The Spatiotemporal Characteristics and Climatic Factors of COVID-19 in Wuhan, China

Total Page:16

File Type:pdf, Size:1020Kb

The Spatiotemporal Characteristics and Climatic Factors of COVID-19 in Wuhan, China sustainability Article The Spatiotemporal Characteristics and Climatic Factors of COVID-19 in Wuhan, China Qiaowen Lin 1, Guoliang Ou 2,*, Renyang Wang 3, Yanan Li 4, Yi Zhao 5 and Zijun Dong 2 1 School of Economic and Management, China University of Geosciences, Wuhan 430074, China; [email protected] 2 School of Construction and Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, China; [email protected] 3 New Economic Research Institute, Ningbo University of Finance & Economics, Ningbo 315000, China; [email protected] 4 School of Management, Wuhan Institute of Technology, Wuhan 430205, China; [email protected] 5 School of Urban Planning & Design, Peking University Shenzhen Graduate School, Shenzhen 518055, China; [email protected] * Correspondence: [email protected]; Tel.: +86-755-26731157 Abstract: COVID-19 is threatening the whole world. This paper aims to explore the correlation between climatic factors and the morbidity of COVID-19 in Wuhan, China, mainly by using a geographic detector and GWR model. It was found that the response of the morbidity of COVID-19 to meteorological factors in Wuhan is different at different stages. On the whole, the morbidity of COVID-19 has a strong spatial aggregation, mainly concentrated in the central area of Wuhan City. There is a positive correlation between wind speed and the spread of COVID-19, while temperature has a negative correlation. There is a positive correlation between air pressure and the number of COVID-19 cases. Rainfall is not significantly correlated with the spread of COVID-19. It is concluded Citation: Lin, Q.; Ou, G.; Wang, R.; Li, Y.; Zhao, Y.; Dong, Z. The that wind speed, relative humidity, temperature, and air pressure are important meteorological Spatiotemporal Characteristics and factors affecting the spread of COVID-19 in Wuhan. Any two variables have greater interaction Climatic Factors of COVID-19 in with the spatial distribution of the incidence rate of COVID-19 than any one factor alone. Those Wuhan, China. Sustainability 2021, 13, findings not only provide a new insight for the key intervention measures and the optimal allocation 8112. https://doi.org/10.3390/ of health care resources accordingly but also lay a theoretical foundation for disease prevention, su13148112 disease intervention and health services. Academic Editor: Keywords: climatic factors; weather; COVID-19; morbidity; Wuhan Mohammad Valipour Received: 27 May 2021 Accepted: 17 July 2021 1. Introduction Published: 20 July 2021 A pneumonia outbreak of unknown cause, detected in Wuhan, China, was first Publisher’s Note: MDPI stays neutral reported to the World Health Organization (WHO) Country Office in China on 31 December with regard to jurisdictional claims in 2019. By 2 January 2020, 41 admitted patients with confirmed infections by this virus, published maps and institutional affil- now named Corona Virus Disease 2019 (COVID-19), had been identified in hospitals in iations. China [1]. At 10:00 on 23 January 2020, Wuhan New Coronavirus Epidemic Prevention and Control Headquarters announced that the city bus, subway, ferry and long-distance passenger transport were suspended. The airport and train stations were temporarily closed. Wuhan was put into lockdown. Case numbers in China stabilized at around 80,000 by mid-February [2]. On 12 March 2020, WHO declared COVID-19 to be a global Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. health emergency [3]. There have been 94,963,847 confirmed cases of COVID-19 globally, This article is an open access article including 2,050,857 deaths, reported to the WHO on 20 January 2021 [4]. distributed under the terms and Since the beginning of this pandemic, researchers across the world have shown great conditions of the Creative Commons interest in understanding its influences and driving mechanisms. It is widely acknowledged Attribution (CC BY) license (https:// that saliva, nasal discharge, or airborne particles lead to the spread of COVID-19 [5–7], creativecommons.org/licenses/by/ while person-to-person transmission has been proved to be the likely route [8–11]. Elderly 4.0/). people and children are at a higher risk of coronavirus infection [12–16]. In particular, it Sustainability 2021, 13, 8112. https://doi.org/10.3390/su13148112 https://www.mdpi.com/journal/sustainability Sustainability 2021, 13, 8112 2 of 17 has also been found that weather factors, mainly including temperature, wind speed and humidity, are considered as the main predictors of coronavirus disease, due to the viability, transmission and range of spread of the virus [17]. However, most of those studies address the impact between a single climatic factor and COVID-19 incidences [18–20]. The interaction of those climatic parameters with COVID-19 is still unknown. Climatic factors are characterized by regional differences. Each climatic factor does not exist alone, and multiple factors often interact with each other. In addition, Wuhan was the first city where the virus was discovered. However, the spatiotemporal characteristics and climatic factors of COVID-19 in Wuhan have not been explored. Therefore, to fill this research gap, this paper has analyzed in detail the correlation between multiple meteorological factors and COVID-19 in Wuhan, which can hopefully provide new insights for policymakers and medical institutions regarding the real-life situation, to better determine the key intervention measures and the optimal allocation of health care resources accordingly. The remainder of the paper is organized as follows. Firstly, the related literature is reviewed. Secondly, the spatial correlation and differences of the incidence rate of COVID- 19 in Wuhan are analyzed by using global spatial autocorrelation. Thirdly, local Getis–Ord ∗ GI is used to conduct hotspot detection, to analyze its local autocorrelation. Based on this detection, the influence of climatic factors on incidence rate is analyzed by comparing the traditional linear regression model with geographically weighted regression (GWR). Fourthly, the interaction between multiple meteorological factors and COVID-19 is further identified by a geographic detector. Finally, the conclusions of this study are given. 2. Climatic Indicators and COVID-19 Recent literature has demonstrated that different climatic indicators, such as tempera- ture, humidity, and wind speed, can significantly affect the number of COVID-19 cases and mortality [21,22]. The majority of studies show that the relationship between temperature and COVID-19 cases is mostly place- and facility-specific [18]. A significant relationship is found between average and minimum temperatures in COVID-19 cases in New York [23]. It was observed that the increase of one unit in the daytime temperature range resulted in a decrease in the number of COVID-19 cases by approximately 6.4 times in Italy [19]. Lower temperature levels are related to the higher number of COVID-19 cases on a particular day, according to the study in Turkey [21]. A study conducted in 17 different cities of China advocated that a 1 ◦C increase in ambient temperature and diurnal temperature range was associated with a decrease in the number of daily confirmed cases [22]. However, in one study conducted in Jakarta, Indonesia, no correlation between temperature and the number of COVID-19 cases was found [20]. There is also a body of literature that considers humidity as one of the crucial at- mospheric factors in predicting the transmission of COVID-19. Humidity is proved to have a negative relationship with the virus outbreak speed [19]. Another study shows that absolute humidity has significant negative effects on confirmed case counts for four cities in China [22]. It was suggested that the relation between humidity and the number of COVID-19 cases was the most significant on the particular day of the study in Turkey. This indicates that an increase in humidity results in a decline in the number of COVID-19 cases [21]); however, no significant association between COVID-19 cases and absolute humidity was found in China [24]. There is relatively less research on the relationship between wind speed and the spread of COVID-19. The low speed of the wind was observed to be significant [19]. One study showed that there was no significant correlation between wind speed and the number of COVID-19 cases [23]. However, it is interesting to find that the average wind speed over 14 days has the highest correlation with the number of COVID-19 cases in Turkey. Higher wind speed was also related to a greater number of cases [21]. Sustainability 2021, 13, 8112 3 of 17 The correlation between rainfall and the number of COVID-19 cases has also been examined in many studies. Evidence shows that rainfall is negatively and weakly correlated with the spread of COVID-19 [23]. However, some countries with higher rainfall showed an increase in the number of COVID-19 cases. It is advocated that an increase of one inch of rainfall per day was associated with an increase of 56 COVID-19 cases per day [25]. No correlation between rainfall and the number of COVID-19 cases was found in Iran [19], which is consistent with the study in Indonesia [20]. The literature mentioned above has improved our understanding of the spread of COVID-19. However, there are still some gaps that need to be addressed. On the one hand, the existing literature mainly used correlation and regression analysis methods, but geographically weighted regression, which can show spatial distribution characteristics, has been largely neglected. On the other hand, the interaction of those climatic parameters with COVID-19 has barely been studied, which falls short of revealing a deeper understanding of the dynamics of the pandemic. Therefore, in this study, the interaction of those climatic parameters is emphasized by using the geographic detector and GWR model, which contributes to addressing those gaps. 3. The Study Area Wuhan is the capital of Hubei Province in central China (Figure1).
Recommended publications
  • Mapping the Accessibility of Medical Facilities of Wuhan During the COVID-19 Pandemic
    International Journal of Geo-Information Article Mapping the Accessibility of Medical Facilities of Wuhan during the COVID-19 Pandemic Zhenqi Zhou 1, Zhen Xu 1,* , Anqi Liu 1, Shuang Zhou 1, Lan Mu 2 and Xuan Zhang 2 1 Department of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; [email protected] (Z.Z.); [email protected] (A.L.); [email protected] (S.Z.) 2 Department of Geography, University of Georgia, Athens, GA 30602, USA; [email protected] (L.M.); [email protected] (X.Z.) * Correspondence: [email protected] Abstract: In December 2019, the coronavirus disease 2019 (COVID-19) pandemic attacked Wuhan, China. The city government soon strictly locked down the city, implemented a hierarchical diagnosis and treatment system, and took a series of unprecedented pharmaceutical and non-pharmaceutical measures. The residents’ access to the medical resources and the consequently potential demand– supply tension may determine effective diagnosis and treatment, for which travel distance and time are key indicators. Using the Application Programming Interface (API) of Baidu Map, we estimated the travel distance and time from communities to the medical facilities capable of treating COVID-19 patients, and we identified the service areas of those facilities as well. The results showed significant differences in service areas and potential loading across medical facilities. The accessibility of medical facilities in the peripheral areas was inferior to those in the central areas; there was spatial inequality of medical resources within and across districts; the amount of community healthcare Citation: Zhou, Z.; Xu, Z.; Liu, A.; Zhou, S.; Mu, L.; Zhang, X.
    [Show full text]
  • Technical Assistance Consultant's Report People's Republic of China
    Technical Assistance Consultant’s Report Project Number: 42011 November 2009 People’s Republic of China: Wuhan Urban Environmental Improvement Project Prepared by Easen International Co., Ltd in association with Kocks Consult GmbH For Wuhan Municipal Government This consultant’s report does not necessarily reflect the views of ADB or the Government concerned, and ADB and the Government cannot be held liable for its contents. (For project preparatory technical assistance: All the views expressed herein may not be incorporated into the proposed project’s design. ADB TA No. 7177- PRC Project Preparatory Technical Assistance WUHAN URBAN ENVIRONMENTAL IMPROVEMENT PROJECT Final Report November 2009 Volume I Project Analysis Consultant Executing Agency Easen International Co., Ltd. Wuhan Municipal Government in association with Kocks Consult GmbH ADB TA 7177-PRC Wuhan Urban Environmental Improvement Project Table of Contents WUHAN URBAN ENVIRONMENTAL IMPROVEMENT PROJECT ADB TA 7177-PRC FINAL REPORT VOLUME I PROJECT ANALYSIS TABLE OF CONTENTS Abbreviations Executive Summary Section 1 Introduction 1.1 Introduction 1-1 1.2 Objectives of the PPTA 1-1 1.3 Summary of Activities to Date 1-1 1.4 Implementation Arrangements 1-2 Section 2 Project Description 2.1 Project Rationale 2-1 2.2 Project Impact, Outcome and Benefits 2-2 2.3 Brief Description of the Project Components 2-3 2.4 Estimated Costs and Financial Plan 2-6 2.5 Synchronized ADB and Domestic Processes 2-6 Section 3 Technical Analysis 3.1 Introduction 3-1 3.2 Sludge Treatment and Disposal Component 3-1 3.3 Technical Analysis for Wuhan New Zone Lakes/Channels Rehabilitation, Sixin Pumping Station and Yangchun Lake Secondary Urban Center Lake Rehabilitation 3-51 3.4 Summary, Conclusions and Recommendations 3-108 Section 4 Environmental Impact Assessment 4.1 Status of EIAs and SEIA Approval 4-1 4.2 Overview of Chinese EIA Reports 4-1 Easen International Co.
    [Show full text]
  • World Bank Document
    EA2EUb M1AY3 01995 Public Disclosure Authorized EnvironmentalImpact Assessement for Hubei Province Urban EnvironmentalProject Public Disclosure Authorized Public Disclosure Authorized ChineseResearch Academy of- Enviroiinental Sciences Public Disclosure Authorized TheCenter of Ei4ironmentTIPlanning 8 Assessment \ y,gl295 -40- ____ @ H-{iAXt§ *~~~~~~~~~~~~~~~~~~~w-gg t- .>s dapk-oi;~~n 1Lj t IW4 4a~~~~~~~~~~ .0. .. |~~~g., * A 6 - sJe<ioX;^ t ' v }~~~~~~~~Shamghai HubeiProvince Cuang~~~hou PeoplesRepublic ofChina ,. H. ''~' - n~~rovince i\\ 2 (~~~~~~~~~~~~~~( H uLbeiprovince FORWARD The Hubei Urban EnvironmentalProject Office (HUEPO) engaged the Chinese ResearchAcademy of EnvironmentalSciences to assistin the preparationof the environmental impactassessment (EIA) report for the proposedHubei Urban Environmental Project (HUEP). The HUEPconsists of 13 sub-projectswhich need to prepareindividual EIA reports. Allthe individualEIA reportswere preparedby localinstitutes and sectoralinstitutes underthe supervisionof the Centerfor EnvironmentalPlanning & Assessment,CRAES. with the supportof HUEPO. TheCenter for EnvironmentalPlanning & Assessment,CRAES is responsiblefor the executionof the EIA preparationand compilationof the overallEIA report based on the individualEIA reports.A large amountof effort was paidfor the comprehensiveanalyses and no additionalfield data was generatedas part of the effort. Both Chineseand EnglishEIA documentswere prepared.The EIA report (Chinese version) was reviewedand approvedby the NationalEnvironmental Protection
    [Show full text]
  • Evaluation of the Fairness of Urban Lakes' Distribution Based On
    International Journal of Environmental Research and Public Health Article Evaluation of the Fairness of Urban Lakes’ Distribution Based on Spatialization of Population Data: A Case Study of Wuhan Urban Development Zone Jing Wu *, Shen Yang y and Xu Zhang y School of Urban Design, Wuhan University, Wuhan 430072, China; [email protected] (S.Y.); [email protected] (X.Z.) * Correspondence: [email protected] These authors contributed equally to the research. y Received: 14 November 2019; Accepted: 4 December 2019; Published: 8 December 2019 Abstract: Lake reclamation for urban construction has caused serious damage to lakes in cities undergoing rapid urbanization. This process affects urban ecological environment and leads to inconsistent urban expansion, population surge, and uneven distribution of urban lakes. This study measured the fairness of urban lakes’ distribution and explored the spatial matching relationship between service supply and user group demand. The interpretation and analysis of Wuhan’s remote sensing images, population, administrative area, traffic network, and other data in 2018 were used as the basis. Specifically, the spatial distribution pattern and fairness of lakes’ distribution in Wuhan urban development zone were investigated. This study establishes a geographic weighted regression (GWR) model of land cover types and population data based on a spatialization method of population data based on land use, and uses population spatial data and network accessibility analysis results to evaluate lake service levels in the study area. Macroscopically, the correlation analysis of sequence variables and Gini coefficient analysis method are used to measure the fairness of the Wuhan lake distribution problem and equilibrium degree, and the location entropy analysis is used to quantitatively analyze the fairness of lakes and Wuhan streets from the perspective of supply and demand location entropy.
    [Show full text]
  • Here You Can Taste Wuhan Featured Food
    Contents Basic Mandarin Chinese Words and Phrases............................................... 2 Useful Sayings....................................................................................... 2 In Restaurants....................................................................................... 3 Numbers................................................................................................3 Dinning and cafes..........................................................................................5 Eating Out in Wuhan.............................................................................5 List of Restaurants and Food Streets (sort by distance).......................6 4 Places Where You Can Taste Wuhan Featured Food.........................7 Restaurants and cafes in Walking Distance........................................11 1 Basic Mandarin Chinese Words and Phrases Useful Sayings nǐ hǎo Hello 你 好 knee how zài jiàn Goodbye 再 见 zi gee’en xiè xiè Thank You 谢 谢! sheh sheh bú yòng le, xiè xiè No, thanks. 不 用 了,谢 谢 boo yong la, sheh sheh bú yòng xiè You are welcome. 不 用 谢 boo yong sheh wǒ jiào… My name is… 我 叫… wore jeow… shì Yes 是 shr bú shì No 不 是 boo shr hǎo Good 好 how bù hǎo Bad 不 好 boo how duì bù qǐ Excuse Me 对 不 起 dway boo chee wǒ tīng bù dǒng I do not understand 我 听 不 懂 wore ting boo dong duō shǎo qián How much? 多 少 钱? dor sheow chen Where is the xǐ shǒu jiān zài nǎ lǐ See-sow-jian zai na-lee washroom? 洗 手 间 在 哪 里 2 In Restaurants In China, many people call a male waiter as handsome guy and a female waitress as beautiful girl. It is also common to call “fú wù yuan” for waiters of both genders. cài dān Menu 菜 单 tsai dan shuài gē Waiter(Handsome) 帅 哥 shuai ge měi nǚ Waitress(Beautiful) 美 女 may nyu fú wù yuán Waiter/Waitress 服 务 员 fu woo yuan wǒ xiǎng yào zhè ge 我 I would like this.
    [Show full text]
  • Ill-Health and Ill Treatment of Gong Shengliang
    AI Index: ASA 17/008/2005 Distrib: PG/SC To: Health Professionals From: Health and Human Rights Team Date: 17 March 2005 MEDICAL ACTION CHINA: Ill-health and ill treatment of Gong Shengliang Amnesty International (AI) is seriously concerned for the life and well being of Gong Shengliang, a Protestant pastor and leader of the banned "Huanan (South China) Church", who is imprisoned in Hongshan prison, Hubei Province. Gong Shengliang's latest health setbacks are compounded by the continual ill-treatment he has received since his imprisonment in 2001. During his imprisonment, Gong Shengliang has suffered continual ill-treatment. According to letters that he wrote in the first two weeks of December 2004, which have only recently been published on the internet, Gong Shengliang describes how he was suffering from a debilitating stomach complaint, and how he had been able to only take a little food and water for at least 11 days. Gong Shengliang had been treated at the prison hospital five times and on 6 December 2004 asked to be admitted to a hospital outside the prison. However, this request was refused by the prison authorities, who, on one occasion, threatened Gong Shengliang with what were described as "heavy-handed measures". The prison authorities later agreed to Gong Shengliang’s request and he then received treatment at a provincial hospital and an army hospital, following which he was diagnosed with a duodenal ulcer. Throughout this time, Gong Shengliang had been refused visits from his family. Background information Gong Shengliang
    [Show full text]
  • CHINA VANKE CO., LTD.* 萬科企業股份有限公司 (A Joint Stock Company Incorporated in the People’S Republic of China with Limited Liability) (Stock Code: 2202)
    Hong Kong Exchanges and Clearing Limited and The Stock Exchange of Hong Kong Limited take no responsibility for the contents of this announcement, make no representation as to its accuracy or completeness and expressly disclaim any liability whatsoever for any loss howsoever arising from or in reliance upon the whole or any part of the contents of this announcement. CHINA VANKE CO., LTD.* 萬科企業股份有限公司 (A joint stock company incorporated in the People’s Republic of China with limited liability) (Stock Code: 2202) 2019 ANNUAL RESULTS ANNOUNCEMENT The board of directors (the “Board”) of China Vanke Co., Ltd.* (the “Company”) is pleased to announce the audited results of the Company and its subsidiaries for the year ended 31 December 2019. This announcement, containing the full text of the 2019 Annual Report of the Company, complies with the relevant requirements of the Rules Governing the Listing of Securities on The Stock Exchange of Hong Kong Limited in relation to information to accompany preliminary announcement of annual results. Printed version of the Company’s 2019 Annual Report will be delivered to the H-Share Holders of the Company and available for viewing on the websites of The Stock Exchange of Hong Kong Limited (www.hkexnews.hk) and of the Company (www.vanke.com) in April 2020. Both the Chinese and English versions of this results announcement are available on the websites of the Company (www.vanke.com) and The Stock Exchange of Hong Kong Limited (www.hkexnews.hk). In the event of any discrepancies in interpretations between the English version and Chinese version, the Chinese version shall prevail, except for the financial report prepared in accordance with International Financial Reporting Standards, of which the English version shall prevail.
    [Show full text]
  • Chronology of Chinese History
    AppendixA 1257 Appendix A Chronology of Chinese History Xla Dynasty c. 2205 - c. 1766 B. C. Shang Dynasty c. 1766 - c. 1122 B. C. Zhou Dynasty c. 1122 - 249 B. C. Western Zhou c. 1122 - 771 B.C. Eastern Zhou 770 - 249 B. C. Spring Autumn and period 770 - 481 B.C. Warring States period 403 - 221 B.C. Qin Dynasty 221 - 207 B. C. Han Dynasty 202 B. C. - A. D. 220 Western Han 202 B.C. -AD. 9 Xin Dynasty A. D. 9-23 Eastern Han AD. 25 - 220 Three Kingdoms 220 - 280 Wei 220 - 265 Shu 221-265 Wu 222 - 280 Jin Dynasty 265 - 420 Western Jin 265 - 317 Eastern Jin 317 - 420 Southern and Northern Dynasties 420 - 589 Sui Dynasty 590 - 618 Tang Dynasty 618 - 906 Five Dynasties 907 - 960 Later Liang 907 - 923 Later Tang 923 - 936 Later Jin 936 - 947 Later Han 947 - 950 Later Zhou 951-960 Song Dynasty 960-1279 Northern Song 960-1126 Southern Song 1127-1279 Liao 970-1125 Western Xia 990-1227 Jin 1115-1234 Yuan Dynasty 1260-1368 Ming Dynasty 1368-1644 Cling Dynasty 1644-1911 Republic 1912-1949 People's Republic 1949- 1258 Appendix B Map of China C ot C x VV 00 aý 3 ýý, cý ýý=ý<<ý IAJ wcsNYý..®c ýC9 0 I Jz ýS txS yQ XZL ý'Tl '--} -E 0 JVvýc ý= ' S .. NrYäs Zw3!v )along R ?yJ L ` (Yana- 'ý. ý. wzX: 0. ý, {d Q Z lýý'? ý3-ýý`. e::. ý z 4: `ý" ý i kws ". 'a$`: ýltiCi, Ys'ýlt.^laS-' tý..
    [Show full text]
  • Infection in Wuhan, China
    DR. WEI GUO (Orcid ID : 0000-0001-8686-3779) Article type : Letter to the Editor Patterns of HIV and SARS-CoV-2 co-infection in Wuhan, China Wei Guo1,2*, Fangzhao Ming3*, Yong Feng4*, Qian Zhang5, Pingzhen Mo6, Lian Liu7, Ming Gao8, Weiming Tang9§ and Ke Liang6§ 1. Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China 2. Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan, China 3. Wuchang District Center for Disease Control and Prevention,Wuhan, China 4. State Key Laboratory of Virology/Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China 5. Qingshan District Center for Disease Control and Prevention,Wuhan, China 6. Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan University, Hubei, China 7. Caidian District Center for Disease Control and Prevention, Wuhan, China 8. Xinzhou District Center for Disease Control and Prevention, Wuhan, China 9. Dermatology Hospital, Southern Medical University, and the University of North Carolina at Chapel Hill Project-China, Guangzhou, China * These authors equally contributed to this manuscript and are co-first authors. This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differencesAccepted Article between this version and the Version of Record. Please cite this article as doi: 10.1002/jia2.25568 This article is protected by copyright. All rights reserved § These authors contributed equally. Correspondence to: Dr. Ke Liang, Department of Infectious Diseases Zhongnan Hospital in Wuhan University, Wuhan, 430071, China; Email: [email protected] Keywords: Clinical patterns; HIV; SARS-CoV-2; Co-infection; COVID-19; CD4+ T lymphocyte count; lymphopenia Accepted Article This article is protected by copyright.
    [Show full text]
  • High Speed Rail: Wuhan Urban Garden 5-Day Trip
    High Speed Rail: Wuhan Urban Garden 5-Day Trip Day 1 Itinerary Suggested Transportation Hong Kong → Wuhan High Speed Rail [Hong Kong West Kowloon Station → Wuhan Railway Station] To hotel: Recommend to stay in a hotel by the river in Wuchang District. Metro: From Wuhan Railway Hotel for reference: Station, take Metro Line 4 The Westin Wuhan Wuchang Hotel towards Huangjinkou. Address: 96 Linjiang Boulevard, Wuchang District, Wuhan Change to Line 2 at Hongshan Square Station towards Tianhe International Airport. Get off at Jiyuqiao Station and walk for about 7 minutes. (Total travel time about 46 minutes) Taxi: About 35 minutes. Enjoy lunch near the hotel On foot: Walk for about 5 minutes Restaurant for reference: Zhen Bafang Hot Pot from the hotel. Address: No. 43 & 44, Building 12-13, Qianjin Road, Wanda Plaza, Jiyu Bridge, Wuchang District, Wuhan Stand the Test of Time: Yellow Crane Tower Bus: Walk for about 4 minutes from the restaurant to Jiyuqiao Metro Station. Take bus 804 towards Nanhu Road Jiangnan Village. Get off at Yue Ma Chang Station and walk for about 6 minutes. (Total travel time about 37 minutes) Taxi: About 15 minutes. Known as “The No. 1 Tower in the World”, the Yellow Crane Tower is a landmark for Wuhan City and Hubei Province and a must-see attraction. The tower was built in the Three Kingdoms era and was named after its erection on Huangjiji, a submerged rock. Well-known ancient characters such as Li Bai, Bai Juyi, Lu You and Yue Fei had all referenced the tower in their poetry works.
    [Show full text]
  • Download Article
    3rd International Conference on Management Science and Management Innovation (MSMI 2016) Research on the Impact of Road Construction on Traffic Congestion Zhao Wang, Lei Chen Big Data Research Center, Jianghan University, Wuhan, China E-mail: [email protected], [email protected] Abstract—With the accelerated process of urbanization, the construction time and the average congestion index. construction of urban transportation infrastructure needs to Statistical results include 10 urban areas from a total of 64 be improved. The operating areas of the construction projects urban area samples. After removing the outliers, there are 61 become the traffic bottlenecks, which are the trouble spots of samples remaining. congestion and accident. According to study the impact of road We classify those 61 samples to 10 districts such as construction on traffic, we could evaluate traffic characteristics Wuchang District, Hongshan District, etc. From TABLE 2-1, we and service level of construction site, and propose the could see Hongshan District has the longest construction improvement measures to introduce traffic through analyzing distance and the longest construction time, but the average current problems, road conditions, changing traffic congestion index ranged fourth, lower than Jianghan District environment. Based on the actual traffic situation, this paper and Jiang‟an District. The average congestion index of proposes a model of the impact of road construction on road traffic capacity, and puts forward specific measures to improve Dongxihu District is the smallest of all, ranked the second the capacity of road traffic. distance of the road construction and the construction time is not very long. Keywords-Road construction; regression; construction time; construction distance.
    [Show full text]
  • Institutions of Democratic Governance
    1 INSTITUTIONS OF DEMOCRATIC GOVERNANCE The Chinese Communist Party Asserts Greater Control Over State and Society In China’s one-party, authoritarian political system,1 the Chinese Communist Party maintains what one rights organization calls a ‘‘monopoly on political power.’’ 2 The Party plays a leading role in state and society,3 restricting Chinese citizens’ ability to exercise civil and political rights.4 Observers noted that the central role of the Party in governing the state appears to have strengthened since Xi Jinping became the Party General Secretary and President in November 2012 and March 2013, respectively,5 further ‘‘blur- ring’’ the lines between Party and government.6 In March 2017, Wang Qishan, a member of the Standing Committee of the Com- munist Party Central Committee Political Bureau (Politburo) and the Secretary of the Central Commission for Discipline Inspection, said that ‘‘under the Party’s leadership, there is only a division of labor between the Party and the government; there is no separa- tion between the Party and the government.’’ 7 During the Commission’s 2017 reporting year, under Xi’s leader- ship, the Party demanded absolute loyalty from its members,8 di- recting and influencing politics and society at all levels, including in the military,9 economy,10 Internet,11 civil society,12 and family life.13 Furthermore, the Party continued to exert power over the ju- diciary,14 undermining the independence of courts and the rule of law in China, despite legal reform efforts.15 In September 2016, the State Council
    [Show full text]