2 11/075593 Al

Total Page:16

File Type:pdf, Size:1020Kb

2 11/075593 Al (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date , , / r » - 23 June 2011 (23.06.2011) 2 11/075593 Al (51) International Patent Classification: James Calvin [US/US]; 3123 Evergreen Road, Ames, C12N 15/82 (2006.01) C07K 14/325 (2006.01) Iowa 50014 (US). SCELONGE, Christopher Jay A01H 1/02 (2006.01) A01H 5/00 (2006.01) [US/US]; 1406 N.W. Cedarwood Drive, Ankeny, Iowa 50021 (US). VILLANELO, M. Alejandra Pascual [CL/ (21) International Application Number: US]; 1910 West Street, Granger, Iowa 50109 (US). PCT/US20 10/060841 YOUNG, Gregory James [US/US]; 2128 The Highway, (22) International Filing Date: Wilmington, Delaware 19810 (US). YOUNG, Joshua K. 16 December 2010 (16.12.2010) [US/US]; 5981 Somerset Place, Johnston, Iowa 5013 1 (US). ZHONG, Cathy Xiaoyan [CN/US]; 2922 Jaffe (25) Filing Language: English Road, Wilmington, Delaware 19809 (US). (26) Publication Langi English (74) Agent: MOXON, Claire L.; Pioneer Hi-Bred Interna (30) Priority Data: tional, Inc., 7250 N.W. 62nd Avenue, Johnston, Iowa 61/287,492 17 December 2009 (17.12.2009) US 5013 1-0552 (US). 61/413,659 15 November 2010 (15.1 1.2010) US (81) Designated States (unless otherwise indicated, for every (71) Applicants (for all designated States except US): PIO¬ kind of national protection available): AE, AG, AL, AM, NEER HI-BRED INTERNATIONAL, INC. [US/US]; AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, 7100 N.W. 62nd Avenue, Johnston, Iowa 5013 1-1014 CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (US). E. I. DUPONT DE NEMOURS & COMPANY DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, [US/US]; 1007 Market Street, Wilmington, Delaware HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 19898 (US). KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (72) Inventors; and NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (75) Inventors/ Applicants (for US only): DIEHN, Scott [US/ SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, US]; 4720 Tamara Lane, West Des Moines, Iowa 50265 TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (US). LU, Albert L. [CA/US]; 14 Charles Pointe, Newark, Delaware 19702 (US). NOWATZKI, Timothy (84) Designated States (unless otherwise indicated, for every M. [US/US]; 2402 Maple Street, Granger, Iowa 50109 kind of regional protection available): ARIPO (BW, GH, (US). NUBEL, Douglas Stuart [US/US]; 12428 Sunset GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, Terrace, Clive, Iowa 50325 (US). REGISTER, III, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, [Continued on next page] (54) Title: MAIZE EVENT DP-040416-8 AND METHODS FOR DETECTION THEREOF 40416 maize (57) Abstract: The invention provides DNA compositions that relate to transgenic insect resistant maize plants. Also provided are assays for detecting the presence of the maize DP-040416-8 event based on the DNA sequence of the recombinant construct in- serted into the maize genome and the DNA sequences flanking the insertion site. Kits and conditions useful in conducting the as- says are provided. EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Published: LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, — with international search report (Art. 21(3)) SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG). — with sequence listing part of description (Rule 5.2(a)) MAIZE EVENT DP-04041 6-8 AND METHODS FOR DETECTION THEREOF FIELD OF INVENTION Embodiments of the present invention relate to the field of plant molecular biology, specifically embodiment of the invention relate to DNA constructs for conferring insect resistance to a plant. Embodiments of the invention more specifically relate to insect resistant corn plant event DP-04041 6-8 and to assays for detecting the presence of corn event DP-04041 6-8 in a sample and compositions thereof. BACKGROUND OF INVENTION An embodiment of this invention relates to the insect resistant corn (Zea mays) plant DP-04041 6-8, also referred to as "maize line DP-04041 6-8," "maize event DP-04041 6-8," and "4041 6 maize," and to the DNA plant expression construct of corn plant DP-04041 6-8 and the detection of the transgene/flanking insertion region in corn plant DP-04041 6-8 and progeny thereof. Corn is an important crop and is a primary food source in many areas of the world. Damage caused by insect pests is a major factor in the loss of the world's corn crops, despite the use of protective measures such as chemical pesticides. In view of this, insect resistance has been genetically engineered into crops such as corn in order to control insect damage and to reduce the need for traditional chemical pesticides. One group of genes which have been utilized for the production of transgenic insect resistant crops is the delta-endotoxin group from Bacillus thuringiensis (Bt). Delta-endotoxins have been successfully expressed in crop plants such as cotton, potatoes, rice, sunflower, as well as corn, and have proven to provide excellent control over insect pests. (Perlak, F.J etal. ( 1 990) Bio/Technology 8:939-943; Perlak, F.J. et al. ( 1 993) Plant Mol. Biol. 22:31 3-321 ; Fujimoto, H . et al. ( 1 993) Bio/Technology 11: 15 1- 1 155; Tu et al. (2000) Nature Biotechnology 18:1 10 1- 1 104; PCT publication WO 01/1 3731 ; and Bing, J.W. et al. (2000) Efficacy of Cry1 F Transgenic Maize, 14th Biennial International Plant Resistance to Insects Workshop, Fort Collins, CO). The expression of foreign genes in plants is known to be influenced by their location in the plant genome, perhaps due to chromatin structure (e.g., heterochromatin) or the proximity of transcriptional regulatory elements (e.g., enhancers) close to the integration site (Weising et al. ( 1 988) Ann. Rev. Genet. 22:421 -477). At the same time the presence of the transgene at different locations in the genome will influence the overall phenotype of the plant in different ways. For this reason, it is often necessary to screen a large number of events in order to identify an event characterized by optimal expression of an introduced gene of interest. For example, it has been observed in plants and in other organisms that there may be a wide variation in levels of expression of an introduced gene among events. There may also be differences in spatial or temporal patterns of expression, for example, differences in the relative expression of a transgene in various plant tissues, that may not correspond to the patterns expected from transcriptional regulatory elements present in the introduced gene construct. For this reason, it is common to produce hundreds to thousands of different events and screen those events for a single event that has desired transgene expression levels and patterns for commercial purposes. An event that has desired levels or patterns of transgene expression is useful for introgressing the transgene into other genetic backgrounds by sexual outcrossing using conventional breeding methods. Progeny of such crosses maintain the transgene expression characteristics of the original transformant. This strategy is used to ensure reliable gene expression in a number of varieties that are well adapted to local growing conditions. It would be advantageous to be able to detect the presence of a particular event in order to determine whether progeny of a sexual cross contain a transgene of interest. In addition, a method for detecting a particular event would be helpful for complying with regulations requiring the pre-market approval and labeling of foods derived from recombinant crop plants, for example, or for use in environmental monitoring, monitoring traits in crops in the field, or monitoring products derived from a crop harvest, as well as for use in ensuring compliance of parties subject to regulatory or contractual terms. It is possible to detect the presence of a transgene by any nucleic acid detection method known in the art including, but not limited to, the polymerase chain reaction (PCR) or DNA hybridization using nucleic acid probes. These detection methods generally focus on frequently used genetic elements, such as promoters, terminators, marker genes, etc., because for many DNA constructs, the coding region is interchangeable. As a result, such methods may not be useful for discriminating between different events, particularly those produced using the same DNA construct or very similar constructs unless the DNA sequence of the flanking DNA adjacent to the inserted heterologous DNA is known. For example, an event- specific PCR assay is described in U.S. Patent No. 6,395,485 for the detection of elite event GAT-ZM1 . Accordingly, it would be desirable to have a simple and discriminative method for the identification of event DP-04041 6-8. SUMMARY OF INVENTION Embodiments of this invention relate to methods for producing and selecting an insect resistant monocot crop plant. More specifically, a DNA construct is provided that when expressed in plant cells and plants confers resistance to insects. According to one aspect of the invention, a DNA construct, capable of introduction into and replication in a host cell, is provided that when expressed in plant cells and plants confers insect resistance to the plant cells and plants.
Recommended publications
  • Zootaxa,Phylogeny and Higher Classification of the Scale Insects
    Zootaxa 1668: 413–425 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Phylogeny and higher classification of the scale insects (Hemiptera: Sternorrhyncha: Coccoidea)* P.J. GULLAN1 AND L.G. COOK2 1Department of Entomology, University of California, One Shields Avenue, Davis, CA 95616, U.S.A. E-mail: [email protected] 2School of Integrative Biology, The University of Queensland, Brisbane, Queensland 4072, Australia. Email: [email protected] *In: Zhang, Z.-Q. & Shear, W.A. (Eds) (2007) Linnaeus Tercentenary: Progress in Invertebrate Taxonomy. Zootaxa, 1668, 1–766. Table of contents Abstract . .413 Introduction . .413 A review of archaeococcoid classification and relationships . 416 A review of neococcoid classification and relationships . .420 Future directions . .421 Acknowledgements . .422 References . .422 Abstract The superfamily Coccoidea contains nearly 8000 species of plant-feeding hemipterans comprising up to 32 families divided traditionally into two informal groups, the archaeococcoids and the neococcoids. The neococcoids form a mono- phyletic group supported by both morphological and genetic data. In contrast, the monophyly of the archaeococcoids is uncertain and the higher level ranks within it have been controversial, particularly since the late Professor Jan Koteja introduced his multi-family classification for scale insects in 1974. Recent phylogenetic studies using molecular and morphological data support the recognition of up to 15 extant families of archaeococcoids, including 11 families for the former Margarodidae sensu lato, vindicating Koteja’s views. Archaeococcoids are represented better in the fossil record than neococcoids, and have an adequate record through the Tertiary and Cretaceous but almost no putative coccoid fos- sils are known from earlier.
    [Show full text]
  • A New Pupillarial Scale Insect (Hemiptera: Coccoidea: Eriococcidae) from Angophora in Coastal New South Wales, Australia
    Zootaxa 4117 (1): 085–100 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4117.1.4 http://zoobank.org/urn:lsid:zoobank.org:pub:5C240849-6842-44B0-AD9F-DFB25038B675 A new pupillarial scale insect (Hemiptera: Coccoidea: Eriococcidae) from Angophora in coastal New South Wales, Australia PENNY J. GULLAN1,3 & DOUGLAS J. WILLIAMS2 1Division of Evolution, Ecology & Genetics, Research School of Biology, The Australian National University, Acton, Canberra, A.C.T. 2601, Australia 2The Natural History Museum, Department of Life Sciences (Entomology), London SW7 5BD, UK 3Corresponding author. E-mail: [email protected] Abstract A new scale insect, Aolacoccus angophorae gen. nov. and sp. nov. (Eriococcidae), is described from the bark of Ango- phora (Myrtaceae) growing in the Sydney area of New South Wales, Australia. These insects do not produce honeydew, are not ant-tended and probably feed on cortical parenchyma. The adult female is pupillarial as it is retained within the cuticle of the penultimate (second) instar. The crawlers (mobile first-instar nymphs) emerge via a flap or operculum at the posterior end of the abdomen of the second-instar exuviae. The adult and second-instar females, second-instar male and first-instar nymph, as well as salient features of the apterous adult male, are described and illustrated. The adult female of this new taxon has some morphological similarities to females of the non-pupillarial palm scale Phoenicococcus marlatti Cockerell (Phoenicococcidae), the pupillarial palm scales (Halimococcidae) and some pupillarial genera of armoured scales (Diaspididae), but is related to other Australian Myrtaceae-feeding eriococcids.
    [Show full text]
  • First Record of Phoenicococcus Marlatti in Greece
    ENTOMOLOGIA HELLENICA Vol. 22, 2013 First record of Phoenicococcus marlatti in Greece Lytra I. Laboratory of Agricultural Entomology and Zoology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece Vasarmidaki M. Municipality of Heraklion, 1 A. Titou, 71202 Heraklion, Greece Papadoulis G. Laboratory of Agricultural Entomology and Zoology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece https://doi.org/10.12681/eh.11528 Copyright © 2017 I. Ch. Lytra, M. E. Vasarmidaki, G. Th. Papadoulis To cite this article: Lytra, I., Vasarmidaki, M., & Papadoulis, G. (2013). First record of Phoenicococcus marlatti in Greece. ENTOMOLOGIA HELLENICA, 22(2), 43-46. doi:https://doi.org/10.12681/eh.11528 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 28/02/2020 08:10:35 | 43 ENTOMOLOGIA HELLENICA 22 (2013): 43-46 SHORT COMMUNICATION First record of Phoenicococcus marlatti in Greece I. CH. LYTRA1*, M. E. VASARMIDAKI2 AND G. TH. PAPADOULIS1 1Laboratory of Agricultural Entomology and Zoology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece 2Municipality of Heraklion, 1 A. Titou, 71202 Heraklion, Greece ABSTRACT In October 2013, the red date scale Phoenicococcus marlatti Cockerell (Hemiptera: Phoenicococcidae) has been recorded for the first time in Greece. Adult females were collected from the base of fronds of date palm from the Crete Island. Information on the species morphology, biology and distribution is presented. KEY WORDS: first record, Phoenicococcus, red date scale. Date palm (Phoenix dactylifera L.) is and South America (Miller et al. 2007). It is found in Mediterranean countries, Africa, probably found wherever date palm is part of Asia, North America and Australia.
    [Show full text]
  • Coccidology. the Study of Scale Insects (Hemiptera: Sternorrhyncha: Coccoidea)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Ciencia y Tecnología Agropecuaria (E-Journal) Revista Corpoica – Ciencia y Tecnología Agropecuaria (2008) 9(2), 55-61 RevIEW ARTICLE Coccidology. The study of scale insects (Hemiptera: Takumasa Kondo1, Penny J. Gullan2, Douglas J. Williams3 Sternorrhyncha: Coccoidea) Coccidología. El estudio de insectos ABSTRACT escama (Hemiptera: Sternorrhyncha: A brief introduction to the science of coccidology, and a synopsis of the history, Coccoidea) advances and challenges in this field of study are discussed. The changes in coccidology since the publication of the Systema Naturae by Carolus Linnaeus 250 years ago are RESUMEN Se presenta una breve introducción a la briefly reviewed. The economic importance, the phylogenetic relationships and the ciencia de la coccidología y se discute una application of DNA barcoding to scale insect identification are also considered in the sinopsis de la historia, avances y desafíos de discussion section. este campo de estudio. Se hace una breve revisión de los cambios de la coccidología Keywords: Scale, insects, coccidae, DNA, history. desde la publicación de Systema Naturae por Carolus Linnaeus hace 250 años. También se discuten la importancia económica, las INTRODUCTION Sternorrhyncha (Gullan & Martin, 2003). relaciones filogenéticas y la aplicación de These insects are usually less than 5 mm códigos de barras del ADN en la identificación occidology is the branch of in length. Their taxonomy is based mainly de insectos escama. C entomology that deals with the study of on the microscopic cuticular features of hemipterous insects of the superfamily Palabras clave: insectos, escama, coccidae, the adult female.
    [Show full text]
  • Nomina Insecta Nearctica Table of Contents
    5 NOMINA INSECTA NEARCTICA TABLE OF CONTENTS Generic Index: Dermaptera -------------------------------- 73 Introduction ----------------------------------------------------------------- 9 Species Index: Dermaptera --------------------------------- 74 Structure of the Check List --------------------------------- 11 Diplura ---------------------------------------------------------------------- 77 Original Orthography ---------------------------------------- 13 Classification: Diplura --------------------------------------- 79 Species and Genus Group Name Indices ----------------- 13 Alternative Family Names: Diplura ----------------------- 80 Structure of the database ------------------------------------ 14 Statistics: Diplura -------------------------------------------- 80 Ending Date of the List -------------------------------------- 14 Anajapygidae ------------------------------------------------- 80 Methodology and Quality Control ------------------------ 14 Campodeidae -------------------------------------------------- 80 Classification of the Insecta -------------------------------- 16 Japygidae ------------------------------------------------------ 81 Anoplura -------------------------------------------------------------------- 19 Parajapygidae ------------------------------------------------- 81 Classification: Anoplura ------------------------------------ 21 Procampodeidae ---------------------------------------------- 82 Alternative Family Names: Anoplura --------------------- 22 Generic Index: Diplura --------------------------------------
    [Show full text]
  • Taxa Names List 6-30-21
    Insects and Related Organisms Sorted by Taxa Updated 6/30/21 Order Family Scientific Name Common Name A ACARI Acaridae Acarus siro Linnaeus grain mite ACARI Acaridae Aleuroglyphus ovatus (Troupeau) brownlegged grain mite ACARI Acaridae Rhizoglyphus echinopus (Fumouze & Robin) bulb mite ACARI Acaridae Suidasia nesbitti Hughes scaly grain mite ACARI Acaridae Tyrolichus casei Oudemans cheese mite ACARI Acaridae Tyrophagus putrescentiae (Schrank) mold mite ACARI Analgidae Megninia cubitalis (Mégnin) Feather mite ACARI Argasidae Argas persicus (Oken) Fowl tick ACARI Argasidae Ornithodoros turicata (Dugès) relapsing Fever tick ACARI Argasidae Otobius megnini (Dugès) ear tick ACARI Carpoglyphidae Carpoglyphus lactis (Linnaeus) driedfruit mite ACARI Demodicidae Demodex bovis Stiles cattle Follicle mite ACARI Demodicidae Demodex brevis Bulanova lesser Follicle mite ACARI Demodicidae Demodex canis Leydig dog Follicle mite ACARI Demodicidae Demodex caprae Railliet goat Follicle mite ACARI Demodicidae Demodex cati Mégnin cat Follicle mite ACARI Demodicidae Demodex equi Railliet horse Follicle mite ACARI Demodicidae Demodex folliculorum (Simon) Follicle mite ACARI Demodicidae Demodex ovis Railliet sheep Follicle mite ACARI Demodicidae Demodex phylloides Csokor hog Follicle mite ACARI Dermanyssidae Dermanyssus gallinae (De Geer) chicken mite ACARI Eriophyidae Abacarus hystrix (Nalepa) grain rust mite ACARI Eriophyidae Acalitus essigi (Hassan) redberry mite ACARI Eriophyidae Acalitus gossypii (Banks) cotton blister mite ACARI Eriophyidae Acalitus vaccinii
    [Show full text]
  • Article 10362 8843052E4d07db
    41 ﮔﻴﺎه ﭘﺰﺷﻜﻲ ( ﻣﺠﻠﻪ ﻋﻠﻤﻲ ﻛﺸﺎورزي) ، ﺟﻠﺪ 36 ﺷﻤﺎره 2 ، ﺗﺎﺑﺴﺘﺎن 92 92 ﺷﭙﺸﻚ ﻫﺎي ﮔﻴﺎﻫﻲ( Hem.: Coccoidea ) ﺷﻬﺮﺳﺘﺎن ﺑﻬﺒﻬﺎن و ﺧﺼﻮﺻﻴﺎت ﻣﺮﻓﻮﻟﻮژﻳﻚ آﻧﻬﺎ اﻟﻬﺎم روزدار1 ، ﺣﺴﻨﻌﻠﻲ واﺣﺪي2 * ، ﻣﺤﻤﺪ ﺳﻌﻴﺪ ﻣﺼﺪق3 و ﻣﺤﻤﺪ اﻣﻴﻦ ﺳﻤﻴﻊ4 -1 داﻧﺸﺠﻮي ﺳﺎﺑﻖ ﻛﺎرﺷﻨﺎﺳﻲ ارﺷﺪ ﮔﺮوه ﮔﻴﺎﻫﭙﺰﺷﻜﻲ، ﭘﺮدﻳﺲ ﻛﺸﺎورزي و ﻣﻨﺎﺑﻊ ﻃﺒﻴﻌﻲ، داﻧﺸﮕﺎه رازي، ﻛﺮﻣﺎﻧﺸﺎه 2* - ﻧﻮﻳﺴﻨﺪه ﻣﺴﺆول : اﺳﺘﺎدﻳ ﺎر ﮔﺮوه ﮔﻴﺎﻫﭙﺰﺷﻜﻲ، ﭘﺮدﻳﺲ ﻛﺸﺎورزي و ﻣﻨﺎﺑﻊ ﻃﺒﻴﻌﻲ، داﻧﺸﮕﺎه رازي، ﻛﺮﻣﺎﻧﺸﺎه ( [email protected]) -3 اﺳﺘﺎد ﮔﺮوه ﮔﻴﺎﻫﭙﺰﺷﻜﻲ، داﻧﺸﻜﺪه ﻛﺸﺎورزي، داﻧﺸﮕﺎه ﺷﻬﻴﺪ ﭼﻤﺮان، اﻫﻮاز -4 داﻧﺸﻴﺎر ﮔﺮوه ﮔﻴﺎﻫﭙﺰﺷﻜﻲ، داﻧﺸﻜﺪه ﻛﺸﺎورزي، داﻧﺸﮕﺎه وﻟﻲ ﻋﺼﺮ، رﻓﺴﻨﺠﺎن ﺗﺎرﻳﺦ درﻳﺎﻓﺖ : /1/27 91 ﺗﺎرﻳﺦ ﭘﺬﻳﺮش : /24/1 92 92 ﭼﻜﻴﺪه ﺷﭙﺸﻚ ﻫﺎي ﮔﻴﺎﻫﻲ از آﻓﺎت ﻣﻬﻢ درﺧﺘﺎن ﻣﻴﻮه و ﻣﺤﺼﻮﻻت زراﻋﻲ ﻫﺴ ﺘﻨﺪ؛ در ﺳﺎل ﻫﺎي -90 1389 ﻓﻮن ﺷﭙﺸﻚ ﻫﺎي ﮔﻴﺎﻫﻲ ، روي ﮔﻴﺎ ﻫﺎن ﻣﺨﺘﻠﻒ، در ﺷﻬﺮ ﺑﻬﺒﻬﺎن و ﺣﻮﻣﻪ ﺑﺮرﺳﻲ ﺷﺪ . در ﻣﺠﻤﻮع 21 ﮔﻮﻧﻪ ﺷﭙﺸﻚ ﻣﺘﻌﻠﻖ ﺑﻪ ﺧﺎﻧﻮاده ﻫﺎي : ( )Eriococcidae )2( ،Coccidae )4( ، Pseudococcidae )6( ،Diaspididae 8 و )Phoenicococcidae )1 ﮔﺰارش ﻣﻲ ﺷﻮد . ﻫﺮ ﻳﻚ از ﮔﻮﻧﻪ ﻫﺎ ﺑﻄﻮر ﻣﺨﺘﺼﺮ ﺑﺎ ﺗﺎﻛﻴﺪ روي ﻛﺎراﻛﺘﺮﻫﺎي ﺗﺎﻛﺴﻮﻧﻮﻣﻴﻜﻲ ﺗﻮﺻﻴﻒ و ﺗﺮﺳﻴﻢ ﮔﺮدﻳﺪ . ﻣﻴﺰﺑﺎن ﻫﺎ و زﻳﺴﺘﮕﺎه ﻫﺎي آﻧﻬﺎ ﻧﻴﺰ ﻣﺸﺨﺺ ﺷﺪ . ﺟﻨﺲ Paracoccus Ezzat and McConnell و ﮔﻮﻧﻪ (Acanthococcus aceris (Signoret ﺑﺮاي اوﻟﻴﻦ ﺑﺎر از اﻳﺮان و 9 ﮔﻮﻧﻪ ﻧﻴﺰ ﺑﺮاي اوﻟﻴﻦ ﺑﺎر از ﺧﻮزﺳﺘﺎن (* ) ﺛﺒﺖ ﺷﺪ؛ ﺑﺮ اﺳﺎس ﻣﺸﺎﻫﺪات و ﻣﻄﺎﻟﻌﺎت، ﮔﻮﻧﻪ ﻫﺎﻳﻲ ﻛﻪ داراي اﻫﻤﻴﺖ اﻗﺘﺼﺎدي ﻫﺴﺘﻨﺪ، ﻣﻮرد ﺑﺤﺚ ﻗﺮار ﮔﺮﻓﺖ . ﻓﻬﺮﺳﺖ ﮔﻮﻧﻪ ﻫﺎي ﺷﻨﺎﺳﺎﻳﻲ ﺷﺪه ﺑﻪ ﺗﺮﺗﻴﺐ زﻳﺮ اﺳﺖ : : DIASPIDIDAE: Aspidiotus nerii* (Bouche), Diaspidiotus armenicus* (Borchsenius), Lepidosaphes malicola* Borchsenius, Melanaspis inopinata* (Leonardi), Parlatoria blanchardi (Targioni-Tozzetti) P. crypta (McKenzie), P. oleae (Colvee) and Salicicola ?kermanensis Lindinger. PSEUDOCOCCIDAE: Chorizococcus sp.
    [Show full text]
  • New Data on Alien Insect Pests of Ornamental Plants in Bulgaria
    FORESTRY IDEAS, 2016, vol. 22, No 1 (51): 17–33 NEW DATA ON ALIEN INSECT PESTS OF ORNAMENTAL PLANTS IN BULGARIA Aneliya Penchevа1* and Mariya Yovkova2 1Department of Plant Pathology and Chemistry, Faculty of Ecology and Landscape Architecture. University of Forestry. 10 St. Kliment Ohridski Blvd., 1756 Sofia, Bulgaria. *E-mail: [email protected] 2Institute of Ornamental Plants – 1222 Sofia, Negovan, Bulgaria. E-mail: [email protected] Received: 04 December 2015 Accepted: 17 February 2016 Abstract In this study, the results of recent surveys (during the period between 2012 and 2015) on alien insects infesting ornamental plants in Bulgaria are reported. Fourteen species, associated with urban landscape areas and indoor plants, are discussed. Two of them, Ceroplastes sinensis Del Guercio and Lepidosaphes flava (Signoret), are reported for the first time in Bulgaria. Furthermore, Acizzia jama- tonica (Kuwayama), Ceroplastes ceriferus (Fabricius), Pseudaulacaspis pentagona (Targioni Tozzetti) and Cydalima perspectalis (Walker) have been found in new localities. Metcalfa pruinosa Say has widened its host range in Bulgaria. Additional distribution data are also provided about Aulacaspis yasumatsui Takagi and Cacoecimorpha pronubana (Hübner). Details on current status, host plants, zoogeographical origin and probable pathways of introduction into Bulgaria are reported for each spe- cies. Morphological and biological remarks are given for C. perspectalis and C. sinensis. Key words: box tree moth, Chinese wax scale, De Stefan scale, new pests, scale insects. Introduction as one of the main factors that lead to a decline in regional biodiversity (FAO 2003, In recent years, due to the active market- Chornesky et al. 2005). ing of ornamental plants and plant mate- As far as phytophagous insects are rial, a large number of non-native insects concerned, more than 25 alien species have penetrated in different continents have been recorded as new pests in the and countries.
    [Show full text]
  • The Divergence of Major Scale Insect Lineages (Hemiptera)
    www.nature.com/scientificreports OPEN Putting scales into evolutionary time: the divergence of major scale insect lineages (Hemiptera) Received: 14 October 2015 Accepted: 08 March 2016 predates the radiation of modern Published: 22 March 2016 angiosperm hosts Isabelle M. Vea1,2 & David A. Grimaldi2 The radiation of lowering plants in the mid-Cretaceous transformed landscapes and is widely believed to have fuelled the radiations of major groups of phytophagous insects. An excellent group to test this assertion is the scale insects (Coccomorpha: Hemiptera), with some 8,000 described Recent species and probably the most diverse fossil record of any phytophagous insect group preserved in amber. We used here a total-evidence approach (by tip-dating) employing 174 morphological characters of 73 Recent and 43 fossil taxa (48 families) and DNA sequences of three gene regions, to obtain divergence time estimates and compare the chronology of the most diverse lineage of scale insects, the neococcoid families, with the timing of the main angiosperm radiation. An estimated origin of the Coccomorpha occurred at the beginning of the Triassic, about 245 Ma [228–273], and of the neococcoids 60 million years later [210–165 Ma]. A total-evidence approach allows the integration of extinct scale insects into a phylogenetic framework, resulting in slightly younger median estimates than analyses using Recent taxa, calibrated with fossil ages only. From these estimates, we hypothesise that most major lineages of coccoids shifted from gymnosperms onto angiosperms when the latter became diverse and abundant in the mid- to Late Cretaceous. Living insect species that feed on vascular plants comprise some 40% of the described insect diversity1, and so it appears that plants have had a profound efect on the diversiication of insects.
    [Show full text]
  • 51) International Patent Classification: 94588 (US). ROSEN, Barbara; 510 Vincent Drive, Moun¬ Tain View, California 94041 (US
    ll ( (51) International Patent Classification: 94588 (US). ROSEN, Barbara; 510 Vincent Drive, Moun¬ A01N 63/14 (2020.01) C07K 14/21 (2006.01) tain View, California 94041 (US). SCHELLENBERG- C07K 14/195 (2006.01) ER, Ute; 914 Moreno Avenue, Palo Alto, California 94303 (US). WEI, Jun-Zhi; 7250 NW 62Nd Avenue, Johnston, (21) International Application Number: Iowa 5013 1-0552 (US). XIE, Weiping; 2105 Salas Court, PCT/US20 19/064579 East Palo Alto, California 94303 (US). (22) International Filing Date: (74) Agent: BECKER, James E.; 7250 NW 62Nd Avenue, PO 05 December 2019 (05. 12.2019) Box 552, Johnston, Iowa 5013 1-0552 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of national protection av ailable) . AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, (30) Priority Data: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, 62/779,642 14 December 2018 (14. 12.2018) US DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (71) Applicant: PIONEER HI-BRED INTERNATIONAL, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, INC. [US/US]; 7100 NW 62Nd Avenue, PO Box 1014, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, Johnston, Iowa 5013 1-1014 (US). MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (72) Inventors: COY, Monique; 7250 NW 62ND Avenue, PO SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, Box 552, Johnston, Iowa 5013 1-0552 (US).
    [Show full text]
  • App 1 Guide to Scale Insect Families
    Detection and identification of scale insects families (Hemiptera: Coccoidea) Chris Malumphy The Food and Environment Research Agency Department for Environment, Food and Rural Affairs Sand Hutton, York, UK YO41 1LZ DETECTION AND IDENTIFICATION OF SCALE INSECTS CONTENTS Page 1. Int roduction 3 1.1 Biology 3 1.2 Dispersal 4 1.3 Economic importance 4 2. Detection of scale insects 5 2. 1 Recognition of scale insect families in the field 8 3. Identification of scale insect families 10 3. 1 Preservation of specimens 10 3. 2 Adult female morphology 14 3. 3 Morph ological key to the scale insect families 14 4. Information sources 20 References 23 © Fera 2015 – Version 1 2 DETECTION AND IDENTIFICATION OF SCALE INSECTS 1. INTRODUCTION Scale insects are plant-sap feeding insects, closely related to the aphids, whiteflies and jumping plant lice or psyllids. They are among the most highly specialised of all plant parasites and feed on all parts of the plant including the roots, stems, leaves, buds and fruit. Some feed within hollow plant stems or plant galls; others mine beneath bark or live within plant tissue. There are about 7,500 species assigned to 1050 genera, in 28 or more families, in the superfamily Coccoidea. The higher classification is unresolved but here they are placed in the suborder Sternorrhyncha in the order Hemiptera. The purpose of this guide is to provide information that will assist workers in the United Kingdom Overseas Territories (UKOTs) to detect and identify scale insects to family level. This is intended to help develop diagnostic capacity within the UKOTs.
    [Show full text]
  • Insects on Palms
    Insects on Palms i Insects on Palms F.W. Howard, D. Moore, R.M. Giblin-Davis and R.G. Abad CABI Publishing CABI Publishing is a division of CAB International CABI Publishing CABI Publishing CAB International 10 E 40th Street Wallingford Suite 3203 Oxon OX10 8DE New York, NY 10016 UK USA Tel: +44 (0)1491 832111 Tel: +1 (212) 481 7018 Fax: +44 (0)1491 833508 Fax: +1 (212) 686 7993 Email: [email protected] Email: [email protected] Web site: www.cabi.org © CAB International 2001. All rights reserved. No part of this publication may be repro- duced in any form or by any means, electronically, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. Library of Congress Cataloging-in-Publication Data Insects on palms / by Forrest W. Howard … [et al.]. p. cm. Includes bibliographical references and index. ISBN 0-85199-326-5 (alk. paper) 1. Palms--Diseases and pests. 2. Insect pests. 3. Insect pests--Control. I. Howard, F. W. SB608.P22 I57 2001 634.9’74--dc21 00-057965 ISBN 0 85199 326 5 Typeset by Columns Design Ltd, Reading Printed and bound in the UK by Biddles Ltd, Guildford and King’s Lynn Contents List of Boxes vii Authors and Contributors viii Acknowledgements x Preface xiii 1 The Animal Class Insecta and the Plant Family Palmae 1 Forrest W. Howard 2 Defoliators of Palms 33 Lepidoptera 34 Forrest W. Howard and Reynaldo G. Abad Coleoptera 81 Forrest W.
    [Show full text]