The United States and Japanese Counterpart Panels on Aquaculture

Total Page:16

File Type:pdf, Size:1020Kb

The United States and Japanese Counterpart Panels on Aquaculture PREFACE TheUnited States and Japanese counterpart panels onaquaculture wereformed in 1969 under the UnitedStates-Japan Cooperative Program inNatural Resources UJNR! The panels currently include specialistsdrawnfrom the government andacadeinic departinents mostconcerned withaquaculture- Chargedwith exploring anddeveloping bilateral cooperation, thepanels have focused their efforts on exchanginginformation related to aquaculture thatcould be of benefittoboth countries. TheUJNR was begun during theThird Cabinet Level Meeting ofthe Joint United States-Japan CommitteeonTrade and Economic Affairsin January 1964,ln addition toaquaculture, currentsubjects in theprogram include toxicmicroorganisms, airpollution, energy, forage crops, national parkmanagement, rnycoplasmosis,windand seismic effects, protein resources, forestry, andseveral joint panels and corninitteesin marine resolve research, development, andutilization. Accomplishmentsiticlude:increased communication andcooperation amongtechnical specialists; exchangesofinformation, data,and research findings; annual meetings ofthe panel, a policy-coordinating body;administrative staffmeetings; exchanges ofequipment, materials, andsamples; several major technicalconferences; andbeneficial effects of internationalrelations. The26th U.S.-Japan Aquaculture PanelSyinposium washeld in Durham, New Hampshire, from16- 18September ] 997. Following thesyrnposiuin, fieldtrips during a seven-day period included theareas of Portsmouth,NewHainpshire; andBar Harbor, Eastport, Camden, and Boothbay Harbor, Maine. T' he syrnposiurnwasorganized byprogram chair Anne Bucklin, Sea Grant Director; Hunt Howell, Professor of Zoology;and Roll ie Barnaby, Sea Grant Extension Officer, atthe University of New Hampshire. Panel Chairmen: JamesP. McVey, UnitedStates Yukio Uekita,Japan Participantsin the 26th UJXR AquaculturePanel Symposium, held in Durham,New Hampshire,U.S.A., September16-18, 1997. CONTENTS /. GeneralAquaculture G. Nardi Research in Flatfish Culture in the Northern United States T. Seikai JapaneseHounder Seed Production from Quantity to Quality W. I., Rickards SustainableHounder Culture and Fisheries: A Regional 17 ApproachInvolving Rhode Island, New Hampshire,Virginia, North Carolina, and South Carolina T. I, J. Smith Tank andPond Nursery Productionof JuvenileSouthern Flounder, 21 W. E. Jenkins Paralichthyslethostigma M. R. Denson III. Hea th Management G. Birnbaum Licensingand Regulation of VeterinaryBiologics for Fishin theUnited States 33 N. Iwata Effectsof RearingConditions on BlindSide Hypermelanosis in K. Kikuchi JapaneseFlounder S. H, Jones Microbiologyof Early Larval Stagesof SurnrnerFlounder Paralichthys 45 B. Summer-Brason dentatasGrowth in a RecirculatingWater System G. Nardi II/, Nutrition I H. Furuita NutritionalRequireinents in BroodstockMarine Fishes N. Ohkubo SequentialUtilization of FreeAmino Acids, Yolk Protein, and Lipids by 61 T. Matsubara DevelopingEmbryos and Larvae in BarfinHounder Verasper moseri N, J. King Ef'fectsof Microalgaeand Live Diet Type on the Growth of First-Feeding 67 W. H, Howell Winter Flounder, Pieuronectes americanus T. Kurokawa DevelopmentalProcess of DigestiveOrgans and their Functions in Japanese 79 T. Suzuki Flounder, Parali chthys oli vaceus I. Oohara A/E RatioProfiles of the EssentialAmino Acid Requirements 85 T. Akiyama Among VariousFinfish Species T. Yamamoto IV. AlarineStock Fnhranc<rnenf I H. Fushimi DevelopingaStock Enhancement Program Based onArtificial Seedlings; 95 Activitiesof the Japanese Sea-Farming Association JASFA! in the est Decade Y, Ohsaka Effectsof Coveringa Tidal Flat with Sand for Stock Enhancement of 105 Y. Koshiishi To>guefish:A FeasibihtyStudy at AriakeSound in Kyushu,Japan T. Murai ~spec s in StockEnhancement of Japanese Flounder Y. Koshiishi M, N. Wilder Reproductive Mechanismsin Macrobrachiumrosenbergii and Penaeus 125 J~rricns: Endocrino!ogicalResearch and Potential Applications in Aquaculture K. Adachi Primary ProductivityofSandy Shores 137 K. Kirnoto J. Higano T. Nakasone Nutrient Concentrationsin Groundwater Through Sandy Beaches 149 K Adachi T. Takeuchi J, Higano H. Yagi V. Nu rition II M. Yokoyama C'ysteineMetabolism in Rainbow Trout 159 N, King Effect of StockingDensity on the Growth and Survival of 173 H. Howell Larval andJuvenile Sununer Flounder, Paralichrhys dentafns E. Fairchild A, Kanazawa 1trtportanceof DietaryLipids in Flatfish 181 H. V. Daniels Effectsof LowSalinity on Growth and Survival of SouthernFlounder, 187 R. Borski ~~<alichrhys Iethostigraa,Larvae and Juveniles M. B. Rust An 1 tItageAnalysis Approach toDetermine Microparticulate F~ 193 F. T. Barrows Acceptabilityby LarvalFish VI. Engineeringfor Open OceanAqttacttlture M, R. Swift FishCage Physical Modeling for SoftwareDevelopment M. Palczynski andDesign Applications K. Kestler D. Michelin B. Cclikkol M. Gosz N. Takagi Creationof OffshoreAquaculture Gmund by FloatingBreakwater 207 R. W. Dudley AWATS: A Net-Pen AquacultureWaste Transport Simulator 215 V. Panchang for Management Purposes C. R. Newell S. Kawamata EngineeringTechniques for Enhancetnentof NearshoreRocky Habitats 229 for Sea Urchinand Abalone Aquaculture B, Bragittton-Smith DesignCottcepts for Integrationof OpenOcean Aquaculture 239 R. H. Messier andOSPREY~ Technology K. Takayanagi WaterQuality Guidelines for Aquaculture:An Examplein Japan 247 K. C. Baldwin Marine Mammal Gear Interactions; Problems, Acoustic Mitigation 255 S. Krauss Strategies,Open Water Aquaculture J. S. Goldstein North AmericanLobster Culture Hontarusamericanus!, Hatchery 263 Methods,and Techniques: A Toolfor Marine Stock Enhancement? K. Kikuchi BlueMussels in theDiet of JuvenileJapanese Flounder VII Sttmrnaryof Panel Discussion D.Bengston Summary ofthe Panel Discussion onCulture Held at the 275 ConclusionoftheUJNR Aquaculture Panel's Scientific Symposium in Durham,New Hampshire, USA, 1 8September 1997 VIII. Acknowledgments IX. Appendix Conference Attendees 278 RESEARCH IN FLATFISH CULTURE IN THE NORTHEASTERN UNITED STATES GeorgeC. Nardi GreatBayAquafarms, lnc. 153 Gosling Road Portsmouth, NH 03801 e-tnai1:GAquafartn@ao].corn ABSTRACT Althoughflatfish have been commercially cultured for oversdecade in Europeand Asia, theu culture in North Americahas only recentlybeen cornmercitdized. The commercialization of Atlantic halibut Hippoglossus hippogirrssasand summer flounder Paraii chrhys dear artss culture followed years of collaborativeeffort between industryand university researchers. Other important flatfish species are being evaluated for commercialculture throughoutthe region, including winter flounder Pteuronecres americanas, witch flounder Glyprocephaias cynogiosstrs,snd yellowtai! flounder Pieuronecres ferrrrginea, Juvenfle production continues to beao impedi- tnentto commercialization.Commercial on-growing strategies include both net pen and land-based rank culture systems, INTRODUCTION 10, 20, 30, and60 larvaeJL,and weaning diet proteincontents of 45, 50,and 55%, Muchof this Stunmer flounder PandicIsthygdeggtatug NRAC-sponsoredresearch is beingundertaken at Researchis underwayin New Hampshire, GBA. Massachusetts,Rhode!sland, Connecticut,and GreatBayAquafanns, the New Hampshire New York. Cotnmercialproduction was begun in Industrial ResearchCenter NHIRC!, Sea Grant, New Hampshirein 1995,Massachusetts and New NRAC, and the Electric Power Research Insti- York in 1997, and is slated for 1998 in Rhode Is- tute EPRI! havecooperatively funded a number land. Much of the researchin New Hampshire of researchprojects. The NHIRC research in- has taken place at the University of New cludesmicrobiology and veterinary diagnostics, Hampshire's UNH! CoastalMarine Laboratory wastewater characterization and effluent treatment andat GreatBayAquafarms, Inc. GBA!, a corn- design,«nd thermal engineering to capturethe mercial hatchery. UNH researchhas beensup- waste heat of a utility for heating the seawater portedby both the U.S. Department of Conurterce's andair. UNH SeaGrant and GBA are workingto NationalOceanic and Atmospheric Adxninistratiotr identifyand develop a probioticapproach for early NOAA!/National Marine Fisheries Service larvalrearing in order to increase survival and limit NMFS! Saltonstall-KennedyIndustry Grants Pro- Pathogenhabitation of theculture environment or gram S-K! andthe U.S. Departmentof Agricul- larvalgut, In addition,UNH SeaGrant research- ture Northeast Regional Aquaculture Center ers are workingwith GBA to identifygenetically NRAC! The S- K work investigatedsubstrate superiorbroodstock by trackingthe performance colorprefcrcnces and effect on pigmentation,ju- of individual families raised in a cotnmonenviron- venile stockingdensities as a percentageof bot- rnent. The EPRI fundingassisted in the develop- totncoverage 00, 150, and 200%!, feed prefer- rnentof a commercialscale grow-out dernonstra- ences,growth performance, and use of a recircu- tion systemwhere research is beingundertaken to latingseawater system. The NRAC researchin- evaluatethe perfonnanceof alternaterecirculat- vestigatedthe efficacy of natural spawningvs. inglife support systems, specifically the biofilters, hormonalinducement, larval stocking densities at One bioft!ter is a fluidize sandbed, the other is a 92:jÃRTccbnical Report 'bio. 24 plasticmedia submcrgcd inan aerated tank, This moneon larval deve]opmcnt andsurvival, hormonal researchis alsoassisting in thcengineering of a influencesondeveloping embryos, optimal culture land-ha»cdtank farm heing planned for GBA. This environmentconditions, marketing, economics, and demonstrationfarm
Recommended publications
  • ABSTRACT LUCKENBACH, JOHN ADAM. Breeding Biotechnology
    ABSTRACT LUCKENBACH, JOHN ADAM. Breeding Biotechnology, Sex Determination, and Growth in Southern flounder, Paralichthys lethostigma. (Under the direction of Dr. John Godwin and Dr. Russell J. Borski). Southern flounder (Paralichthys lethostigma) support valuable, but declining US fisheries. This species is therefore a strong candidate for aquaculture to mitigate fishing impacts and stabilize seafood supply. Because female flounder reach substantially larger sizes than males, all-female culture is desirable for commercial aquaculture. Hence, a thorough understanding of sexual development, its timing and regulation by temperature is essential for optimization of flounder aquaculture. To better understand ovarian and testicular development in southern flounder, structural and cellular sex-distinguishing markers were studied using histological methods. We found that histologically discernible sex differentiation occurs in southern flounder at ~75-120 mm TL and that early differentiation is considerably delayed relative to its Japanese congener, P. olivaceus. High (28°C) and low (18°C) water temperatures, produced a higher proportion of males (96% and 78% males, respectively). The sex ratio at a mid-range (23°C) temperature was not different from 1:1. This suggests that southern flounder possess a temperature sensitive mechanism of sex determination. Growth was also affected by temperature with the temperature that maximized females inducing better growth. Aromatase cytochrome P450 (P450arom) is responsible for estrogen biosynthesis and plays a critical role in ovarian differentiation. We cloned ovarian P450arom and developed a qRT-PCR for assessment of early sex differentiation. The deduced amino acid sequence for southern flounder P450arom is very similar to P450arom in other teleosts. Comparison of P450arom intron sequences of southern flounder within and between different populations revealed substantial inter-individual variation that may affect sex determination responses.
    [Show full text]
  • Winter Flounder Pseudopleuronectes Americanus Stock Enhancement in New Hampshire: Developing Optimal Release Strategies
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 2002 Winter flounder Pseudopleuronectes americanus stock enhancement in New Hampshire: Developing optimal release strategies Elizabeth Alden Fairchild University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Fairchild, Elizabeth Alden, "Winter flounder Pseudopleuronectes americanus stock enhancement in New Hampshire: Developing optimal release strategies" (2002). Doctoral Dissertations. 62. https://scholars.unh.edu/dissertation/62 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • Schedule Onlinepdf
    Detailed schedule 8:30 Opening session 9:00 Keynote lecture: Impacts of climate change on flatfish populations - patterns of change 100 days to 100 years: Short and long-term responses of flatfish to sea temperature change David Sims 9:30 Nine decades of North Sea sole and plaice distributions Georg H. Engelhard (Engelhard GH, Pinnegar JK, Kell LT, Rijnsdorp AD) 9:50 Climatic effects on recruitment variability in Platichthys flesus and Solea solea: defining perspectives for management. Filipe Martinho (Martinho F, Viegas I, Dolbeth M, Sousa H, Cabral HN, Pardal MA) 10:10 Are flatfish species with southern biogeographic affinities increasing in the Celtic Sea? Christopher Lynam (Lynam C, Harlay X, Gerritsen H, Stokes D) 10:30 Coffee break 11:00 Climate related changes in abundance of non-commercial flatfish species in the North Sea Ralf van Hal (van Hal R, Smits K, Rijnsdorp AD) 11:20 Inter-annual variability of potential spawning habitat of North Sea plaice Christophe Loots (Loots C, Vaz S, Koubii P, Planque B, Coppin F, Verin Y) 11:40 Annual variation in simulated drift patterns of egg/larvae from spawning areas to nursery and its implication for the abundance of age-0 turbot (Psetta maxima) Claus R. Sparrevohn (Sparrevohn CR, Hinrichsen H-H, Rijnsdorp AD) 12:00 Broadscale patterns in population dynamics of juvenile plaice: W Scotland 2001-2008 Michael T. Burrows (Burrows MT, Robb L, Harvey R, Batty RS) 12:20 Impact of global warming on abundance and occurrence of flatfish populations in the Bay of Biscay (France) Olivier Le Pape (Hermant
    [Show full text]
  • NHBSS 034 1G Wongratana R
    NAT. NAT. HIST. BULL. SIAM So c. 34 (1) :65 ・70 ,1986 RECORD OF AMBICOLORATION IN CYNOGLOSSUS (PISCES : CYNOGLOSSIDAE) FROM THAILAND Thosaporn Thosaporn Wongratana * ABSTRACT An almost ambico10rate “Four- Ii ned tongu e- sole" ,Cynoglossus bilinealus (La cepede) , is is reported from Thailand. It is presumab1y the first record for the genus. Except for most of of the head on the blind side and its.corresponding finrays ,which are pale as in normal specimens ,the body and fins are pigmented. The norma Jl y cycloid scales on the blind side in in the pigmented area are who Jl y replaced by ctenoid scales ,but those on the unpigmented part part on the head are cyc10id. The latera1line sca1es of the pigmented area on the blind side are are cycloid. The pelvic fins are entirely separated from the anal fin by the absence of membrane. membrane. No other major externa1 anomaly is found. PREVIOUS ACCOUNTS Abnormalities Abnormalities in coloration 釘 e more common among members of the order Pleuronectiformes Pleuronectiformes than in any other group of fishes. Other anomalies occasionally in those those fishes are a hooked dorsal fin , incomplete eye migration and side reversa l. Abnormal pigmentation in flatfish is divided into three main types: ambicoloration , albinism ,and xanthochromism (DEVEEN , 1969; COLMAN ,1972 勾). P 町 “tia 剖10 町Ir incomplete ambic ∞010 町r羽 ion is mor 問ec ∞ommon than trunk pigmentation , nearly complete amb 凶ic ∞0- lor 問at “ion and complete ambic ∞010 町ra 創ti 拘on (υJONES & MENON , 1950). NORMAN'S (1 934) previous previous explanation of this phenomenon ,later accepted by many authors ,was that “..訓 nbicoloration merely represents variation in the direction of the original bilateral symmetrical symmetrical condition of the ancester of flatfishes." It is also regularly observed that that wholly ambicolorate fishes normally display a higher degree of symmetry than normal normal specimens in pigmentation ,scales , paired fins and final position of the eyes (NORMAN , 1934; COLMAN , 1972).
    [Show full text]
  • (Paralichthys Lethostigma) in the Galveston Bay Estuary, TX
    DISTRIBUTION, CONDITION, AND GROWTH OF NEWLY SETTLED SOUTHERN FLOUNDER (Paralichthys lethostigma) IN THE GALVESTON BAY ESTUARY, TX A Thesis by LINDSAY ANN GLASS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 2006 Major Subject: Wildlife and Fisheries Sciences DISTRIBUTION, CONDITION, AND GROWTH OF NEWLY SETTLED SOUTHERN FLOUNDER (Paralichthys lethostigma) IN THE GALVESTON BAY ESTUARY, TX A Thesis by LINDSAY ANN GLASS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, Jay R. Rooker Committee Members, William H. Neill Antonietta Quigg Head of Department, Delbert M.Gatlin III May 2006 Major Subject: Wildlife and Fisheries Sciences iii ABSTRACT Distribution, Condition, and Growth of Newly Settled Southern Flounder (Paralichthys lethostigma) in the Galveston Bay Estuary, TX. (May 2006) Lindsay Ann Glass, B.S., Texas A&M University-Galveston Chair of Advisory Committee: Dr. Jay R. Rooker Several flatfish species including southern flounder (Paralichthys lethostigma) recruit to estuaries during early life. Therefore, the evaluation of estuarine sites and habitats that serve as nurseries is critical to conservation and management efforts. I used biochemical condition and growth measurements in conjunction with catch-density data to evaluate settlement sites used by southern flounder in the Galveston Bay Estuary (GBE). In 2005, beam-trawl collections were made in three major sections of the GBE (East Bay, West Bay, Galveston Bay), and three sites were sampled in each bay.
    [Show full text]
  • Consequences of Hatchery Stocking
    bioRxiv preprint doi: https://doi.org/10.1101/828798; this version posted November 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Consequences of hatchery stocking: 2 Lessons from Japan 3 4 Sort title: Japan hatchery stocking 5 6 Shuichi Kitada 7 8 1Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan. 9 E-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/828798; this version posted November 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 10 Abstract 11 More than 26 billion juveniles of 180 marine species are released annually into the wild in 12 over 20 countries, but the usefulness remains unclear. Here, I review the effects of stocking by 13 Japanese marine and salmon stock-enhancement programmes, and evaluate the efficacy 14 through a meta-analysis, with new cases added to those previously considered. The posterior 15 mean recapture rates (±SD) was 8.2 ± 4.7%; mean economic efficiency was 2.7 ± 4.5, with 16 many cases having values of 1–2, excluding consideration for personnel costs and negative 17 impacts on wild populations. At the macro-scale, the proportion of released seeds to total 18 catch was 76 ± 20% for Japanese scallop, 28 ± 10% for abalone, 20 ± 5% for swimming crab, 19 13 ± 5% for kuruma prawn, 11 ± 4% for Japanese flounder and 7 ± 2% for red sea bream.
    [Show full text]
  • Session Summaries-2008
    Session Summaries-2008 SUMMARY OF SCIENTIFIC SESSIONS AND WORKSHOPS Science Board Symposium (S1) Beyond observations to achieving understanding and forecasting in a changing North Pacific: Forward to the FUTURE Co-Convenors: John E. Stein (SB), Michael J. Dagg (BIO), Gordon H. Kruse (FIS), Glen S. Jamieson (MEQ), Hiroya Sugisaki (MONITOR), Michael G. Foreman (POC), Bernard A. Megrey (TCODE), Harold P. Batchelder (CCCC), Michio J. Kishi (CCCC), Fangli Qiao (China), Sinjae Yoo (Korea) and Mikhail Stepanenko (Russia) Background FUTURE (Forecasting and Understanding Trends, Uncertainty and Responses of North Pacific Marine Ecosystems), the new Science Program undertaken by PICES member countries, has the broad goals of: (1) understanding the responses of marine ecosystems in the North Pacific to climate change and human activities at basin-wide and regional scales; (2) providing forecasts of what might be expected based on a current understanding of how nature works; and (3) communicating this information effectively to its members and to society in general. Past advances in understanding marine ecosystems in the North Pacific have been largely based either on the direct analysis of observations, or on the development of conceptual and numerical models that help to describe the processes underlying the observations. Though these activities will continue to play an important role in FUTURE, the provision of forecasts and estimates of their associated uncertainties necessitates moving beyond observationally based understanding, so that ecosystem responses to natural and anthropogenic changes can be anticipated and communicated effectively to society. Presentations were invited to address the goals of FUTURE and the three key research questions that it identifies: 1.
    [Show full text]
  • Combined Effects of Turbulence and Salinity on Growth, Survival, and Whole-Body Osmolality of Larval Southern Flounder
    JOURNAL OF THE Vol. 37, No. 4 WORLD AQUACULTURE SOCIETY December, 2006 Combined Effects of Turbulence and Salinity on Growth, Survival, and Whole-body Osmolality of Larval Southern Flounder ADAM MANGINO JR. AND WADE O. WATANABE1 University of North Carolina Wilmington, Center for Marine Science, 7205 Wrightsville Avenue, Wilmington, North Carolina 28403 USA Abstract The southern flounder (Paralichthys lethostigma) is a commercially important marine flatfish from the southeastern Atlantic and Gulf Coasts of the USA and an attractive candidate for aquaculture. Hatchery methods are relatively well developed for southern flounder; however, knowledge of the optimum environmental conditions for culturing the larval stages is needed to make these technologies more cost effective. The objectives of this study were to determine the effects of water turbulence (as controlled by varying rates of diffused aeration) on growth, survival, and whole-body osmolality of larval southern flounder from hatching through day 16 posthatching (d16ph). Embryos were stocked into black 15-L cylindrical tanks under four turbulence levels (20, 90, 170, and 250 mL/min of diffused aeration) and two salinities (24 and 35 ppt) in a 4 3 2 factorial design. Larvae were provided with enriched s-type rotifers from d2ph at a density of 10 individuals/mL. Temperature was 19 C, light intensity was 390 lx, and photoperiod was 18 L:6 D. Significant (P , 0.05) effects of turbulence on growth (notochord length [NL], wet weight, and dry weight) were observed. On d16ph, NL (mm) increased with decreasing turbulence level and was significantly greater at 20 mL/min (64.2) and 90 mL/min (58.2) than at 170 mL/min (56.3) and 250 mL/min (57.2).
    [Show full text]
  • Distribution and Abundance of Pleuronectiformes Larvae Off Southeastern Brazil
    BRAZILIAN JOURNAL OF OCEANOGRAPHY, 62(1):23-34, 2014 DISTRIBUTION AND ABUNDANCE OF PLEURONECTIFORMES LARVAE OFF SOUTHEASTERN BRAZIL Camilla Nunes Garbini*, Maria de Lourdes Zani-Teixeira , Márcio Hidekazu Ohkawara and Mario Katsuragawa Instituto Oceanográfico da Universidade de São Paulo (Praça do Oceanográfico, 191, 05508-120 São Paulo, SP, Brasil) *Corresponding author: [email protected] http://dx.doi.org/10.1590/S1679-87592014051706201 ABSTRACT The objective of this study was the description of the composition, abundance and density in horizontal and vertical distribution of Pleuronectiformes larvae on the southeastern Brazilian continental shelf. The samples were collected with bongo nets and a Multi Plankton Sampler (MPS), both in summer and winter 2002. A total of 352 flatfishes larvae were collected in summer and 343 in winter, representing three families and a total of 13 taxa: Paralichthyidae ( Citharichthys cornutus, C. spilopterus, Citharichthys sp ., Cyclopsetta chittendeni, Syacium spp ., Etropus spp . and Paralichthys spp .), Bothidae ( Bothus ocellatus and Monolene antillarum ) and Cynoglossidae ( Symphurus trewavasae, S. jenynsi, S. plagusia and S. ginsburgi ). The most abundant taxa were Etropus spp ., Syacium spp . and Bothus ocellatus . Etropus spp . occurred mainly as far out as the 200 m isobath and Syacium spp . from 100 m. B. ocellatus was present mainly in the oceanic zone between Ubatuba and Rio de Janeiro as from the 200 m isobath. The greatest average densities of these species occurred in the strata from 0 to 20 m depth in summer and between 20 and 40 m in winter. RESUMO O objetivo deste estudo foi descrever a composição, abundância, densidade, distribuição horizontal e vertical das larvas de Pleuronectiformes ao longo da plataforma continental Sudeste brasileira.
    [Show full text]
  • Shellfish Diseases and Their Management in Commercial Recirculating Systems
    Shellfish Diseases and Their Management in Commercial Recirculating Systems Ralph Elston AquaTechnics & Pacific Shellfish Institute PO Box 687 Carlsborg, WA 98324 Introduction Intensive culture of early life stages of bivalve shellfish culture has been practiced since at least the late 1950’s on an experimental basis. Production scale culture emerged in the 1970’s and today, hathcheries and nurseries produce large numbers of a variety of species of oysters, clams and scallops. The early life stage systems may be entirely or partially recirculating or static. Management of infectious diseases in these systems has been a challenge since their inception and effective health management is a requisite to successful culture. The diseases which affect early life stage shellfish in intensive production systems and the principles and practice of health management are the subject of this presentation. Shellfish Diseases and Management Diseases of bivalve shellfish affecting those reared or harvested from extensive culture primarily consist of parasitic infections and generally comprise the reportable or certifiable diseases. Due to the extensive nature of such culture, intervention options or disease control are limited. In contrast, infectious diseases known from early life stages in intensive culture systems tend to be opportunistic in nature and offer substantial opportunity for management due to the control that can be exerted at key points in the systems. In marine shellfish hatcheries, infectious organisms can enter the system from three sources: brood stock, seawater source and algal food source. Once an organism is established in the system, it may persist without further introduction. Bacterial infections are the most common opportunistic infection in shellfish hatcheries.
    [Show full text]
  • Locus Number Estimation of MHC Class II B in Stone Flounder and Japanese Flounder
    Int. J. Mol. Sci. 2015, 16, 6000-6017; doi:10.3390/ijms16036000 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Locus Number Estimation of MHC Class II B in Stone Flounder and Japanese Flounder Jiajun Jiang †, Chunmei Li †, Quanqi Zhang and Xubo Wang * Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China; E-Mails: [email protected] (J.J.); [email protected] (C.L.); [email protected] (Q.Z.) † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel./Fax: +86-532-8203-1986. Academic Editor: Ritva Tikkanen Received: 2 December 2014 / Accepted: 25 December 2014 / Published: 13 March 2015 Abstract: Members of major histocompatibility complex (MHC) family are important in immune systems. Great efforts have been made to reveal their complicated gene structures. But many existing studies focus on partial sequences of MHC genes. In this study, by gene cloning and sequencing, we identified cDNA sequences and DNA sequences of the MHC class II B in two flatfishes, stone flounder (Kareius bicoloratus) and homozygous diploid Japanese flounder (Paralichthys olivaceus). Eleven cDNA sequences were acquired from eight stone flounder individuals, and most of the polymorphic sites distributed in exons 2 and 3. Twenty-eight alleles were identified from the DNA fragments in these eight individuals. It could be deduced from their Bayesian inference phylogenetic tree that at least four loci of MHC class II B exist in stone flounder. The detailed whole-length DNA sequences in one individual were analyzed, revealing that the intron length varied among different loci.
    [Show full text]
  • 2018 Final LOFF W/ Ref and Detailed Info
    Final List of Foreign Fisheries Rationale for Classification ** (Presence of mortality or injury (P/A), Co- Occurrence (C/O), Company (if Source of Marine Mammal Analogous Gear Fishery/Gear Number of aquaculture or Product (for Interactions (by group Marine Mammal (A/G), No RFMO or Legal Target Species or Product Type Vessels processor) processing) Area of Operation or species) Bycatch Estimates Information (N/I)) Protection Measures References Detailed Information Antigua and Barbuda Exempt Fisheries http://www.fao.org/fi/oldsite/FCP/en/ATG/body.htm http://www.fao.org/docrep/006/y5402e/y5402e06.htm,ht tp://www.tradeboss.com/default.cgi/action/viewcompan lobster, rock, spiny, demersal fish ies/searchterm/spiny+lobster/searchtermcondition/1/ , (snappers, groupers, grunts, ftp://ftp.fao.org/fi/DOCUMENT/IPOAS/national/Antigua U.S. LoF Caribbean spiny lobster trap/ pot >197 None documented, surgeonfish), flounder pots, traps 74 Lewis Fishing not applicable Antigua & Barbuda EEZ none documented none documented A/G AndBarbuda/NPOA_IUU.pdf Caribbean mixed species trap/pot are category III http://www.nmfs.noaa.gov/pr/interactions/fisheries/tabl lobster, rock, spiny free diving, loops 19 Lewis Fishing not applicable Antigua & Barbuda EEZ none documented none documented A/G e2/Atlantic_GOM_Caribbean_shellfish.html Queen conch (Strombus gigas), Dive (SCUBA & free molluscs diving) 25 not applicable not applicable Antigua & Barbuda EEZ none documented none documented A/G U.S. trade data Southeastern U.S. Atlantic, Gulf of Mexico, and Caribbean snapper- handline, hook and grouper and other reef fish bottom longline/hook-and-line/ >5,000 snapper line 71 Lewis Fishing not applicable Antigua & Barbuda EEZ none documented none documented N/I, A/G U.S.
    [Show full text]