author for correspondence (e-mail: [email protected]) Accepted 30 June 2008 Journal of Cell Science 121, 000-000 Published by The Company of Biologists 2008 doi:10.1242/jcs.031872 Summary The balance between tissue-type plasminogen activator (tPA) neuroserpin in the brain of AMHR-II-deficient mice. and one of its inhibitors, neuroserpin, has crucial roles in the Interestingly, as previously demonstrated for neuroserpin, central nervous system, including the control of neuronal AMH protects neurons against N-methyl-D-aspartate (NMDA)- migration, neuronal plasticity and neuronal death. -
WHO Drug Information Vol. 20, No. 3, 2006
WHO DRUG INFORMATION VOLUME 20• NUMBER 3 • 2006 RECOMMENDED INN LIST 56 INTERNATIONAL NONPROPRIETARY NAMES FOR PHARMACEUTICAL SUBSTANCES WORLD HEALTH ORGANIZATION • GENEVA WHO Drug Information Vol 20, No. 3, 2006 World Health Organization WHO Drug Information Contents Biomedicines and Vaccines Counterfeit taskforce launched 192 Fake artesunate warning sheet 193 Monoclonal antibodies: a special Resolution on counterfeiting 193 regulatory challenge? 165 Improving world health through regulation of biologicals 173 Regulatory Action and News Influenza virus vaccines for 2006–2007 Safety and Efficacy Issues northern hemisphere 196 Trastuzumab approved for primary Global progress in monitoring immuniza- breast cancer 196 tion adverse events 180 Emergency contraception over-the- Intracranial haemorrhage in patients counter 197 receiving tipranavir 180 Ocular Fusarium infections: ReNu Infliximab: hepatosplenic T cell MoistureLoc® voluntary withdrawal 197 lymphoma 181 Saquinavir: withdrawal of soft gel Lamotrigine: increased risk of non- capsule Fortovase® 197 syndromic oral clefts 181 Latest list of prequalified products and Biphosphonates: osteonecrosis of manufacturers 198 the jaw 181 Clopidogrel: new medical use 199 Enoxaparin dosage in chronic kidney Dronedarone: withdrawal of marketing disease 182 authorization 199 Terbinafine and life-threatening blood dyscrasias 183 Adverse reactions in children: why Recent Publications, report? 183 Hepatitis B reactivation and anti-TNF- Information and Events alpha agents 185 MSF issues ninth antiretroviral -
Metabolic Enzyme/Protease
Inhibitors, Agonists, Screening Libraries www.MedChemExpress.com Metabolic Enzyme/Protease Metabolic pathways are enzyme-mediated biochemical reactions that lead to biosynthesis (anabolism) or breakdown (catabolism) of natural product small molecules within a cell or tissue. In each pathway, enzymes catalyze the conversion of substrates into structurally similar products. Metabolic processes typically transform small molecules, but also include macromolecular processes such as DNA repair and replication, and protein synthesis and degradation. Metabolism maintains the living state of the cells and the organism. Proteases are used throughout an organism for various metabolic processes. Proteases control a great variety of physiological processes that are critical for life, including the immune response, cell cycle, cell death, wound healing, food digestion, and protein and organelle recycling. On the basis of the type of the key amino acid in the active site of the protease and the mechanism of peptide bond cleavage, proteases can be classified into six groups: cysteine, serine, threonine, glutamic acid, aspartate proteases, as well as matrix metalloproteases. Proteases can not only activate proteins such as cytokines, or inactivate them such as numerous repair proteins during apoptosis, but also expose cryptic sites, such as occurs with β-secretase during amyloid precursor protein processing, shed various transmembrane proteins such as occurs with metalloproteases and cysteine proteases, or convert receptor agonists into antagonists and vice versa such as chemokine conversions carried out by metalloproteases, dipeptidyl peptidase IV and some cathepsins. In addition to the catalytic domains, a great number of proteases contain numerous additional domains or modules that substantially increase the complexity of their functions. -
Prothrombotic Phenotype of Protein Z Deficiency
Prothrombotic phenotype of protein Z deficiency Zheng-Feng Yin*, Zhong-Fu Huang*, Jisong Cui†, Ryan Fiehler*, Nina Lasky*, David Ginsburg†, and George J. Broze, Jr.*‡ *Division of Hematology, Barnes-Jewish Hospital at Washington University School of Medicine, 216 South Kingshighway Boulevard, St. Louis, MO 63110; and †Howard Hughes Medical Institute and Departments of Human Genetics and Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109 Edited by Philip W. Majerus, Washington University School of Medicine, St. Louis, MO, and approved April 11, 2000 (received for review February 25, 2000) Protein Z (PZ) is a vitamin K-dependent plasma protein whose that the role of PZ, like that of PC or PS, is to limit the function has been uncertain. The structure of PZ is very similar to coagulation response. that of the coagulation-related factors VII, IX, and X and PC, but PZ differs from these other proteins in that it is not the zymogen of Methods a serine protease. We have shown recently that PZ forms a calcium Materials. Hepes, EDTA, barium chloride, sodium oxalate, BSA, ion-dependent complex with activated factor X at phospholipid and rabbit brain cephalin were from Sigma. Affigel-10 was surfaces and that this interaction leads to the inhibition of acti- purchased from Bio-Rad. vated factor X activity through, in part, the action of a previously unidentified plasma protein named PZ-dependent protease inhib- Proteins. PZ and ZPI were purified from human plasma as itor. Herein, we report that the presence of PZ dampens the described (10). Prothrombin, factor X, and factor IXa were coagulation response in human plasma and that concomitant PZ products of Enzyme Research Laboratories (South Bend, IN).