A Serine Proteinase Inhibitor Locus at 18Q21.3 Contains a Tandem

Total Page:16

File Type:pdf, Size:1020Kb

A Serine Proteinase Inhibitor Locus at 18Q21.3 Contains a Tandem Proc. Natl. Acad. Sci. USA Vol. 92, pp. 3147-3151, April 1995 Medical Sciences A serine proteinase inhibitor locus at 18q21.3 contains a tandem duplication of the human squamous cell carcinoma antigen gene (serpins/maspin/plasminogen activator inhibitor type 2) SANDRA S. SCHNEIDER, CHARLIE SCHICK, KIMBERLEE E. FISH, ERIC MILLER, JEANNETTE C. PENA, SARAH D. TRETER, STEPHANIE M. HuI, AND GARY A. SILVERMAN* Department of Pediatrics, Harvard Medical School, Children's Hospital, Boston, MA 02115 Communicated by Ruth Sager, Dana-Farber Cancer Institute, Boston, MA, December 30, 1994 (received for review November 4, 1994) ABSTRACT The squamous cell carcinoma antigen (SCCA) ance of the acidic fraction of SCCA is correlated with more is a member of the ovalbumin family of serine proteinase aggressive tumors. inhibitors (serpins). A neutral form of the protein is found in In our analysis ofchromosomal aberrations involving human normal and some malignant squamous cells, whereas an acidic chromosome band 18q21 we identified a DNA fragment, form is detected exclusively in tumor cells and in the circulation A56R (D18S86) (8), that contained a 56/57-bp match with the ofpatients with squamous cell tumors. In this report, we describe published cDNA sequence of SCCA (1). In this report, we the cloning of the SCCA gene from normal genomic DNA. showed that A56R contained exon 3 of a new gene, SCCA2. Surprisingly, two genes were found. They were tandemly arrayed This gene was 92% identical to SCCA1. SCCA1 and SCCA2 and flanked by two other closely related serpins, plasminogenI were tandemly arrayed and flanked by two other Ov-serpins, activator inhibitor type 2 (PAI2) and maspin at 18q213. The plasminogen activator inhibitor type 2 (PAI2) and maspin. genomic structure of the two genes, SCCA1 and SCCA2, was Finally, the predicted pI values and molecular weights of the highly conserved. The predicted amino acid sequences were 92% cDNAs suggested that the neutral and acidic forms of the identical and suggested that the neutral form of the protein was SCCA were encoded by SCCA1 and SCCA2, respectively.t encoded by SCCA1 and the acidic form was encoded by SCCA2. Further characterization ofthe region should determine whether MATERIALS AND METHODS the differential expression ofthe SCCA genes plays a causal role in developmnent of more aggressive squamous cell carcinomas. Genomic Cloning. yB29F7 was obtained from a human genomic yeast artificial chromosome (YAC) library (Wash- The squamous cell carcinoma antigen (SCCAl) gene is a ington University, St. Louis) as described (8). A rare-cutting member of the ovalbumin family of serine proteinase inhibitors restriction map of the clone has been reported (8). Genomic (Ov-serpins) (1, 2). The protein was isolated from a metastatic, DNA from yB29F7 was partially. digested with Mbo I and cervical SCC by Kato and Torigoe (3). By SDS/polyacrylamide ligated with the ADASHII vector (Stratagene) by using con- gel electrophoresis, the protein appears as a single band with ventional phage cloning techniques (9). Phage DNA was an Mr of -45,000 (1). However, isoelectric focusing reveals digested with Xba I and the resulting fragments were sub- significant charge heterogeneity with proteins being grouped cloned into pBluescript plasmid vectors (Stratagene). into a neutral (pI = 6.3-6.6; Mr 42,000-48,000) and an acidic DNA Sequencing. Plasmids were sequenced by standard fraction (pl = 5.9-6.2; Mr 42,000-48,000) (4). MonoclonalI dideoxynucleotide chain-termination methods (9) using the antibodies prepared against SCCA detect at least seven Sequenase version 2 sequencing kit (United States Biochemi- epitopes common to the neutral and acidic forms ofthe protein cals). DNA sequence was analyzed by using the Genetics and one unique to the acidic form (5). Computer Group software package and the BLAST program SCCA is detected in the superficial and intermediate layers (10) from the National Center for Biotechnology Information. of normal squamous epithelium (6), whereas the mRNA is DNA Blotting. Human genomic, phage, or plasmid DNAwas detected in the basal and subbasal levels (7). The clinical digested with restriction endonucleases and subjected to aga- import of SCCA has been as a circulating tumor marker for rose gel electrophoresis as described (8). DNA blots were SCC, especially those of the cervix, head and neck, lung, and hybridized at high stringency (8) with 32P-labeled probes esophagus (5). Multiple clinical studies of cervical SCC show generated by random priming or the PCR (9). The 2.5-kb that the percentage of patients with elevated circulating levels maspin cDNA was a generous gift from Ming Zhang and Ruth of SCCA increases from =12% at stage 0 to >90% at stage IV Sager (Cancer Genetics, Dana-Farber Cancer Institute, Bos- (5, 6). Levels fall after tumor resection and rise in =90% of the ton). patients with recurrent disease. Similar trends occur in the PCR. PCR assays were performed in 10-Al reactions and other types of SCC, with a maximum sensitivity of approxi- analyzed as described (8). The primer sequences for maspin mately 60% for lung, 50% for esophageal, and 55% for head (11), elastase inhibitor (EI) (12), and human placental throm- and neck tumors (5). Elevated circulating levels of SCCA are also detected in a lower percentage of patients with adeno- Abbreviations: El, elastase inhibitor; OVA, chicken ovalbumin; PAI2, carcinomas of the uterus, ovary, and lung (6). Interestingly, the plasminogen activator inhibitor type 2; PTI, placental thrombin in- hibitor; SCC, squamous cell carcinoma; SCCA, SCC antigen; serpin, neutral form of SCCA is detected in the cytoplasm of normal serine proteinase inhibitor; YAC, yeast artificial chromosome; UTR, and some malignant squamous cells, whereas the acidic form untranslated region; a1-AT, at-antitrypsin; a,-ACT, ai-antichymo- is expressed primarily in malignant cells and is the major form trypsin; a,-PI, at-proteinase inhibitor. found in the plasma of cancer patients (5). Thus, the appear- *To whom reprint requests should be addressed at: Children's Hos- pital, 300 Longwood Avenue, Enders 970, Boston, MA 02115. tThe sequences reported in this paper have been deposited in Gen- The publication costs of this article were defrayed in part by page charge Bank [accession nos. U19558 (SCCAl) and U19569 (SCCA2)] and the payment. This article must therefore be hereby marked "advertisement" in Genome Data Base [accession no. GOO-435-238 (EI, PTI, and maspin accordance with 18 U.S.C. §1734 solely to indicate this fact. primer sets)]. 3147 Downloaded by guest on September 27, 2021 3148 Medical Sciences: Schneider et alP Proc. Natl. Acad Sci. USA 92 (1995) bin inhibitor (PTI) (13) were derived from the published 1 2 3 4 5 6 7 8 9 10 cDNA sequence. kb For reverse transcriptase (RT)-PCR, 1-3 jig of total RNA was transcribed using random hexamer and avian myeloblas- - 12 tosis virus reverse transcriptase (9). First-strand cDNA was - 9 used in a 10-,ul PCR (14) with a primer set capable of discriminating SCCA2 transcripts from those of SCCAI (see D18S86 (A56R*) Fig. 5). RT-PCR products were subcloned into EcoRV- FIG. 2. Duplication of A56R (D18S86). Genomic DNA from 10 digested pBluescript vectors and sequenced as described (8). unrelated individuals (lanes 1-10) was digested with EcoRV. The resulting restriction fragments were separated by agarose gel electro- phoresis, blotted to reinforced nitrocellulose, hybridized with a 32p_ RESULTS labeled A56R probe (A56R*), and detected by autoradiography. Mapping, Cloning, and Sequencing of the SCCA Genes. Previously, we constructed a 2.5-Mb YAC contig to facilitate A GenBank search using the A56R sequence yielded a the analysis of 18q21 chromosomal aberrations (8). This contig 56/57-bp match with the cDNA sequence of the SCCAI (1). established that the Ov-serpin, PAI2, is 600 kb telomeric to the Appropriate acceptor and donor splice sites flanked the 57-bp protooncogene, BCL2 (8) (Fig. 1A). Restriction mapping of a sequence. This result suggested that A56R contained an exon YAC clone (yB29F7), which is located between these genes, of either SCCAI or a closely related element. To determine revealed two bands when the 210-bp A56R genomic marker which was the case, we constructed a phage library using (D18S86) was used as a probe. This result was not due to the yB29F7 genomic DNA. Three overlapping phage clones were partial digestion of genomic DNA or the existence of a similar isolated using A56R as the probe (Figs. 1C and 3). One clone, restriction site within the probe. The presence of two bands in 4A56R-2, contained two different Xba I fragments that hy- digests of DNA from 10 unrelated individuals suggested that bridized with A56R (Fig. 3). The Xba I fragments were the duplication was not an artifact of YAC cloning (Fig. 2). subcloned into plasmid vectors and analyzed by restriction A 18q21.3 TELp I ,/CEN PM2i !Dl8S86(A56R) BCL2 ' r ~~~~~~ ~~' ~~~I 100 k B yB29F7 ; ~~~~~ SinSc'I -'1<~~~~~~~~~~~~~~~~~~~~SIiS D18S79 Dl8S86(A56R)* 3UTmaspinI 5'exon -- ..J-50 kb C 4A56R .~~~~~~~~~~~~~~~~~~~~~~~~~~~~- A 3.1* 6.9 I 3.1 1 2.0 (A56R4 x x x x 1.4*. .- 1. 6.9 I 1I1J..L I %P.6 UR* iO8 A56R-2 x xa x 'PA56R-3 1.9-.- 1 341 6.8*%,.%p 5 5.4 10.4I W. .-r . ~~~~~~~~~~~~~~~~~~~~~~~~~. ~~~~~~~~~~~~~~~~~~~~~~~.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. D SCC antigen genes ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. I~~~~~~~~~~~~~~~~~~ .~~~~~~~~~~~~~~~~~~~~~~~~~~~1 II I E EE EE X ER S E R XERt R R EX S E EE E XE E S E R X I I I I 1 4I 711 L11 1-II I I I " I~~1 1L I n I 0 1 m I 2 3 4 5 6 7 8 11 2 3 4 5 6 7 8 lL184 kiqxeacint SCC antigen gene 1 SCC antigen gene 2 FIG.
Recommended publications
  • The Central Role of Fibrinolytic Response in COVID-19—A Hematologist’S Perspective
    International Journal of Molecular Sciences Review The Central Role of Fibrinolytic Response in COVID-19—A Hematologist’s Perspective Hau C. Kwaan 1,* and Paul F. Lindholm 2 1 Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA 2 Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; [email protected] * Correspondence: [email protected] Abstract: The novel coronavirus disease (COVID-19) has many characteristics common to those in two other coronavirus acute respiratory diseases, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). They are all highly contagious and have severe pulmonary complications. Clinically, patients with COVID-19 run a rapidly progressive course of an acute respiratory tract infection with fever, sore throat, cough, headache and fatigue, complicated by severe pneumonia often leading to acute respiratory distress syndrome (ARDS). The infection also involves other organs throughout the body. In all three viral illnesses, the fibrinolytic system plays an active role in each phase of the pathogenesis. During transmission, the renin-aldosterone- angiotensin-system (RAAS) is involved with the spike protein of SARS-CoV-2, attaching to its natural receptor angiotensin-converting enzyme 2 (ACE 2) in host cells. Both tissue plasminogen activator (tPA) and plasminogen activator inhibitor 1 (PAI-1) are closely linked to the RAAS. In lesions in the lung, kidney and other organs, the two plasminogen activators urokinase-type plasminogen activator (uPA) and tissue plasminogen activator (tPA), along with their inhibitor, plasminogen activator 1 (PAI-1), are involved. The altered fibrinolytic balance enables the development of a hypercoagulable Citation: Kwaan, H.C.; Lindholm, state.
    [Show full text]
  • Anticoagulant Synergism of Heparin and Activated Protein C in Vitro
    Anticoagulant synergism of heparin and activated protein C in vitro. Role of a novel anticoagulant mechanism of heparin, enhancement of inactivation of factor V by activated protein C. J Petäjä, … , A Gruber, J H Griffin J Clin Invest. 1997;99(11):2655-2663. https://doi.org/10.1172/JCI119454. Research Article Interactions between standard heparin and the physiological anticoagulant plasma protein, activated protein C (APC) were studied. The ability of heparin to prolong the activated partial thromboplastin time and the factor Xa- one-stage clotting time of normal plasma was markedly enhanced by addition of purified APC to the assays. Experiments using purified clotting factors showed that heparin enhanced by fourfold the phospholipid-dependent inactivation of factor V by APC. In contrast to factor V, there was no effect of heparin on inactivation of thrombin-activated factor Va by APC. Based on SDS-PAGE analysis, heparin enhanced the rate of proteolysis of factor V but not factor Va by APC. Coagulation assays using immunodepleted plasmas showed that the enhancement of heparin action by APC was independent of antithrombin III, heparin cofactor II, and protein S. Experiments using purified proteins showed that heparin did not inhibit factor V activation by thrombin. In summary, heparin and APC showed significant anticoagulant synergy in plasma due to three mechanisms that simultaneously decreased thrombin generation by the prothrombinase complex. These mechanisms include: first, heparin enhancement of antithrombin III-dependent inhibition of factor V activation by thrombin; second, the inactivation of membrane-bound FVa by APC; and third, the proteolytic inactivation of membrane- bound factor V by APC, which is enhanced by heparin.
    [Show full text]
  • Serpins in Hemostasis As Therapeutic Targets for Bleeding Or Thrombotic Disorders
    MINI REVIEW published: 07 January 2021 doi: 10.3389/fcvm.2020.622778 Serpins in Hemostasis as Therapeutic Targets for Bleeding or Thrombotic Disorders Elsa P. Bianchini 1*, Claire Auditeau 1, Mahita Razanakolona 1, Marc Vasse 1,2 and Delphine Borgel 1,3 1 HITh, UMR_S1176, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Le Kremlin-Bicêtre, France, 2 Service de Biologie Clinique, Hôpital Foch, Suresnes, France, 3 Laboratoire d’Hématologie Biologique, Hôpital Necker, APHP, Paris, France Edited by: Bleeding and thrombotic disorders result from imbalances in coagulation or fibrinolysis, Marie-Christine Bouton, respectively. Inhibitors from the serine protease inhibitor (serpin) family have a key role Institut National de la Santé et de la in regulating these physiological events, and thus stand out as potential therapeutic Recherche Médicale (INSERM), France targets for modulating fibrin clot formation or dismantling. Here, we review the diversity Reviewed by: of serpin-targeting strategies in the area of hemostasis, and detail the suggested use of Xin Huang, modified serpins and serpin inhibitors (ranging from small-molecule drugs to antibodies) University of Illinois at Chicago, United States to treat or prevent bleeding or thrombosis. Martine Jandrot-Perrus, Keywords: serpin (serine proteinase inhibitor), antithrombin (AT), protein Z-dependent protease inhibitor (ZPI), Institut National de la Santé et de la plasminogen activator inhibitor 1 (PAI-1), therapy, protease nexin I (PN-1) Recherche Médicale (INSERM), France *Correspondence: INTRODUCTION Elsa P. Bianchini elsa.bianchini@ universite-paris-saclay.fr Coagulation (the formation of a solid fibrin clot at the site of vessel injury, to stop bleeding) and fibrinolysis (the disaggregation of a clot, to prevent the obstruction of blood flow) are Specialty section: interconnected pathways that both help to maintain the hemostatic balance.
    [Show full text]
  • Heparin Cofactor II Inhibits Arterial Thrombosis After Endothelial Injury Li He Washington University School of Medicine in St
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2002 Heparin cofactor II inhibits arterial thrombosis after endothelial injury Li He Washington University School of Medicine in St. Louis Cristina P. Vicente Washington University School of Medicine in St. Louis Randal J. Westrick University of Michigan - Ann Arbor Daniel T. Eitzman University of Michigan - Ann Arbor Douglas M. Tollefsen Washington University School of Medicine in St. Louis Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation He, Li; Vicente, Cristina P.; Westrick, Randal J.; Eitzman, Daniel T.; and Tollefsen, Douglas M., ,"Heparin cofactor II inhibits arterial thrombosis after endothelial injury." The ourJ nal of Clinical Investigation.,. 213-219. (2002). https://digitalcommons.wustl.edu/open_access_pubs/1423 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Heparin cofactor II inhibits arterial thrombosis after endothelial injury Li He,1 Cristina P. Vicente,1 Randal J. Westrick,2 Daniel T. Eitzman,2 and Douglas M. Tollefsen1 1Division of Hematology, Department of Internal Medicine, and Department of Biochemistry and Molecular Biophysics, Washington University, St. Louis, Missouri, USA 2Division of Cardiology, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA Address correspondence to: Douglas M. Tollefsen, Division of Hematology, Box 8125, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA. Phone: (314) 362-8830; Fax: (314) 362-8826; E-mail: [email protected].
    [Show full text]
  • Met 358 to Arg Mutation of Alpha 1-Antitrypsin Associated with Protein C Deficiency in a Patient with Mild Bleeding Tendency
    Met 358 to Arg mutation of alpha 1-antitrypsin associated with protein C deficiency in a patient with mild bleeding tendency. D Vidaud, … , J N Fiessinger, M Aiach J Clin Invest. 1992;89(5):1537-1543. https://doi.org/10.1172/JCI115746. Research Article The molecular defect responsible for a dramatic prolongation of all standard clotting tests discovered in a 15-yr-old boy has been identified. Initial investigations revealed the presence of an activated Factor X (Factor Xa) and thrombin inhibitor which copurified with alpha 1-antitrypsin (alpha 1-AT), thereby suggesting the occurrence of an alpha 1-AT variant similar to alpha 1-AT Pittsburgh. This was confirmed by dot-blot analysis and direct sequencing after amplification by the polymerase chain reaction. A G to T transition at nucleotide 10038 results in the substitution of Met to an Arg, converting alpha 1-AT into an Arg-Ser protease inhibitor (serpin) that inhibited thrombin and Factor Xa more effectively than antithrombin III. Surprisingly, there was no bleeding history in the proband. The common mutation Z, which may explain a reduced expression of the allele bearing the Arg 358 Met mutation, was not observed in the propositus' DNA. To exclude the presence of another mutation, the coding regions and intron/exon junctions were sequenced. No other mutation was found. Recently, the patient experienced his first hemorrhagic episode at the age of 17. The level of the abnormal inhibitor had increased twofold 2 mo before. The large decrease in protein C concentration may account for the mild bleeding tendency in this case, despite the presence of the alpha 1-AT Pittsburgh mutation.
    [Show full text]
  • Serpin Inhibition Mechanism: a Delicate Balance Between Native Metastable State and Polymerization
    SAGE-Hindawi Access to Research Journal of Amino Acids Volume 2011, Article ID 606797, 10 pages doi:10.4061/2011/606797 Review Article Serpin Inhibition Mechanism: A Delicate Balance between Native Metastable State and Polymerization Mohammad Sazzad Khan,1 Poonam Singh,1 Asim Azhar,1 Asma Naseem,1 Qudsia Rashid,1 Mohammad Anaul Kabir,2 and Mohamad Aman Jairajpuri1 1 Department of Biosciences, Jamia Millia Islamia University, Jamia Nagar, New Delhi 110025, India 2 Department of Biotechnology, National Institute of Technology Calicut (NITC), NIT Campus P.O., Calicut, Kerala 673601, India Correspondence should be addressed to Mohamad Aman Jairajpuri, m [email protected] Received 14 February 2011; Accepted 7 March 2011 Academic Editor: Zulfiqar Ahmad Copyright © 2011 Mohammad Sazzad Khan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The serpins (serine proteinase inhibitors) are structurally similar but functionally diverse proteins that fold into a conserved structure and employ a unique suicide substrate-like inhibitory mechanism. Serpins play absolutely critical role in the control of proteases involved in the inflammatory, complement, coagulation and fibrinolytic pathways and are associated with many conformational diseases. Serpin’s native state is a metastable state which transforms to a more stable state during its inhibitory mechanism. Serpin in the native form is in the stressed (S) conformation that undergoes a transition to a relaxed (R) conformation for the protease inhibition. During this transition the region called as reactive center loop which interacts with target proteases, inserts itself into the center of β-sheet A to form an extra strand.
    [Show full text]
  • Emerging Evidence in IBD
    International Journal of Molecular Sciences Review Gut Serpinome: Emerging Evidence in IBD Héla Mkaouar 1, Vincent Mariaule 1, Soufien Rhimi 1, Juan Hernandez 2 , Aicha Kriaa 1, Amin Jablaoui 1, Nizar Akermi 1, Emmanuelle Maguin 1 , Adam Lesner 3 , Brice Korkmaz 4 and Moez Rhimi 1,* 1 Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France; [email protected] (H.M.); [email protected] (V.M.); soufi[email protected] (S.R.); [email protected] (A.K.); [email protected] (A.J.); [email protected] (N.A.); [email protected] (E.M.) 2 Department of Clinical Sciences, Nantes-Atlantic College of Veterinary Medicine and Food Sciences (Oniris), University of Nantes, 101 Route de Gachet, 44300 Nantes, France; [email protected] 3 Faculty of Chemistry, University of Gdansk, Uniwersytet Gdanski, Chemistry, Wita Stwosza 63, PL80-308 Gdansk, Poland; [email protected] 4 INSERM UMR-1100, “Research Center for Respiratory Diseases” and University of Tours, 37032 Tours, France; [email protected] * Correspondence: [email protected] Abstract: Inflammatory bowel diseases (IBD) are incurable disorders whose prevalence and global socioeconomic impact are increasing. While the role of host genetics and immunity is well docu- mented, that of gut microbiota dysbiosis is increasingly being studied. However, the molecular basis of the dialogue between the gut microbiota and the host remains poorly understood. Increased activity of serine proteases is demonstrated in IBD patients and may contribute to the onset and the maintenance of the disease.
    [Show full text]
  • NIH Public Access Author Manuscript J Thromb Haemost
    NIH Public Access Author Manuscript J Thromb Haemost. Author manuscript; available in PMC 2009 April 20. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: J Thromb Haemost. 2007 July ; 5(Suppl 1): 102±115. doi:10.1111/j.1538-7836.2007.02516.x. Serpins in thrombosis, hemostasis and fibrinolysis J. C. RAU*,1, L. M. BEAULIEU*,1, J. A. HUNTINGTON†, and F. C. CHURCH* *Department of Pathology and Laboratory Medicine, Carolina Cardiovascular Biology Center, School of Medicine, University of North Carolina, Chapel Hill, NC, USA †Department of Haematology, Division of Structural Medicine, Thrombosis Research Unit, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC, Cambridge, UK Summary Hemostasis and fibrinolysis, the biological processes that maintain proper blood flow, are the consequence of a complex series of cascading enzymatic reactions. Serine proteases involved in these processes are regulated by feedback loops, local cofactor molecules, and serine protease inhibitors (serpins). The delicate balance between proteolytic and inhibitory reactions in hemostasis and fibrinolysis, described by the coagulation, protein C and fibrinolytic pathways, can be disrupted, resulting in the pathological conditions of thrombosis or abnormal bleeding. Medicine capitalizes on the importance of serpins, using therapeutics to manipulate the serpin-protease reactions for the treatment and prevention of thrombosis and hemorrhage. Therefore, investigation of serpins, their cofactors, and their structure-function relationships is imperative for the development of state-of- the-art pharmaceuticals for the selective fine-tuning of hemostasis and fibrinolysis. This review describes key serpins important in the regulation of these pathways: antithrombin, heparin cofactor II, protein Z-dependent protease inhibitor, α1-protease inhibitor, protein C inhibitor, α2-antiplasmin and plasminogen activator inhibitor-1.
    [Show full text]
  • WO 2017/176762 Al 12 October 2017 (12.10.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/176762 Al 12 October 2017 (12.10.2017) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 47/68 (2017.01) A61P 31/12 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, A61K 47/69 (2017.01) A61P 33/02 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, A61P 31/04 (2006.01) A61P 35/00 (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, A61P 31/10 (2006.01) KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, (21) International Application Number: NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, PCT/US2017/025954 RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, (22) International Filing Date: TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, 4 April 2017 (04.04.2017) ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (30) Priority Data: TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, 62/3 19,092 6 April 2016 (06.04.2016) US TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (71) Applicant: NANOTICS, LLC [US/US]; 100 Shoreline LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Hwy, #100B, Mill Valley, CA 94941 (US).
    [Show full text]
  • Protein C Inhibitor Is Expressed in Keratinocytes of Human Skin
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Protein C Inhibitor is Expressed in Keratinocytes of Human Skin Michael Krebs, Pavel Uhrin, Anja Vales, Maria J. Prendes-Garcia, Johann Wojta, Margarethe Geiger, and Bernd R. Binder Department of Vascular Biology and Thrombosis Research, University of Vienna, Vienna, Austria Protein C inhibitor is a member of the serpin family supernatants of HaCaT keratinocytes was found to be that inhibits a variety of serine proteases. Protein C 0.3 ng per h per 1 million cells. This is similar to the inhibitor is present in numerous body fluids and is amount of plasminogen activator inhibitor-1 produced produced in the liver and by various epithelial cells. by these cells, which also produce tissue plasminogen To determine if this epithelial serpin is present in skin, activator and urokinase. Fluorescence-activated cell immunohistochemical studies were performed that sorter analysis revealed similar expression of intra- showed strong staining for protein C inhibitor antigen cellular protein C inhibitor antigen in proliferating in the epidermis. Protein C inhibitor mRNA was and confluent HaCaT cells. These findings demon- detected in the keratinocyte cell line HaCaT and the strate that protein C inhibitor antigen is present in the epidermoid carcinoma cell line A431 using reverse normal epidermis and that protein C inhibitor is constitutively expressed by keratinocytes in culture. transcription–polymerase chain reaction suggesting Therefore, protein C inhibitor may provide protease that also in normal skin protein C inhibitor is derived inhibitory activity not only to internal, but also to the from keratinocytes.
    [Show full text]
  • Corticosteroid-Binding Globulin (Cbg): Deficiencies and the Role
    CORTICOSTEROID-BINDING GLOBULIN (CBG): DEFICIENCIES AND THE ROLE OF CBG IN DISEASE PROCESSES by LESLEY ANN HILL B.Sc. University of Western Ontario, 2011 A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Reproductive and Developmental Sciences) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) July 2017 © Lesley Ann Hill, 2017 Abstract Corticosteroid-binding globulin (CBG, SERPINA6) is a serine protease inhibitor family member produced by hepatocytes. Plasma CBG transports biologically active glucocorticoids, determines their bioavailability to target tissues and acts as an acute-phase negative protein with a role in the delivery of glucocorticoids to sites of inflammation. A few CBG-deficient individuals have been identified, yet the clinical significance of this remain unclear. In this thesis, I investigated 1) the biochemical consequences of naturally occurring single nucleotide polymorphisms in the SERPINA6 gene, 2) the role of human CBG during infections and acute inflammation and 3) CBG as a biomarker of inflammation in rats. A comprehensive analysis of functionally relevant naturally occurring SERPINA6 SNP revealed 11 CBG variants with abnormal production and/or function, diminished responses to proteolytic cleavage of the CBG reactive center loop (RCL) or altered recognition by monoclonal antibodies. In a genome-wide association study, plasma cortisol levels were most closely associated with SERPINA6 SNPs and plasma CBG-cortisol binding capacity. These studies indicate that human CBG variants need to be considered in clinical evaluations of patients with abnormal cortisol levels. In addition, I obtained evidence that discrepancies in CBG values obtained by the 9G12 ELISA compared to CBG binding capacity and 12G2 ELISA are likely due to differential N-glycosylation rather than proteolysis, as recently reported.
    [Show full text]
  • Activated Protein C (Human) 1.00 Mg
    Activated Protein C (Human) 1.00 mg Ref#: HAPC-1 Lot#: xxxxxx Exp. Date: xxxx-xx For Research Use Only Not for Use in Diagnostic Procedures F or in vitro Use Only Description: Activated Protein C (APC) Lyophilized in 20 mM Tris-HCl / 0.1 M NaCl / pH 7.3 Format: Host: Human Store between +2 and +8°C Storage: After reconstitution aliquot and freeze at ≤-60°C Reconstitution: We recommend hydrating the protein with sterile water to the original volume Volume: 1 vial containing 0.585 mL Total Protein: 1.00 mg 1% Concentration: 1.71 mg/mL before lyophilisation by Absorbance; Extinction Coefficient E 280 = 14.5 Activity: 219.30 Plasma Equivalent Units (PEU)/mg Molecular weight: 56,000 daltons Protein C (PC) is a vitamin K-dependent glycoprotein produced in the liver. The concentration in plasma is ~4 µg/mL (~60 nM). A deficiency of Protein C (quantitative or qualitative) is a risk factor for vascular thrombosis. Protein C is expressed as a two-chain molecule with a molecular weight of 62 kDa. The light chain (21 kDa) consists of two EGF- like domains and an amino-terminal domain containing one hydroxyaspartic acid and 11 γ-carboxyglutamic acid (gla) residues. These residues allow PC to bind to membranes that contain acidic phospholipids in a calcium dependent manner. The heavy chain (41 kDa) consists of the catalytic domain and an activation peptide. Activation of PC results from cleavage at residue Arg12 in the heavy chain by a complex of thrombin and a cell surface cofactor thrombomodulin. The activation of PC is associated with the release of a small activation peptide (2-3 kDa, called Protein C peptide, or PCP) from the N-terminal of the heavy chain.
    [Show full text]