W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2000

Plant Species of the Virginia Coastal Plain Flora that Are Disjunct from the Mountains: their Distribution, Abundance and Substrate Selectivity

Leah E. McDonald College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

Part of the Botany Commons

Recommended Citation McDonald, Leah E., " Species of the Virginia Coastal Plain Flora that Are Disjunct from the Mountains: their Distribution, Abundance and Substrate Selectivity" (2000). Dissertations, Theses, and Masters Projects. Paper 1539626249. https://dx.doi.org/doi:10.21220/s2-qs24-sy54

This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Plant Species of the Virginia Coastal Plain Flora that are Disjunct from the

Mountains: their Distribution, Abundance and Substrate Selectivity

A Thesis

Presented to

The Faculty of the Department of Biology

The College of William and Mary in Virginia

In Partial Fulfillment

Of the Requirements for the Degree of

Master of Arts

by

Leah E. McDonald

2000 APPROVAL SHEET

This thesis is submitted in partial fulfillment

the requirements for the degree of

Master of Arts

A uthor

Approved, October 2000

^JX ^/[ItX^j { Stewart A. Ware

Martha A. Case

l ^ O n n Q /V- & ' A m z Donna M. E. Ware Dedicated to my grandfather, Felix Maiorana, and my mother, Kathleen McDonald TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS...... vi

LIST OF TABLES...... vii

LIST OF FIGURES...... viii

ABSTRACT...... xi

INTRODUCTION...... 2

METHODS AND MATERIALS...... 13

Determination of mountain disjunct species ...... 13

Mapping of "less disjunct" species ...... 17

Vegetation studies ...... 29

Selection of study sites ...... 29

Sampling of ground layer vegetation and collection of environmental data ...... 32

Sampling of woody vegetation ...... 37

Ordination analysis ...... 38

Soil tolerance experiments ...... 38

RESULTS...... 43

Maps of individual collection locations for the less disjunct species 43

Ground layer vegetation ...... 63

Woody vegetation ...... 103

Soil tolerance experiments ...... 116

DISCUSSION...... 127

APPENDIX A- The number of specimens of less disjunct species examined and m ap p ed ...... 137 TABLE OF CONTENTS (continued)

Page

APPENDIX B- Maps of the study sites ...... 139

APPENDIX C- Seed sources for the species used in the soil tolerance experiments ...... 147

APPENDIX D- Soil data for all study sites ...... 149

APPENDIX E- G round layer data ...... 153

LITERATURE CITED ...... 248

v ACKNOWLEDGMENTS

I wish to extend my sincerest gratitude to Dr. Stewart A. Ware, thesis advisor, for counsel and guidance throughout this study. I am truly thankful for his assistance in the field, advice concerning methodologies, help with analysis of the results and enthusiasm for this study. I would also like to thank members of my committee, Dr. Donna M. E. Ware and Dr. Martha A. Case for reviewing this manuscript and for advice throughout this endeavor. Dr. Donna M.E. Ware assisted greatly with field trips, selection of study sites and identification of herbaceous species. Dr. Martha A. Case provided invaluable advice on the methodology for the soil tolerance experiments and statistical analysis of those experiments. Others whose efforts I am grateful for are Dr. C. Rick Berquist for assistance with geology and Gary Fleming for his expert botanical advice. Special appreciation is extended to Tom Wieboldt, Dr. Alton Harvill and Dr. Ted Bradley, all curators of herbaria, for their help and hospitality during my stay at their respective herbaria. Dr. Ruth Douglas, Dr. Gwynn Ramsey and Dr. Doug Ogle graciously collected seeds for the soil tolerance experiments. Field assistance from Elizabeth Brewster, Eric Dunlavey, Holly Grubbs, Esther McDonald, and Jacques Oliver made data collection possible; and I greatly appreciate their help. I also wish to recognize Maiy Hyde Berg who assisted with the selection of the study site in Gloucester Co. Thanks goes to my family for their love and tireless encouragement from the beginning to the end of this project. My deepest gratitude goes to Jacques Oliver for his continuous love, support, perspective, and patience throughout this work. This study was made possible through the generous support of the Virginia Crouch Memorial Research Grant, the Barbara J. Harvill Memorial Grant and a Minor Research Grant from the College of William and Mary.

vi LIST OF TABLES

Table Page

1. Mountain disjunct species recorded in floristic studies in the Coastal Plain counties of Virginia...... 10

2. Species identified as mountain disjuncts by this study ...... 14

3. Coverage classes for the ground layer vegetation ...... 35

4. Mountain disjunct species used in the soil tolerance experiments ...... 39

5. Soil chemistry data for the two types of soil (calcareous and non-calcareous) used in the soil tolerance experiments ...... 41

6. Herbaceous and woody seedling species identified in study plots of the calcareous and non-calcareous ravines ...... 67

7. The calcareous sites and ravines where disjunct species are located ...... 71

8. Soil pH for the calcareous ravines and associated uplands ...... 79

9. Soil pH for the non-calcareous ravines ...... 81

10. Mountain disjunct species and soil pH ...... 83

11. Plot numbers for the ground layer data ...... 86

12. Plot numbers for the tree and shrub data ...... 107

13. The number of specimens of less disjunct species examined and and m ap p ed ...... 138

14. Seed sources for the species used in the soil tolerance experiments 148

15. Soil data for all sites ...... 150

vii LIST OF FIGURES

Figure Page

1. The physiographic provinces of Virginia ...... 4

2. The Coastal Plain of Virginia with number of mountain disjuncts reported from floristic studies...... 8

3. Distribution maps of mountain disjunct from the Atlas of the Virginia Flora (Harvill et al.1992) ...... 18

4. Map of the Virginia Coastal Plain showing the five counties with study sites...... 31

5. Cross section of a typical ravine with 1 x 1 m plots set up in transects to sample the ground layer vegetation ...... 33

6. Map of individual collection locations for Amianthium muscaetoxicum... 45

7. Map of individual collection locations for Comptonia peregrina...... 46

8. Map of individual collection locations for Galax urceolata...... 47

9. Map of individual collection locations for Anemone quinquefolia ...... 48

10. Map of individual collection locations for Dirca palustris...... 49

11. Map of individual collection locations for Bidens cernua...... 50

12. Map of individual collection locations for Scutellaria ovata...... 51

13. Map of individual collection locations for ...... 52

14. Map of individual collection locations for Tilia americana...... 54

15. Map of individual collection locations for Veronica -aqmtica ...... 55

16. Map of individual collection locations for Athyrium thelypterioides...... 56

17. Map of individual collection locations for Collinsonia canadensis ...... 57

18. Map of individual collection locations for Panax quinquefolius...... 58

19. Map of individual collection locations for Celastrus scandens...... 59

20. Map of individual collection locations for Pellea atropurpurea...... 60

viii LIST OF FIGURES (continued)

Figure Page

21. Map of individual collection locations for Aruncus dioicus ...... 61

22. Map of individual collection locations for Ranunculus septentrionalis 62

23. Map of individual collection locations for Agrimonia pubescens...... 64

24. Map of individual collection locations for Hexalectris spicata...... 65

25. Map of individual collection locations for Juglans cinerea...... 66

26. DCA ordination of all 66 herbaceous layer study plots with plots that contain disjunct species indicated ...... 88

27. DCA ordination of all herbaceous layer plots ...... 90

28. DCA ordination of Group II (upland edge plots of calcareous ravines and non-calcareous plots) ...... 93

29. DCA ordination of plots dominated by woody ericads ...... 96

30. DCA ordination of plots in Fig. 28 with Vaccinium spp...... 98 and Gaylussacia spp. rem oved

31. DCA ordination of all of the calcareous slope plots ...... 102

32. DCA ordination of the tree layer data ...... 106

33. DCA ordination of the shrub/sapling data with the occurrences of mountain disjuncts and calciphilic species indicated ...... I ll

34. DCA ordination of the shrub /sapling data ...... 113

35. Mean dry weight (mg) of Solidago flexicaulis from mountain and Coastal Plain populations grown on non-calcareous and calcareous soils ...... 119

36. M ean dry w eight (mg) of Desmodium glutinosum from mountain and Coastal Plain populations grown on non-calcareous and calcareous soils ...... 121

37. M ean dry w eight (mg) of Aralia racemosa from Coastal Plain populations grown on non-calcareous and calcareous soils ...... 124

ix LIST OF FIGURES (continued)

Figure Page

38. Back-transformed mean dry weight (mg) of Collinsonia canadensis from mountain populations on non-calcareous and calcareous soils ...... 126

39. Map of Chippokes Plantation St. Park study site w ith ravines identified ...... 140

40. Map of Hickory Fork Rd. study site with ravines identified ...... 141

41. Map of Grove Creek study site with ravines identified ...... 142

42. Map of the College Woods study site with ravines identified ...... 143

43. Map of Cheatham Naval Annex with study site with ravines identified ...... 144

44. Map of Casey Tract study site with ravines identified ...... 145

45. Map of Cabin Swamp study site with ravines identified ...... 146 ABSTRACT

A group of species within the Virginia flora, known as mountain disjuncts, have their primary range in the mountains, are absent or sparse in the Piedmont and then reappear in the Coastal Plain. These species are often found in the steep ravines that cut into the calcareous Yorktown Formation and that dissect much of Virginia's Coastal Plain. The objectives of this study were to 1) examine the distribution patterns of mountain disjunct species whose status was in question by mapping their collection locations in the state, 2) investigate the composition of the vegetation where mountain disjuncts occur, and 3) determine how crucial calcareous substrates are to the growth and survival of mountain disjunct species. County-based maps of individual collection locations were made for disjunct species whose distributions across the Piedmont were somewhat filled in (they are considered less disjunct). Data on the distribution and abundance of herbaceous and woody mountain disjunct species that occurred in calcareous ravines in the Coastal Plain were collected and analyzed using an ordination program(CANOCO). These data were compared to the vegetation of non- calcareous ravines nearby in the Coastal Plain. Soil tolerance experiments were set up to test whether or not populations of disjunct species in the Coastal Plain grew better on calcareous or non-calcareous soil. Maps of individual collection locations for less disjunct species revealed that some of these species were more disjunct than previously thought. The spatial extent to which the actual disjunctions were revealed by the maps was one to two counties wide for most less disjunct species. Some less disjunct species occurred in a corridor across the Piedmont, connecting the mountains and Coastal Plain. The distribution and abundance of disjunct species within ravines in the Coastal Plain was patchy for most species; however, some were found in large colonies. The presence of disjunct species was not a good predictor of which, if any, disjunct species were located in neighboring ravines. The herbaceous vegetation on the upland edges of calcareous ravines differed from the vegetation on the slopes of calcareous ravines. This vegetational difference is probably due to pH and calcium differentials that exist between the upland edges and slopes of calcareous ravines. The vegetation of the uplands associated with these calcareous ravines was more similar to that of non-calcareous ravines. The soil tolerance experiments indicated that Coastal Plain and mountain populations of Solidago flexicaulis and Desmodium glutinosum grew better on calcareous soil. Collinsonia canadensis from the mountains also grew significantly better on calcareous soil than on non-calcareous soil. These species that grew better on calcareous soil may not require high levels of soil calcium to germinate and persist, but grow to be more robust when it is present. Aralia racemosa from the Coastal Plain grew better on calcareous soil than non-calcareous soil, but the difference was not significant, suggesting that this species may not be an obligate calciphile in the Coastal Plain.

xi PLANT SPECIES OF THE VIRGINIA COASTAL PLAIN FLORA THAT

ARE DISJUNCT FROM THE MOUNTAINS: THEIR DISTRIBUTION,

ABUNDANCE AND SUBSTRATE SELECTIVITY INTRODUCTION

Within the flora of Virginia there is a suite of species that have their primary ranges in the mountains, are absent or sparse in the Piedmont, and reappear, sometimes in local abundance, in the Coastal Plain. These species are often called "mountain disjunct ". Though they may be more generally distributed in the mountains, within the Coastal Plain most of these species are found in steep-sided ravines, most of which cut into calcareous substrates.

Disjunctions in geographical ranges of plants and animals have attracted much attention from biogeographers. However, most studies of disjunctions focus on large intercontinental separations in ranges of a taxon, such as the east

Asia—eastern North American disjunction ( Thorne 1972 and Pielou 1979), and studies of regional disjunctions (M arquis and Voss 1981, Dow ning et al. 1991,

Jackson and Singer 1997) in plants are somewhat rare. Regional disjunctions are on a smaller scale with subranges separated by gaps on the order of one hundred to a few hundred kilom eters (Pielou 1979). The Virginia m ountain disjuncts are good examples of the kind of small scale or regional disjunctions that have been largely neglected.

Although considerable attention has been paid to the presence of mountain disjunct species in various floristic studies of the Coastal Plain, there is

2 3 no comprehensive list of all species showing the mountain disjunct distribution pattern. Further, nothing is known of the structure of the vegetation of the ravines in which these mountain disjuncts occur, nor of the role of the disjuncts in that vegetation; that is, whether they are among the dominants, are of moderate structural importance, or are only of minor components of the vegetation. Neither is anything known about how crucial calcareous soil is in the growth and survival of the mountain disjuncts. This study addresses these issues by a) compiling a complete list of all species appearing to show a gap in their distribution between the mountains of Virginia and the Coastal Plain; b) reexamining the distribution pattern in some of those species in which the width of the gap in distribution has been called into question as too narrow to be significant; c) quantitatively describing both the herbaceous and woody vegetation patterns in ravines in the Coastal Plain using ordination techniques, and d) comparing the ability of mountain disjunct species to grow on calcareous soils of ravines versus the prevailing non-calcareous soils of the Coastal Plain.

Geology and Topography of the Coastal Plain

The geology and topography of the Coastal Plain of Virginia is defined in part by the major rivers that flow across it, dividing it into three peninsulas (Fig.

1). The Rappahannock, York and James Rivers flow southeastward into the

Chesapeake Bay. The small side tributaries that flow into these rivers often have eroded out steep ravines and valleys (Bick and Coch, 1969). Most of the ravines where the mountain disjunct plants have been found are cut into the Yorktown 4

A a

p a» > ■£ B <«

a.

co

aJ CL.

o0> o00 a 5

Form ation of Pliocene age (Dowsett and Wiggs 1992). This form ation is composed of marine and littoral deposits with sand, gravel and clay (Bick and

Coch, 1969). The scallop shells Chesapectan jeffersonius and Chesapectan madisonius are the most conspicuous fossil element of the Yorktown. Several layers of these shells, which can be dinner plate size, can be found in ravines that cut into the

Yorktown. The St. Mary's Formation, now referred to as the East over

Formation, is located below the Yorktown Formation. This formation, like the

Yorktown, is composed of sand with large amounts of marine fossils and is difficult to distinguish from the Yorktown. Both the Yorktown and Eastover

Formations belong to the Chesapeake group and are rich in calcium carbonate due to their shelly composition. Marl, a calcareous cement-like substance, is composed almost entirely of calcium carbonate that precipitated into the soil from shells and is often found in thick lenses in ravines. The presence of high calcium carbonate greatly influences the chemistry of ravine soils. With increased soil pH caused by high calcium, it is known that various soil ions needed by plants, including crucial soil nitrogen, become more soluble and readily available to plants (Adams and Adams 1983, Bailey 1995). On the other hand, many plants are adapted to much more acid soil, and may have difficulty growing in high pH soils. The geology and resulting soil chemistry reactions may have much to do with why mountain disjunct species occur where they do.

The Coastal Plain’s topography may also play an important role in the distribution of these plants. Narrow steep-sided ravines are formed by tributary streams that cut down through the surface sediments. Soil moisture and 6 humidity are significantly greater in ravines than on the associated uplands.

After rains, surface water runs down from the uplands along the slopes of the ravines and finally is deposited in the ravine floor. In addition to water washing down slope, water on the uplands percolates through the surface soil, and seeps out at the bottom of ravine slopes over time (Quarterman and Keever 1962). In fact, springs typically occur at the contact between the top of the Yorktown

Formation and the overlaying (sand/gravel) formations (C. R. Berquist pers. comm.). Furthermore, high soil moisture in the ravines results in high humidity.

Temperature is another environmental factor that makes ravines different from their associated uplands. Cold air drainage occurs when ambient cool air, which has a greater density than the surrounding warm air, is present and sinks into the ravine, thereby making the temperature of the ravine cooler than the associated uplands. The high soil moisture, high humidity and lower temperatures are environmental factors that make ravines climatically different from surrounding uplands and may be requirements for mountain disjuncts.

Botanical History of Mountain Disjuncts

The Rev. John Clayton (late 1600s), John Banister (late 1600s) and John

Clayton (early to mid 1700s) were the first to do any significant botanical work in Virginia's Coastal Plain, but whether they collected mountain disjunct species in the Coastal Plain is not clear. The works of the Rev. John Clayton were lost.

The major publications based on the works of Bannister and the later John

Clayton list many species now considered mountain disjuncts, but little collection 7 information is given for species listed, so it is not apparent if the species they record are from the mountains or Coastal Plain (Ewan and Ewan 1970,

Gronovius 1739). It was not until the early 1920s that E. J. Grimes of the College of William and Mary, doing botanical work on the Peninsula of Virginia, recorded species now understood to be mountain disjuncts (Erlanson 1924).

Some of the disjunct species he found included Monotropsis odorata, Actaea pachypoda, and Caltha palustris. About seven years after Grimes did his work, M.

L. Fernald from Harvard's Gray Herbarium came to southeastern Virginia and began a series of floristic studies, mostly in the southern Coastal Plain south of the James River. His extensive works about the Coastal Plain discuss at some length the flora that occurs on calcareous substrates and how it "commingles" with the surrounding pine barrens (Fernald 1937). Examples of mountain disjunct species he found during his studies included Amianthium muscaetoxicum,

Hexalectris spicata and Monotropsis odorata. It was not until the mid 1960s that the first paper was published on mountain disjuncts as a group. This work was by

A. M. Harvill of the Longwood College herbarium and identified 18 species north of the James River and mentions that other species found south of the

James River have disjunct distributions, but were not included in the study

(Harvill 1965).

From 1969 through the mid 1990s a series of floristic studies by students at the College of William and Mary documented the presence of mountain disjunct species up and down the Coastal Plain, though rarely were as many as ten disjuncts found in any one study. These studies are summarized in Fig. 2 and 34, James City Co. (Barans 1969, 6JQ O

Fig. 2 The Coastal Plain of Virginia with number of mountain disjuncts reported from floristic studies. Underlined numbers indicate the number of disjuncts located in the studies listed to the right. These numbers only represent the number of disjuncts recorded by those studies indicated and there may be other disjuncts for those counties in herbarium collections. Some counties 8 indicated on the map do not have published floristic work. 9

Table 1. The northernmost of these was on the Northern Neck, where Weldy

(1995) reported 12 mountain disjunct species from the Corrotoman watershed in Lancaster Co. Four studies took place on the Middle Peninsula. These were by van Montfrans (1980) in Mathews Co.; by Greaves (1982) in Gloucester Co.; by North (1983) in Middlesex Co.; and by Vascott (1985) in southeastern King and Queen Co. Three studies took place south of the James River. These were by Whitmarsh (1980) at Burwell Bay in Isle of Wight Co.; by Plunkett in western

Isle of Wight Co.; and by Mort (1994) at Tar Bay and Powell Creek watersheds in

Prince George Co., where he recorded 10 mountain disjunct species. On the

Peninsula the studies w ere by Barans (1969) in James City Co., by Gillespie (1970) in New Kent Co., by Appier (1974) in the City of Newport News, by Salle (1972) in York Co., and by Crouch (1990) in James City Co.

The floristic study by Allene Barans (1969) of the College Woods adjacent to the campus of the College of William and Mary in James City Co. produced more mountain disjuncts than any of the other floristic studies mentioned (Table

1), and a further floristic reconnaissance of the College Woods by Virginia

Crouch (1990) yielded six other mountain disjuncts not found by Barans, bringing the total number of disjuncts for the College Woods to 18.

The greatest number of disjunct species found in any one place in the

Coastal Plain was in the Grove Creek watershed in James City Co., where

D onna M. E. W are found 27 m ountain disjuncts (Ware and Ware 1992). This study is the most recent work that focuses on mountain disjunct species as a group. Ware and Ware (1992) divided the 27 species into the "strongly disjunct" 10

Table 1. Mountain disjunct species recorded in floristic studies in the Coastal Plain counties of Virginia by students at the College of William and Mary The county, author, and specific watershed, if available, are listed for each study. The species listed represent only those recorded by the studies indicated and there may be other disjuncts for those counties in herbarium collections. Ware and Ware (1992), listed for James City Co., is not a student study.

Lancaster Co.: Corrotoman Watershed ( Weldy 1995 ) Veratrum viride, Athyrium pycnocarpon, Caltha palustris, Cornus alternifolia, Aralia nudicaulis, Stewartia ovata, Carex bromoides, Juglans cinerea, Tilia americana, Viola conspersa, Myosotis laxa, Anemone quinquefolius

Mathews Co. ( van Montfrans 1980 ) Chelone cuthbertii, Desmodium glutinosum, Quercus muehlenbergii, Agrimonia pubescens, Veronica anagallis-aquatica

Gloucester Co.: Beaverdam Swamp ( Greaves 1982 ) Anemone quinquefolia, Caltha palustris, Ranunculus septentrionalis, Desmodium glutinosum, Viola conspersa, Mysotis laxa, Veronica anagallis-aquatica

Eastern Middlesex Co. ( North 1983 ) Galax urceolata, Caltha palustris, Ranunculus septentrionalis, Veronica anagallis-aquatica

Southeastern King and Queen Co. ( Vascott 1985 ) Agrimonia pubescens

Isle of W ight Co.: Burwell Bay ( Whitmarsh 1980 ), Western Isle of Wight Co. ( Plunkett 1990 )

Burwell Bay: W hitmarsh (1980): Campanula americana, Quercus muehlenbergii, Veronica anagallis-aquatica

Western Isle of Wight Co.: Plunkett (1990 ) Galax urceolata

Prince George Co.: Tar Bay and Powell Creek Watersheds ( Mort 1994 ) Campanula americana, Ranunculus septentrionalis, Carex bromoides, Cornus alternifolia, Quercus muehlenbergii, Elymus villosus, Tilia americana, Scutellaria ovata, Eleocharis erythropoda, Solidago flexicaulis 11

Table 1 (continued)

Tames City Co.: College of William and Mary, the College Woods ( Barans 1969 and Crouch 1990 ); Grove Creek Watershed ( Ware and Ware 1992)

College W oods: Barans (1969): Muhlenbergia tenuiflora, Carex bromoides, Amianthium muscaetoxicum, Quercus muehlenbergii, Caltha palustris, Desmodium glutinosum, Aralia nudicaulis, Cornus alternifolia, Monotropsis odorata, Galax urceolata, Pedicularis lanceolata, Triosteum perfoliatum

Crouch (1990 ): Found the species above, except for Caltha palustris. Additional disjuncts she found: Actaea pachypoda, Euonymus atropurpureus, Panax quinquefolius, Hexalectris spicata, Aruncus dioicus, Aralia racemosa

Grove Creek: Ware and Ware (1992): Aralia racemosa, Athyrium pycnocarpon, Caltha palustris, Carex bromoides, Campanula americana, Cornus alternifolia, Desmodium glutinosum, Magnolia tripetala, Mitella diphylla, Quercus muehlenbergii, Ranunculus septentrionalis, Sanicula marilandica, Solidago flexicaulis, Stewartia ovata, Thalictrum dioicum, Triosteum perfoliatum, Aruncus dioicus, Athyrium thelypteroides, Celastrus scandens, Collinsonia canadensis, Dirca palustris, Elymus villosus, Hexalectis spicata, Juglans cinerea, Panax quinquefolius, ■ Scutellaria ovata, Taenidia integerrima, Tilia americana

N ew K ent C o. ( Gillespie 1970 ) Pellea atropurpurea, Carex bromoides, Arabis lyrata, Agrimonia pubescens, Galax urceolata, Veronica anagallis-aquatica

York Co.: Yorktown Colonial Parkway between Brackens Pond and Kings Creek ( Salle 1972 ) Elymus villosus, Quercus muehlenbergii, Agrimonia pubescens, Veronica anagallis-aquatica

City of Newport News Fort Eustis (Appier 1974) Agrimonia pubescens, Galax urceolata, Veronica anagallis-aquatica 12 and "less strongly disjunct" categories that will be examined further in this thesis.

Harvill (1965) tried to address the origin of the pattern of distribution of mountain disjuncts. He proposed that the Coastal Plain and mountains provided suitable habitats and refugia during the climatically stressful post-Pleistocene xerothermic period (hypsithermal) and that these refugia were not available in the Piedmont. Furthermore, Harvill (1965) suggests that these isolated Coastal

Plain populations developed narrow edaphic tolerances and hence soil selectivity in locations where they persisted, thereby making them poor competitors outside their limited habitat. Some mountain disjunct species are known to be calciphiles in both the mountains and Coastal Plain. One such species is Pellea atropurpurea, the cliff-break . However, many mountain disjunct species are not regarded as calciphiles in the mountains, but suspected to be calciphiles in the

Coastal Plain, (Ware and Ware 1992); and if this is the case this would be consistent with HarvilTs (1965) notion that mountain species isolated in the

Coastal Plain have become narrow in their habitat tolerances. METHODS AND MATERIALS

Determination of Mountain Disjunct Species

While various studies of the Coastal Plain's flora have reported mountain disjunct species, no comprehensive list of disjunct species exists. For this study mountain disjunct species are defined as species whose usual range is in the mountains of Virginia, which appear sparsely or not at all through the Piedmont, and then reappear in the Coastal Plain, sometimes in significant numbers. These mountain disjunct species were then identified in relation to whether they fit that definition. Specifically, a species was considered a mountain disjunct if there was at least a one or two county break between its area of distribution in the mountains to its area of occurrence in the Coastal Plain. Such breaks usually lay in the Piedmont and / or adjacent inner Coastal Plain. A list of these disjunct species was compiled using Harvill (1965), Ware and Ware (1992), D.M.E. Ware

(pers. comm.) and G.P. Fleming (pers. comm.) (Table 2). The maps in Harvill et al. (1992) were used to identify additional species that possess a disjunct distribution but that were not mentioned by the above sources.

The list of disjunct species was then grouped, using Harvill et al/s

(1992) distribution maps, into several categories based on the size of the gap from

13 14

Table 2. Species identified as mountain disjuncts by this study. Groups of species are alphabetized first by family and then by .

Species Family Athyrium pycnocarpon (Spreng.) Tidestr. Aspidicaeae Athyrium thelypteroides (Michx.) Desv. Aspidicaeae Camptosorus rhizophyllus (L.) Link Aspleniaceae Osmunda claytoniana L. Osmundaceae Pellaea atropurpurea L. (Link) Pteridaceae

M onocots Carex bromoides Willdenow Cyperaceae Carex hirtifolia Mackenzie Cyperaceae Carex oligocarpa Willdenow Cyperaceae Carex pellita (C. lasiocarpa) Ehrhart Cyperaceae Carex tetanica Schkuhr Cyperaceae Carex virescens Willdenow Cyperaceae Eleocharis erthyropoda Steudel Cyperaceae Scripus pendulinus Muhl. Cyperaceae Elodea canadensis Michaux Hydrocharitaceae Amianthium muscaetoxicum (Walter) Gray Liliaceae Ulvularia puberula Michaux Liliaceae Veratrum viride Aiton Liliaceae Calopogon tuberosus (L.) BSP. Orchidaceae Corallorhim wisteriana Conrad Orchidaceae Habenaria ciliaris (L.) R. Br. Orchidaceae Hexalextris spicata (Walt.) Barnhart Orchidaceae Danthonia compressa A ustin Poaceae Deschampsia flexuosa (L.) Beauvois Poaceae Dicanthelium latifolium (L.) H arvill Poaceae Dicanthelium linearifolium (Scribner) Gould Poaceae Elymus villosus Willdenow Poaceae Glyceria grandis W atson Poaceae Muhlenbergia sobolifera (Willdenow) Trinius Poaceae Muhlenbergia tenuiflora (Willdenow) BSP. Poaceae

D icots Sanicula gregaria Bicknell Sanicula marilandica L. Apiaceae Taenidia integerrima (L.) D rude Apiaceae Aralia nudicaulis Araliaceae Aralia racemosa L. Araliaceae Panax quinquefolium L. Araliaceae 15

Table 2 (continued)

Species Fam ily Dicots Aster laevis L. Asteraceae Bidens cernua L. Asteraceae Cirsium muticum Michaux Asteraceae Liatris spicata (L.) W illdenow Asteraceae Solidago flexicaulis L Asteraceae Solidago ulmifolia Willdenow Asteraceae Impatiens pallida N uttall Balsaminaceae Myosotis laxa Lehmann Borginaceae Arabis lyrata L. Brassicaceae Campanula americana L. Campanulaceae Triosteum perfoliatum L. Caprifoliaceae Euonymous atropurpureus Jacquin Celastraceae Celastrus scadens L. Celastraceae Cornus alternifolia L. F. Com aceae Cornus racemosa Lam. Com aceae Galax urceolata Poir. Diapensiaceae Monotropsis odorata Schweinitz Ericaceae Astragalus canadensis L. Fabaceae Desmodium cuspidatum (Willd.) Loudon Fabaceae Desmodium glutinosum (Willd.) Wood Fabaceae Lathyrus venosus Muhl. Fabaceae Quercus muehlenbergii Engelm. Fagaceae Juglans cincerea L. Juglandaceae Blephilia ciliata (L.) Bentham Lamiaceae Collinsonia canadensis L. Lamiaceae Mentha arvensis L. Lamiaceae Monarda fistulosa L. Lamiaceae Pycnanthemum virginianum (L.) Durand & Jackson Lamiaceae Scutellaria ovata Hill Lamiaceae Magnolia tripetala L. Magnoliaceae Comptonia peregrina (L.) Coulter Myricaceae Poly gala polygama Walter Polygalaceae Actaea pachypoda Elliot Ranunculaceae Anemone lancifolia Pursh Ranunculaceae Anemone quinquefolia L. Ranunculaceae Caltha palustris L. Ranunculaceae Delphinium tricorne M ichaux Ranunuculaceae Ranunculus septentrionalis Poir. Ranunculaceae Thalictrum dioicum L. Ranunculaceae Agrimonia gryposepala Wallr. Rosaceae Agrimonia pubescens Wallr. Rosaceae Aruncus dioicus (Walt.) Fern. Rosaceae Ptelea trifoliata L. Rutaceae 16

Table 2 (continued)

Species Family D icots Salix sericea M arshall Salicaeae Mitella diphylla L. Saxifragaceae Parnassia asarifolia Vent. Saxifragaceae Saxifraga pensylvanica L. Saxifragaceae Aureolaria flava (L.) Farwell Scrophulariaceae Chelone cuthbertii Small. Scrophulariaceae Pedicularis lanceolata M ichaux Scrophulariaceae Melampyrum lineare Desr. Scrophulariaceae Scrophularia lanceolata Pursh Scrophulariaceae Veronica anagllis-acqmtica L. Scrophulariaceae Stewartia ovata (Cav.) Weatherby Theaceae Dirca palustris L. Thymelaeaceae Tilia americana L. Tiliaceae Parietaria pensylvanica Willdenow Urticaceae Hybanthus concolor (Forster)Sprengel Violaceae Viola conspersa Reichenbach Violaceae 17

the mountains to the Coastal Plain. Species were considered "strongly disjunct"

if the gap was at least 3 counties wide at any place in the distribution from the

mountains and or Piedmont to the Coastal Plain (Fig. 3). Species were

considered less strongly disjunct if the gap was only 1 or 2 counties wide (Fig. 3).

Finally, a category of "miscellaneous disjuncts" included those species that have

a limited or spotty distribution in the mountains and reappear in the Coastal

Plain; those that occur in the mountains and Coastal Plain, but have a few isolated occurrences in the central Piedmont; and those that occur strongly in the mountains but reappear only in the southernmost portion of the Coastal Plain

(Fig. 3).

Mapping of "Less Disjunct" Species

The various levels of disjunction of Ware and Ware (1992) are based on maps in Harvill et al/s 1992 Atlas of the Virginia Flora. The Atlas records the presence of a species in a county by a single dot in the center of each county

regardless of where or how often the species was collected in that county. Some

species are called "less disjunct" because dots on the Atlas map bridge the gap

between the mountains and the Coastal Plain, and whether they even show

disjunction may be in questioned. Since it is unknown whether the Atlas map

dots in counties bridging the gap in range represent rare or common occurrences,

it is problematic to comment on the strength of their disjunction. Therefore, a

map showing actual location of collections is needed to assess the actual degree

of disjunction. 18

Strongly Disjunct Species

ACTAEA PACHYPOOA ELLIOTT

ASTER AGRIMONIA i a e v i s I. GRYPOSEPALA WALLROTH

ANEMONE ATHYRIUM LANC1FOLIA PYCNOCARPON PURSH fSPRENGEl) TIDESTROM

b l e p h i l i a ARABIS CILIATA LYRATA L (L ) BENTHAM

CALTHA PALUSTRIS L.

Fig. 3 Mountain disjunct species' distribution maps from the Atlas of the Virginia Flora (Harvill et al. 1992). Strongly disjunct species have at least a three county gap from the mountains to the Coastal Plain; less strongly disjunct species a one to two county gap; and miscellaneous disjuncts are spotty through the mountains and reappear in the Coastal Plain, or occur strongly in the mountains and reappear in the southern Coastal Plain. See addendum at the end of the figure for additional species in the strongly disjunct and less disjunct categories. 19

Strongly Disjunct Species

CORNUS ALTIRNIFOLIAI.F.

CAREX C0RALL0RH1ZA BROMOIDES WISTERIANA WILLDENOW CONRAD

DESCHAMPS1A CAREX FlIXUOSA LASIOCARPA (I.) BEAUVOIS EHRHART C. lanuginosa

CAREX d e s m o d iu m OUGOCARPA GIUTINOSUM WILLDENOW (WILLDENOW) WOOD

CAREX VIRESCINS WILLDENOW

DICHANTHELIUM CORNUS LINEARIFOLIUM RACEMOSA (SCRIBNER) LAM. GOULD

Fig. 3 (continued) Strongly Disjunct Species

MENTHA ARVENSIS L.

lATHrRUS VENOSUS MONOTROPSIS OOORATA WILLDENOW SCHWEINITZ

LIATRIS MUHLENBERGIA SPICATA SOBOLIFERA (I.) WILLDENOW (WILLDENOW) TRINIUS M. brachyphylla M. bushii^'

MUHLENBERGIA TENUIFLORA (WILLDENOW) BSP

MYOSOTtS MITELLA LAXA OIPHYLLA I, LEHMANN

OSMUNDA CLAYTONIANA L. MELAMPYRUM LINEARE OESR.

PARIETARtA pensylvanica WILLDENOW

Fig. 3 (continued) Strongly Disjunct Species

PARNASSIA SAXIFRAGA ASARIFOLIA PENSYLVANICA L VENT.

SCIRPUS PEDICULARIS PENDULINUS LANCEOLATA M U H l. MICHAUX

PTELEA SCROPHULARIA TRIFOLIATA L. LANCEOLATA PURSH

QUERCUS SOLIDAGO MUEHLENBERGII FLEXICAULIS L. ENGELM.

PYCNANTHEMUM VIRGINIANUM (L.) DURAND & JACKSON

SANICULA UVULARIA MARILANDICA L. PUBERULA MICHAUX U. pudica

Fig. 3 (continued) Strongly Disjunct Species

VERATRUM VIRIDE AITON

VIOLA CONSPERSA REICHENBACH

Fig. 3 (continued) Less Disjunct Species

AGRIMONIA PUBESCENS WALLROTH

«y -^m\ f AMIANTHIUM CELASTRUS MUSCAETOXICUM SCANDENS L. (WALTER) GRAY

COLLINSONIA CANADENSIS L.

ARUNCUS COMPTONIA DIOICUS PEREGRINA (WALTER) (L.) COULTER FERNALD

ASTRAGALUS CANADENSIS L.

ATHYRIUM DIRCA THILYPTERIOIDES PALUSTRIS L (M ICH A U X ) DESV

Fig. 3 (continued) 24

Less'Disjunct Species

e l y m u s IMPATIENS VILLOSUS PALLIDA WILLDENOW NUTTALl

si _ £ • K. • Am^ *■ -S~m, y.»^« vt • / if' [■

GALAX PANAX URCEOLATA QUINQUEFOLIUS L. (POIRET) BRUMMITT G. aphylla^^ A** • ^ /* • • • ' * ,v » " ■ - / * , • , • / ^ • / • ; <

HABENARIA CILIARIS (I.) R. BROWH

HEXALECTRIS RANUNCULUS SPICATA SEPTENTRIONALIS (WALTER) POIRET BARNHART

HYBANTHUS SANICULA CONCOLOR GREGARIA (FORSTER) BICKNELL SPRENGEL S. odoraca

JUGLANS SCUTELLARIA CINEREA L OVATA HILL

• ^

Fig. 3 (continued) Less Disjunct Species

SOLIDAGO (JIMIFOIIA WILLDENOW

TAENIDIA INTEGERRIMA (L .) DRUOE

THALICTRUM DIOICUM L.

TILIA AMERICANA L. T. hctcrophylla

VERONICA ANAGALLIS- AQUATICA L.

Fig. 3 (continued) Miscellaneous Disjunct Species

GIYCERIA CAREX GRAND fS HIRTIFOLIA WATSON MACKENZIE

POLYGALA CAREX POLYGAMA LACUSTRIS WALTER WILLDENOW

CAREX STEWARTIA TETANICA OVATA SCHKUHR (C A V .) WEATHERBY

CHELONE CUTHBERTII SMALL

DESMOOIUM CUSPIDATUM (WILLDENOW) LOUDON

EUONYMUS ATROPURPUREUS JACQUIN

Fig. 3 (continued) 27

Addendum to Fig. 3

Strongly Disjunct Species

CALOPOGON OANTHONIA TUBEROSUS COMPRESSA (L .) BSP. AUSTIN C. pulchellus

CIRSIUM ElYMUS MUTICUM •V RIPARIUS MICHAUX WIEGAND Jt

ELODEA CANADENSIS MICHAUX

Less Disjunct Species

AUREOLARIA FLAVA (L .) FARWELL

MONARDA FISTUIOSA L.

SALIX CAMPTOSORUS SERICEA RHIZOPHYLLUS MARSHALL (L .) LINK

Fig. 3 (continued) 28

In order to better understand the distribution of these species previously designated "less strongly disjunct", maps were created in Arc View 3.2 (ESRI

1999) of individual collection locations in each county, based on herbarium data.

The herbaria of The College of William and Mary (WILLI), Virginia Polytechnic

Institute (MASSE), Longwood College (FARM), and George Mason (GMUF) were visited and specimens of mountain disjuncts examined. These herbaria were chosen because they hold the most collections from the Coastal Plain

(WILLI), mountains (MASSE), and Piedmont (FARM & GMUF) of Virginia.

Herbarium label data were collected for each species identified as a mountain disjunct. The following information was recorded for each specimen examined: collector, collector number, date, county where the plant was collected, collecting location, and any ecological information included. Only Virginia specimens were examined. The collection information from these herbaria could be used to map species' distributions across Virginia. The number of specimens of disjunct species examined are given in Appendix A. In some cases no specimen was found in these herbaria to document the Atlas dots for certain counties.

ArcView 3.2 (ESRI 1999) was used to map the individual collection locations for mountain disjuncts considered "less disjunct". Before any collections were mapped, duplicate specimens were removed from the data set.

Herbarium label information was used to pinpoint the collection location of each specimen on the Virginia Atlas and Gazetteer (1995). The Gazetteer w as used because it includes topographic features, has labeled landmarks, and has county route numbers identified. Once the collecting locations were identified on the 29

Gazetteer map, the approximate locations were then mapped in ArcView 3.2

(ESRI 1999) on a base map of Virginia. The base map includes the state boundaries and each county's delineation. This mapping of actual locations of collections allowed the assessment of the actual width of the distribution gaps.

Vegetation Studies

The herbaceous and woody vegetation of calcareous ravines in which mountain disjuncts occurred were quantitatively sampled. The vegetation of some non-calcareous ravines in the Coastal Plain was also quantitatively sampled and compared to the vegetation in calcareous ravines in order to examine any vegetational difference between ravines on different substrates.

Selection of Study Sites

Most disjunct species have been found almost entirely in and around ravines that cut into the Yorktown Formation. Therefore, ravines known to cut into that formation were explored in order to locate disjunct populations of plants. If a ravine in a system of ravines contained disjuncts, neighboring ravines were explored as well. The uplands just above the ravine slopes and the ravine floodplain, if present, were also explored before deciding whether a ravine should be sampled and where transects should be placed within it. Ultimately, fifteen calcareous ravines with disjuncts were chosen for sampling. Ravines that opened in several different directions were included. In addition, three ravines without disjuncts, none on the Yorktown Formation, were chosen for sampling and are called non-calcareous ravines. 30

Study sites were chosen in five counties in the Coastal Plain of Virginia:

James City Co., York Co., Gloucester Co., Surry Co., and Lancaster Co. (Fig. 4).

A total of 15 calcareous ravines and 3 non-calcareous ravines were sampled. In

James City Co., a total of eight calcareous ravines and three non-calcareous ravines (not cutting into the Yorktown Formation) were selected. Seven ravines were studied in the College Woods, six calcareous and one non-calcareous. Two other non-calcareous ravines selected were on the Casey Tract, off Jester's Lane in Williamsburg. Two other calcareous ravines were in the Grove Creek

Watershed, one near the Old Country Rd., Carter's Grove and the other off Rt. 60 near Busch Gardens.

In York Co., two calcareous ravines were sampled in the Cheatham Naval

Annex Supply Center. In Gloucester Co., two calcareous ravines were selected off Hickory Fork Rd. across from the county Convenient Center #4, otherwise known as the Gum Fork dump. In Surry Co., two calcareous ravines were sampled along College Run in Chippokes Plantation St. Park. In Lancaster Co., one calcareous ravine was sampled in the portion of Cabin Swamp called

Hickory Hollow. See topographic maps provided in the Appendix B for exact locations of ravines.

The topography of a ravine and the distribution of disjunct plants within it determined where transects were placed. In calcareous ravines transects were always positioned in order to intersect one or more groups of mountain disjunct plants. Transects consisted of a series of plots starting on the upland edge on one side of the ravine, extending down the slope, into the floodplain (if present), up 31 Co., Co., two ravines were studied. A total of fifteen calcareous ravines and three non-calcareous ravines were ravine ravine was studied; in studied Gloucester Co., two (eight ravines calcareous were studied; and three in James non-calcareous); City Co., eleven ravines in were York Co., two ravines were studied; and in Surry 32 the other slope and ending on the upland edge of the other side (Fig. 5). In smaller ravines, the slopes converged to form a narrow crevice-like bottom with no real floodplain, and so no floodplain plots were established. The number of and distance between transects in each ravine varied depending on the overall size of the ravine and the distribution of populations of disjunct plants within the ravine. The first transect was placed at the head of a ravine, and then parallel transects were placed approximately every 15m until the ravine ended. Along each transect, plots were placed to insure inclusion of disjunct plants where possible, although disjunct species were rarely present on the upland. This methodology was chosen for this study to ensure that all disjunct species present in a ravine were represented in one or more plots. In non- calcareous ravines without disjunct species, transects and plots along transects were placed systematically without reference to presence or absence of species.

Sampling of Ground Layer Vegetation and Collection of Environmental Data

In the summer (June-August) of 1999 and spring (May) 2000,1 x lm plots were placed at intervals in each transect in the ravine, and permanent stakes were placed in each corner of the plot. Colored flagging was used to mark one corner of each plot to allow for easy relocation during later visits.

Once the plots were placed along the transects, the following ecological data for each plot were collected: coverage of each species present in the plot, density or number of stems, the angle of the slope, the direction of the slope, tfiae percent canopy cover over the plot, a list of the canopy cover species and tall shrub cover over the plot. Coverage was estimated using a modification of 33 plots are plots are situated along the slopes and upland edges, but not the floodplain. Floodplain plots were placed in ravines when there was a distinct level floodplain between the two slopes. Fig. 5 Fig. 5 Cross-section of typical a ravine with x 1 lm plots in up set transects to sample the ground layer vegetation. Ravine 34

Daubenmire's (1968) cover class system. Sterile dwarf ericads were combined as

"Vaccinium spp./ Gaylussacia spp". Species were recorded into the coverage

categories in Table 3. The coverage class "P" was used when a species was

present in a plot but did not have a significant coverage in that plot. Species represented in a plot by a single- stemmed, juvenile usually fit into this category.

Density was recorded usirig Cain and Castro's (1959) estimation classes.

These categories are S (Scarce) consisting of 1 to 4 stalks; I (Infrequent), 5-14 stalks; F (Frequent), 15-29 stalks; A (Abundant), 30-99 stalks; and V (Very

Abundant), 100 or more stalks per square meter quadrat. For species that were several-stemmed such as ferns, grasses and sedges, individual stems were not counted, but the group of stems was counted as one stem. Multiple leaves of a fern were considered to be from one individual and it was fairly clear where one individual began and ended. Flowever, in the grasses and sedges, it is more difficult to separate individuals; therefore to aid in data collection, tussocks were considered one stem. In species like Asmina triloba that produce many stems attached underground by rhizomes, individual stems were counted because it was impossible to discern where one individual began or ended.

Relative coverage and relative density were calculated for each species in a plot and then combined into an importance value (based on a 200% scale). The importance values for species in plots along the same topographic position

(upland edge, slope and floodplain) in a ravine were averaged as were the environmental measurements for these same plots, and averaged values were used in the ordinations performed. 35

Table 3. Coverage classes for the ground layer vegetation. Appropriate classes were assigned to individual species in each plot. The mid-point value of each class was used to determine the relative coverage for each species in a plot. "P" was used in instances where a trace of the species occurred but was not used to calculate relative coverage or was too small to be placed in a coverage class.

Class Range of Coverage 1 1-5% 2 5-10% 3 10-15% 4 15-20% 5 20-25% 6 25-30% 7 30-35% 8 35-50% 9 50-75% 10 75-95% 11 95-100% P Present 36

The direction of the slope was determined by using a compass. The angle of slope was determined by using a protractor with a weight tied by a string to the protractor's center. The flat side of the protractor was placed parallel to the slope and the angle of the slope was recorded as indicated by the string.

Canopy cover for a plot was estimated by standing over the plot on each of its sides and taking the average percentage of canopy cover as viewed from each of those sides. The tree species comprising the canopy cover were also recorded. Shrub cover was estimated as the area each species covered over the plot.

In addition to these data, as the plots were revisited during the summer and fall, evidence of herbivory in a plot was recorded. As the population size of white-tailed deer has increased in the Coastal Plain, the evidence of their presence has become more apparent. Any evidence that stems in a plot had been chewed on was noted, and which species were grazed upon was recorded.

Soil samples were collected in the fall of 1999 and the spring of 2000.

Separate collections were made from the upland edge, slopes, and floodplain (if present) of each ravine examined. A minimum of 5 collections were made for each topographic type at approximately 20 pace intervals between each collection. Equal amounts of soils were taken from each collection site, and collections for an individual section of a ravine were placed in a Ziploc bag and then taken back to the lab. For longer ravines, more than one series of samples were gathered for each topographic feature, one near the head of the ravine and another down the ravine. Each soil sample was mixed well, spread out to dry, and then boxed and sent to the Virginia Tech Soil Testing Lab for analysis of pH, 37

P, K, Ca, Mg, Zn, Cu, Fe, and B. The soil data were tested for correlation with the ordinated vegetation data.

Sampling o f Woody Vegetation

Woody plant sampling was conducted in order to examine the forest communities at each of the study sites, and to collect data on the associates of disjunct woody plants. Sampling in each ravine was continued until the forest canopy vegetation over all herbaceous plots had been included and the woody disjuncts recorded. The combined Bitterlich-circular quadrat method was used and modified to fit the topography of the ravines. The height of ravine slopes from the ravine bottom to the level uplands was insufficient for placement of a full Bitterlich circle on one side of the ravine without sampling portions of the upland community. Therefore, I followed Mort (1994) in using half-circle plots, a modification of the Bitterlich-circular method he devised for such situations.

Each sampling point was placed at the bottom of the slope, and half-circle rather than a full circle was surveyed upslope from that point. Basal area was determined by the Bitterlich method at each half-circle. Density was taken by counting separately large stems (>10.16 cm dbh), understory stems (> 2.5 cm,

< 10cm dbh), and shrub-sapling stems (< 2.5 cm dbh) stems in a 10 m radius half circle. Relative basal area and relative density of large stems were averaged to give Importance Values (I.V.) for each species in each stand. Relative density alone was calculated for understory stems and shrub-sapling stems, since no measure of basal area was taken for these small stems. In rare situations where 38 the ravine bottom was a wide floodplain, a full circle plot was used in sampling the woody vegetation, and all the above data calculated accordingly.

Ordination Analysis

The indirect ordination method Detrended Correspondence Analysis

(DCA) performed by the program CANOCO was used to analyze the herbaceous and woody vegetation data collected (Ter Braak 1988). The program examines the similarity and differences in species composition among the plots and allows one to graphically display the plots in relation to one another based on that composition. Therefore, the importance values of species in each plot were the variables ordinated. Environmental variables were then tested for correlation with the first and second axes of the ordination. The occurrences of dominant species in plots and the presence of mountain disjunct species are indicated on the ordinations. Environmental variables that were significantly correlated with the first and second ordination axes at the P < 0.05 level are indicated on the

DCA ordinations.

Soil Tolerance Experiments

The hypothesis that both Coastal Plain and mountain populations of disjunct species grew differently on calcareous and non-calcareous soil was tested. Seeds were collected from either the mountains, the Coastal Plain, or both for eight disjunct species, and sufficient seed germination for setting up experiments was obtained for five species (Table 4). The location of seed sources are included in A ppendix C. 39

Table 4. Mountain disjunct species used in the soil tolerance experiments. The "X"s indicate the physiographic province(s) from which the seeds were collected. They were germinated and grown on basic high calcium soil and acidic low calcium soil. N /A indicates that seeds of a given species did not germinate or died soon after germination.

Mountain Disjunct Coastal Plain Mountain Seed N um ber of Species Seed Collection Collection Blocks/ Replicates

Desmodium glutinosum X X 4

Aralia racemosa X X 9

Aruncus dioicus X 4

Solidago flexicaulis XX 12

Actaea pachypoda X XN/A

Collinsonia canadensis X 12

Agrimonia gryposepala X 3

Veronica anagallis- X N/A aqnatica 40

The growth of newly germinated seedlings of these species on calcareous soil and non-calcareous soil was examined using a randomized block design.

Both calcareous and non-calcareous soils were collected in the Coastal Plain, in

James City Co. The calcareous soil had a pH of 5.9 and a calcium level of 1864.7 ppm, and non-calcareous soil had a pH of 4.3 and a calcium level of 120.0 ppm.

Other data on soil minerals for the two soil types are recorded in Table 5.

The seeds of all species and populations were given a moist cold treatment in a dark refrigerator at approximately 5 oC for 12 weeks. Seeds were germinated on moist filter paper in petri plates in the greenhouse. When cotyledons and two permanent leaves were present, seedlings were transplanted to 10 cm diameter plastic pots containing calcareous soil or non-calcareous soil.

Both soil types were collected in James City Co., the calcareous soil was collected in the College W oods in the Actaea pachypoda Ravine (Appendix B) and the non- calcareous soil w as collected on the Casey Tract in Ravine #1 (Appendix B).

Transplanted seedlings that died in the first week were replaced; however, those that died more than a week after transplanting were not. All pots were kept continuously moist, but not saturated. The number of blocks or replicates depended on the number of seeds that germinated and survived and therefore is different for each species; they varied from 3 to 12 (Table 4). For species with seeds from both the mountains and the Coastal Plain a block consisted of 4 pots: a pot with a mountain plant on high calcium soil, a pot with a mountain plant on acidic, low calcium soil, a pot with a Coastal Plain plant on calcareous soil and a pot with a Coastal Plain plant on non-calcareous soil. The blocks were rotated 41

Table 5. Soil chemistry data for the two types of soil (calcareous and non calcareous) used in the greenhouse experiment. The units for minerals are recorded in ppm.

Soil Type pH P K Ca Mg Zn Mn Cu Fe B Non-calcareous 4.3 1.0 53.0 120.0 39.5 1.4 4.0 0.3 37.0 0.2 soil

Calcareous 5.9 5.5 40.5 1864.7 38.5 1.8 10.4 0.3 22.6 0.5 soil 42

every 2 days to minimize any position effects in the greenhouse that may have

occurred.

The experiment was carried out through the spring and early summer

growing seasons. After 12 weeks, all surviving plants were severed at the base of the stem, dried for 36h at 100 C, allowed to cool and then weighed to the nearest

0.1 mg. For species that had seeds from both the mountains and the Coastal

Plain a two way ANOVA was performed to detect significance between the

groups and a one way ANOVA was used for those species with seeds from just

one physiographic province. RESULTS

Maps of Individual Collection Locations for the Less Disjunct Species

The maps of individual collection locations were divided into categories based on whether or not the perceived disjunct distribution was more pronounced after mapping. The first category includes maps of species whose disjunction is more prominent than on their Atlas maps. This category is further divided into two subgroups: those species whose disjunction is 2-3 counties wide across the Piedmont, and those whose disjunction is only 1 county wide at some point in the Piedmont, but wider for most of its distribution. The second category is composed of those species whose individual collection locations maps did not elucidate new information about their disjunction. The third category consists of those that have a more filled in distribution, and whose disjunction is therefore probably no longer supportable. Although, the primary range of less disjunct species is centered in the mountains it sometimes includes the western Piedmont and western Coastal Plain and 6 of the 20 species mapped show this.

This first category singles out 8 of the 20 less disjunct species that when mapped showed a greater resolution of their disjunctions as compared to their

Atlas maps. The first subgroup of the first category includes those species whose

43 44

Atlas maps show a 1 or 2 county gap, and when individual collection locations

are mapped the gap is maintained or extended to 2 to 3 counties throughout most of the Piedmont. The members of the first subgroup are Amianthium muscaetoxicum (Fig. 6), Comptonia peregrina (Fig. 7), Galax urceolata (Fig. 8) and

Anemone quinquefolius (Fig. 9). The gaps in the distribution of these species was widened, and mostly because the collection locations in the western Piedmont counties are often located in the western, not eastern part of the county. This is especially so for Amianthium muscaetoxicum (Fig. 6). In the case of Galax urceolata

(Fig. 8), a non-calciphile, the collection locations in the Coastal Plain are in the eastern portion of Coastal Plain counties, thereby making the mountain-Coastal

Plain gap even greater. Comptonia peregrina (Fig. 7), also a non-calciphile, has a few collections in the central Piedmont. These few collections do not necessarily weaken this species' disjunct status because they may represent a specific microhabitat site which may also be required in the mountains and the Coastal

Plain. The map for Amianthium muscaetoxicum (Fig. 6) shows that many specimens of this species were collected along the Appalachain Trail in the Blue

Ridge. This may represent a collecting artifact.

The second subgroup of the first category contains Dirca palustris (Fig. 10),

Bidens cernua (Fig. 11) Scutellaria ovata (Fig. 12), and Taenidia integerrima (Fig. 13).

The Atlas maps for species in this subgroup indicate a thin corridor of collections from the western Piedmont counties, through the central Piedmont to the Coastal

Plain, and will be referred to as the Piedmont-Coastal Plain corridor. The collection locations along this Piedmont corridor determine the spatial extent of those disjunctions. The Atlas map for Taenidia integerrima (Fig. 13) and Bidens AMIANTHIUM •X* X • x . ta ..0 * * —< ^ ^3 o 3c O * H 3 « H ^ *x 'o • #Q oo T3 T3 13 L .0 ■ w « 3 j r - o3

+-*, 1 ’S • t2 i f f X £ -2 CO 0> 03 *■fid o s» s i u V | | V *- > » ?/#> ' #> / ? ' ♦ \ \ • ♦ i. / l/f » » _ r < H *> vV «*•* . • ”f > V - N V m m _o ,—H 'fi *p ’o 'O T3 • rH • rH •2 •S <+H • rH 5 s b-i s o- 'K* p s §• P p P p v-i p CO 0) O o B l £» o O p CO 2? o to p o iT bo cs o p o C3 > o p p 0 L 00 i h J2 T3 * • rH"p Pg ^P 33 • rH rH ’P 'p *P 3 ’p T3 • rH • P5 H 'p Ch 0\ CN T"< '■—^ H—» ffi -»—> C +-> 1 -«—> •S V-i o o p 0) S' O t

h

*p c2 43 .P ’p .2 rP *H 'H 'p ’p _p. < «rH 'o • rH ■<—> ■*—* "2 >H 'p +-> § P P p P Li P P O p X I p c/T P B g o g CO p p o (U P !—iP o p o O p CO o Li p p p L P CO o P p o P o p fl

° £ 2 a .2 4= .2 1 ' ■p» c> Q -£* rQ C» ^ ' 43 ’2 tS 0 0 tS O >*C O 3 (D ° 43 'P 43 H £j P p P 0) CO P o S p r£-d P 0 p 00 CO “ “ S § O P > s C/5 p fcb o fc* P o ’r i p S P O P ^3 ■+"* co O +■*L. &H O X CO ^ p p ^ P P O ’S S co ^3 & CO P P 2 CO -"P o 2 o P co co ”P £ £

h § CO -> + G-> CJ f'^H 9 p b o p . h

46 47

hCO-» ■8 S' J3 feb 0> £ H 6 a o C/2 4 h c •-Ico • >—i j _, r o

4 > O

-2<3 53c3 *aj 0 ■S g ui(= 21* > 3 #c S 'O• T-* 1 ... o o * ILJt <+H Q 0 k Oh -2 f ^ a 00 “ d^ b k.£? indicate indicate counties where collections are recorded in the Atlas, but were not found in herbarium the specimens examined. This species’ map shows more a pronounced disjunction than the Atlas map, belongs and to category subgroup 1, 1 fin ^ because its disjunction extends to more than two counties wide mapped. once 48 o> -s

»53 3 -J=* c /3 rt* T3 o J* * 5 2 6 £ 0 3 r j £ « 4 h c / 3 J2 9 * .2 £? ,2 I 2 PS £ .2 a cu o aQ< o e 0 C/3 ^& aTcL 03 v-t R C/3 © +-» s03 R •s lH c3 <2 C/3 ti o C/3 13 j i) v/' X./ ’■§o o .'*>v a o CO +-»CT\ 13o O n 9 ) ^ * > 'oo a3 I1 1 HId $ cd T3 § "S K ° k 03a, =2tL ^ -3 0 \ .5 ob £? indicate indicate counties where collections are recorded in the Atlas, but were not found in herbarium the specimens examined. This species’ map shows more a pronounced disjunction than the Atlas map, belongs and to category subgroup 1, 1 E £ because its disjunction is extended once mapped, 49

-sicd £ ** O-o ^ >1 >a cd -* & Vh (—Ki &rv -2 -t—> >-J3 ° ini CD nd 43 {3 H 3 •S CD £ cn a, a> OQ +-» 5^ •§ S' ■S (-1 cd cS 3 ac n 3 * *^o 3 cd 3 O cd ed -<—>

r^> a w1—H c eb £? indicate indicate counties where collections recorded are in Atlas, the but were not found the in herbarium specimens examined. £ s This species’ map shows more a pronounced disjunction than Atlas the map, belongs and to category subgroup 2 1, because a corridor of collections exists from the Piedmont the to Coastal Plain. Virginia Flora (Harvill et al. 1992). The solid black dots represent individual collection locations and the gray dots indicate counties where collections are recorded in the Atlas, but were not found in the herbarium specimens examined. This species’ map shows a more pronounced disjunction than the Atlas map, and belongs to category 1, subgroup 2 because a corridor of collections exists from the Piedmont to the Coastal Plain. 51

« c/3 ^5 8 >> ^ g ^ Sb (D a *T3 <8 § GO £ • r—* O 3o <3 o ft£3 o**-4 <*>^ O-4—» c ' o 13 & S3' s ’•O H *3 v * C § cn *§s ”0O

*-t Q <2 s « 3 • 2 o OC3 Os , poH t . * o c3 d to 1**H £ r *H * r H I 3• H <4-i s O 5*.C3 S’ •2 C3 £ .2 ■—•fl o4)

S ij 0S>. id

eS ^a cd *2 2 3 S .2 o V i cdo O o H OEh •-J3 'g ”2 & •2 ffi <4-1 W m 0 g *s»**ct Mttt m 8 ^ Q 0 S Cl-<3 2 •§ W). KC b • r~4 ,

p _ indicate counties where collections are recorded in the Atlas, but not were found the in herbarium specimens examined. This species’ map This species’ map shows more a pronounced disjunction than the Atlas map, belongs and to category subgroup 1, 2 ^ because a corridor of collections exists from the Piedmont to the Coastal Plain. 53 cernua (Fig. 11) have the most apparent Piedmont-Coastal Plain corridors and disjunctions. The individual collection locations maps for these species show that the collections along the corridor are located in the western part of the western and central Piedmont counties and the eastern part of the outer Coastal

Plain counties, thereby creating a small disjunction of one county wide or less.

The Piedmont-Coastal Plain corridor for Taenidia integerrima (Fig. 12) appears to be located along the James River. For Scutellaria ovata (Fig. 11) the individual collections map shows that it was collected along the Appalachian Trail in the

Blue Ridge, and may represent a collecting artifact.

The second category consisting of 9 species Tilia americana (Fig. 14),

Veronica anagallis-aquatica (Fig. 15), Athyrium thelypteroides (Fig. 16), Collinsonia canadensis (Fig. 17), Panax quinquefolius (Fig. 18), C elastrus scandens (Fig. 19), Pellea atropurpurea (Fig. 20), Aruncus dioicus (Fig. 21) and Ranunculus septentrionalis (Fig.

22) for which maps of individual collection locations did not make their disjunction more clear cut as they did for species in category 1. Atlas maps for

Athyrium thelypteroides (Fig. 16) and Collinsonia canadensis (Fig. 17) are nearly filled in across the state with only a 1 county gap. For these two species the gap is in the inner Coastal Plain and instead of the Piedmont. Ranunculus septentrionalis (Fig. 22) and Veronica anagallis-aquatica (Fig. 15) follow very m uch the same pattern as those species in category 1 subgroup 2, that is, there is a central Piedmont-Coastal Plain corridor of collected specimens. These species are placed in this second group because their individual collections map do not elucidate anything new that their Atlas maps does not show. Overall, the species in this category can still be considered disjunct because at some point in both 54 (Harvill et al. 1992). The black solid dots represent individual collection locations the and gray dots Virginia Flora Virginia indicate indicate counties where collections recorded are in the Atlas, but were not found in the herbarium specimens examined. This species’ map does not show This species’ map does not show more pronounced a disjunction than the Atlas map therefore and belongs to category 2. 55 ss<>> ■8 -G

«——

O 0 3

- § d3•I w'* V ■» 3 o .a ^

O - 2 r v R ociu M &0 > ^ £ £ *) .sp w indicate indicate counties where collections are recorded in the but Atlas, were not found in the herbarium specimens examined. pu o' This species’ map does not show more a pronounced disjunction than the Atlas map therefore and belongs to category 2. the Virginia Flora (Harvill et al. 1992). The solid black dots represent individual collection locations and the gray dots indicate counties where collections are recorded in the Atlas, but were not found in the herbarium specimens examined. This species’ map does not show a more pronounced disjunction than the Atlas map and therefore belongs to category 2. 57

^ CO _ : CN -4—> O ^ b •I -T3 •a § bo 2n cO CvS \£3 ho o& 2 2 SX O •3 <8 sx g }-i <2 X ro WO • o £3 O o 0/5 *2 £3 .2 Js Oo 2 Oi d> o £3 CD -y **, * ' • ; V y V-t O O yV * * \* * - / '; - 'Zl£3 ^On & g (+* * • *al 'r %♦ f * O On co • "v* *-{2 CO y * , x. *'t.• ^v» • o O ^ w * 0> or cO -K O /«>V* X ♦ X o -t—> o> ^ o r2 * 1 8 no •g no £3 cx • rH a go cO <4-1 o o •S s cTp4 .« § "co s . 1 IO *8 O r - -*-i« O-t o . &> cO co W> cu .2 22 E « . a h 58

c*> qj> g

fta> cs^ c3

-a

SV 5-< --ir -/fr.M' «*•o 33IM w CS3 < 2 as 23 ft a Of*

CD _ j 5CO x a Cd . 0) o a & aco «3 O * 5 4> aCD cobo .2 a Qe T3s o o <£h a 1) ’7? M «* • r H a (Z3 s 2 CD O .2 £ H CD s_, cd c d Vh 0 o 4Th 3 43 f i , . s S S2 «a § • § g a 6 "3 ,0 T2 a ^-t—> <^ £ | O CD h .> ; * £ « H 2 a cd cd 1 - sj £ £ <3 So o

GO o a & g *-' cd a

tH> CO < f CO ^ 7 ; ^ • r -l «s o CD 'O Q) Tl ^ T 3 j

»3 V 3 +O -> ”0 Cd feb

Vh * 1-Ho -*-* O h cd o S' o

Si3 .1 £ 3 a I a 1)& q -H 0)a ■s

Vi •acd 42 3 (Z3 £ TJ * o 'cd

O cd ♦ ?/''A/ V/ *. 1 V-, / 0) •3 r—« • **-< T3 ■SSI' a I • 1 H P3 tt. 2* <+H g a e O 2 S :2 e S g ^ S' ^ mm 2 « s S MW *S{ <3 St. s- :i DO S ? indicate indicate counties where collections are recorded in the Atlas, but not were found in the herbarium specimens examined. E £ This species’ map does not show more a pronounced disjunction than the Atlas map therefore and belongs to category 2. 61

_ : \ +-> .afl o60 X O S p cy t3 XCu -*—* S3 Co >» * 3 B *-l 05 O 33 £ C ^ s 12 O 0) 43 T3 o £ e c h ;g cj 03 P o lH0) rO o P. <^ *1—f ‘5? R •8 a) t3 g rS ^3 o (D }-i cd o c2 x> ro S3 a> o P23 ^T3 3 a 'H o o o t-H ; O r v cd a> o Vh >•>> H ,/•, >»/ •;*' y \• a ^ | ’43o CN V * , * O ON . - -T- O J 2 o cd +-» 0 o ’cd a> a St T 3 i ■' I J-l8 »3 fll nd 1 > Td a P h • f-H PC c+-t Sf2 60 o - S A g - I 1 M s ^ Io - o p « ■2 -I-* P-I C4 -S cd 02 t b - . a £ £ 1^ 62 03 ■+->OT T3a "tJ o

a * o 'f->o i- H f— I & oO 3 ■§ > •- cjH <3 .5 R O <0cs C/3 £ : 5? s—1 >1 C/3 '»->o -O a o o a cat a a 3 a 3 3C/3 . £ 5^•§>■» MJ O *■§ M 3 S£ <+H k, 3K3 <£ O- S> O 21 w* o**T* . St I £? s

» c ; indicate indicate counties where collections are recorded in the Atlas, but were not found in the herbarium specimens examined. B-i o' This species’ map does not show more a pronounced disjunction than the Atlas map and therefore belongs to category 2. 63

map types there is a significant gap from the mountains or Piedmont to the

Coastal Plain, usually only 1 or 2 counties wide, but sometimes 3-4 counties

wide.

The third category is the smallest, with three less disjunct species whose

distributions are filled in across the state or are patchy throughout the Piedmont

and Coastal Plain. The map of Agrimonia pubescens (Fig. 23) illustrates the first

case and the of maps of Hexalectris spicata (Fig. 24) and Juglans cinerea (Fig. 25)

illustrate the second case. Collections of Hexalectris spicata in the central

Piedmont have been added since the publication of the Atlas of Virginia Flora

(Harvill et al. 1992), somewhat filling in its distribution throughout the state.

Still, there are places in the central Piedmont and Coastal Plain where there are 2

and 3 county wide gaps in their distribution. Juglans cinerea (Fig. 25) on the other

hand, appears to be fairly evenly spread across the state, even if that distribution

is sporadic.

Results from the Ground Layer Sampling

Phytogeographical and Floristic Considerations

Disjunct Species and their Occurrence

All species that occurred in the plots within the ravines studied, both

calcareous and non-calcareous, are recorded in Table 6. The mountain disjunct species encountered were a mix of woody and herbaceous species and their occurrences are recorded in Table 7. All disjunct species occurred in calcareous ravines, except for the acidophile Galax urceolata, present only in one non- 64 ■s

03 J3 -+->O rO > 43 c<3 - & .3 43I 03 s <« Oa.h £«* 3 -2 Va>h -2 ■§ • rH T3 .§ S x . C ffi 3as ? «** C J <4-1O ¥ § \ - £ O ^ CNCO -5 bO. .£/bo • ^-4 kT"* category category 3. pH ^ indicate counties where collections recorded are in the Atlas, but were not found in herbarium the specimens examined. This species’ map is nearly filled in across the state and it’s disjunct status is in question and; therefore it belongs to HEXALSCTRIS ♦ sJV V ^ y i a . V v / / r < f v ^ •>* S 'd "S Cw T3 jD ;s fS & -S- :§ -S •I a - « ^ ■2 .2 f g - ^ 73 J s ^ ^ <—• P O P CNI•P P " cd ’"© r. • i-j S *-• •S3 C+H W 3 ° ■a “ S ffi•S •M CO O ^ § ^ S .S s E ^ S S § &.g s r i Cd ’"rt s Q § cd O - CD . o O CD O'* > > 3 P C3 O OJ) 5^73 . So -2 So . o o £ ’T3 -P s 75 N O 1 s *s s ,P P ° p o 8 P w +-»O

g p § ^ vh -s rj

j f ■-2 CD

'P >, ^ S 2 rS oo P - 03 *3 * & Is *fi x> _ § 13*§ - I O P ^ K 2 *g•S £ f 2 •fi *9 Pi e 2 p O CD OT1 P P i P CO S •/?w '*-* g ! ?XD U p CD o s P o oo ccj>> o i-H

65 66

P ^3 O P -4«i -(-»• >—i p ° o O' ^ §X is Vj ^ H ■3 2 c/> a $3 > nd 43 S cd s a, O t« cn £5 $3 C/3 O &c s Pa <«0) o s C\ ? - 5 O r* • *"""} 5-i ’—" £ <2 £ s§• |I o J 43 ^ ^ <+3 o H .S 5-1 ._, a ^ s 3 S 4do 5-h 03 .S <^> <2 3 rO -4-1 H a cd i d *33O CN , - N &> ^ O O N 0 > O N .2■4—> 3’p o <1>O g*Q-i 33 c/a 0 3 o *! 3 o p ’TO ^ 53 \£jo * • T“* disjunct. IS the Piedmont there places are where there are 2 and 3 county gaps. For this reason this species may still be considered 67

Table 6. Herbaceous and woody seedling species identified in study plots of the calcareous and non-calcareous ravines. The two and three letters indicate the site and the number indicates the ravine; these codes are referred to as ravine codes. Disjunct species are underlined. The species found in the upland edge plots of calcareous ravines are also included. The following are the sites used in the study and the counties in which they are found: College Woods, James City Co.; Grove Creek, James City Co; Hickory Fork Rd., Gloucester Co.; Cheatham Naval Annex, York Co.; Chippokes Plantation St. Park, Surry Co.; Hickory Hollow in Cabin Swamp, Lancaster Co. and the Casey Tract, James City Co. Species for Hickory Fork Rd. ravines HF-9 and HF-10 are listed under one heading in this table because of their close proximity to one another.

Calcareous Ravines

CW-1, College Woods ,Actaea pachypoda Ravine Acer rubrum, Actaea pachypoda. Adiantum pedatum, Asarum canadense, Aster sp. Brachyelytrum erectum, Carex sp., Circaea lutetiana, Cornus florida, Dicanthelium boscii, Euonymus americanus, Fagus grandifolia, Galium triflorum, Lindera benzoin, Liriodendron tulipifera, Lonicera japonica, Lycopus americana, Pinus taeda, Polygonatum biflorum, Polystichum acrostichoides, Prunus serotina, Quercus alba, Quercus rubra, Quercus velutina, Toxicodendron radicans, Vaccinium spp., Viburnum acerifolium, Viola sp., Vitis rotundifolia

CW-2, College Woods, Ponthieva racemosa Ravine Acer rubrum, Aruncus dioicus. Asarum canadense, Brachyelytrum erectum, Carpinus caroliana, Carya cordiformis, Cornus florida, Desmodium glutinosum. Dicanthelium boscii, Fraxinus pennsylvanica, Liriodendron tulipifera, Luzula acuminata, Nyssa sylvatica, Parthenocissus quinquefolia, Polystichum acrostichoides, Quercus alba, Sanguinaria canadensis, Solidago flexicaulis, Solidago caesia, Vaccinium spp., Viburnum acerifolium, Viola sp., Vitis aestivilus

CW-3, College Woods, Aruncus dioicus "G orge" Acer rubrum, Agrimonia sp., Arisaema triphyllum, Aristolochia serpentaria, Aruncus dioicus , Asarum canadense, Asimina triloba, Brachyelytrum erectum, Carpinus caroliniana, Carya cordiformis, Cimicifuga racemosa, Cornus florida, Desmodium glutinosum, Desmodium nudiflorum, Fuonymus americanus, Fagus grandifolia, Galium circaezans, Hepatica americana, Hieracium gronovii, Liriodendron tulipifera, Lonicera japonica, Luzula acuminata, Mitchella repens, Parthenocissus quinquefolia, Polygonatum biflorum, Polystichum acrostichoides, Prunus serotina, Prynanthes spp., Senecio aureus, Solidago caesia, Toxicodendron radicans Vaccinium spp.

CW-4, College Woods, Aralia nudicaulis Ravine Acer rubrum, Amphicarpa bracteata, Aralia nudicaulis. Aristolochia serpentaria, Boehmeria cylindrica, Cercis canadensis, Cicuta maculata, Cornus florida, Desmodium nudiflorum, Dicanthelium commutatum, Dioscorea villosa, Fuonymus americanus, Fagus grandifolia, Galium circaezans, Glyceria striata, Hexastylis virginiana, Impatiens capensis, Lonicera japonica, Luzula acuminata, Ly copus virginiana, Mitchella repens, Parthenocissus quinquefolia, Prunus serotina, Quercus alba, Sanicula sp ., Saururus cernuus, Senecio aureus, Toxicodendron radicans, Vaccinium spp., Virburnum acerifolium 68

Table 6. (continued)

CW-5, College Woods, Hexalectris spicata Ravine A grimonia pubescens. Amphicarpa bracteata, Anemone virginiana, Aristolochia serpentaria, Cercis canadensis, Cornus florida. Desmodium glutinosum, Dicanthelium boscii, Erigeron pulchellus, Fagus grandifolia, Galium circaezans, Hepatica americana, Hexalectris spicata. Liriodendron tulipifera, Lonicera japonica, Luzula acuminata, Lycopus europaeus, Matelea carolinensis, Nyssa sylvatica, Parthenocissus quinquefolia, Polymnia uvedalia, Prunus serotina, Quercus alba, Sanguinaria canadensis, Toxicodendron radicans, Uvularia perfoliatum, Vaccinium spp., Verononia glauca, Viburnum acerfolium, Vitis aestivalus

CW-6, College Woods, Aralia spp. Gorge Acer rubrum, Amphicarpa bracteata, Aralia nudicaulis. Aralia racemosa. Arisaema triphyllum, Aristolochia serpentaria, Asarum canadense, Brachelytrum erectum, Carpinus caroliniana, Carya cordiformis, Carya glabra, Desmodium glutinosum. Desmodium nudiflorum, Desmodium pauciflorum, Epifagus virginiana, Euonymus americanus, Fagus grandifolia, Hepatica americana, Hexastylis virginica, Lindera benzoin, Liriodendron tulipifera, Lonicera japonica, Luzula acuminata, Phegopteris hexagonoptera, Polysthichum acrostichoides, Prunus serotina, Prenanthes sp., Quercus alba, Quercus velutina, Smilicina racemosa, Solidago caesia, Toxicodendron radicans, Vaccinium spp., Viburnum acerifolium

GC-7, Grove Creek, Old Country Rd. Ravine Acer barbatum, Acer rubrum, Adiantum pedatum, Arisaema triphyllum, Asarum canadense, Asimina triloba, Aster sp., Athyrium thelypteroides. Botrychium virginianum, Brachyelytrum erectum, Carex bromoides. Carpinus caroliniana, Desmodium glutinosum. Dicanthelium commutatum. Dirca palustris, Equisetum hyemale, Euonymus americanus. Fagus grandifolia, Fraxinus sp ., Galium circaezans, Galium triflorum, Hieracium gronovii, Hepatica americana, Lindera benzoin, Liriodendron tulipifera, Lonicera japonica, Luzula acuminata, Mitella diphylla. Nyssa sylvatica, Panax quinquifolius. Parthenocissus quinquefolia, Pinus taeda, unknown Poaceae, Polygonatum biflorum, Polystichum acrostichoides, Prunus serotina, Prenanthes sp., Quercus velutina, Sanicula sp., Senecio aureus, Smilacina racemosa, Solidago flexicaulis. Solidago caesia, Thalictrum revolutum, Theylpteris noveboracensis,Viburum acerifolium

GC-8, Grove Creek, Fire Station Ravine Acer barbatum, Acer rubrum, Adiantum pedatum, Aralia racemosa. Arisaema triphyllum, Asarum canadense, Asimina triloba, Carex laevivaginatum, Carpinus caroliniana, Carya cordiformis, Cimicijuga racemosa, Circaea lutetiana, Decumaria barbara, Desmodium nudiflorum, Dicanthelium commutatum, Epifagus virginiana, Euonymus americanus, Fagus grandifolia, Fraxinus pennsylvanica, Galium circaezans, Glyceria striata, Goodyera pubescens, Hepatica americana, Hexastylis virginica, Hieracium gronovii, Hydrocotyle ranunculoides, Lindera benzoin, Liquidambar styraciflua, Liriodendron tulipifera, Lonicera japonica, Luzula acuminata, Lysimachia ciliata, Mitchella repens, Microstegium vimineum, Mikania scandens, Mimulus alatus, Murdannia keisak, Nyssa sylvatica, Oldenlandia spp., Parthenocissus quinquefolia, Phegopteris hexagonoptera, unknown Poaceae, Polygonum sp., Polystichum acrostichoides, Prunus serotina, Prenanthes spp., Quercus rubra, Quercus velutina, Samolus parviflorus, Sanguinaria canadensis, Sanicula spp., Saururus cernuus, Senecio aureus, Smilacina racemosa, Solidago flexicaulis, Solidago caesia, Toxicodendron radicans, Ulmus rubra, Veronica anagallis-aquatica. Viola sp. 69

Table 6 (continued)

HF-9 and HF-10, Hickory Fork Rd. A ralia racemosa and Desmodium glutinosum Ravines Acer rubrum, Agrimonia spp., Amphicarpa bracteata, Aralia racemosa. Arisaema triphyllum, Asarum canadense, Asimina triloba, Athyrium felix-femina, Botrychium virginianum, Carpinus caroliniana, Carya spp., Cercis canadensis, Cornus florida, Cryptotaenia canadensis, Desmodium glutinosum. Desmodium nudiflorum, Desmodium sp., Dicanthelium commutatum, Dioscorea villosa, Euonymus americanus, Fagus grandifolia, Galium circaezans, Goodyera pubescens, Impatiens capensis, Lindera benzoin, Liriodendron tulipifera, Lonicera japonica, Lorinseria areolata, Luzula acuminata, Ly copus americana, Mitchella repens, Monotropa uniflora, Nyssa sylvatica, Parthenocissus quinquefolia, unknown Poaceae, unknown Poaceae, Podophyllum peltatum, Polygonatum biflorum, Polystichum acrostichoides, Ponthieva racemosa, Prunus serotina, Saguinaria canadensis, Sanicula canadensis, Selaginella apoda, Senecio aureus, Smilacina racemosa, Solidago caesia, Toxicodendron radicans, Uvularia perfoliatum, Viola sp., Vitis rotundifolia

CNA-11, Cheatham Naval Annex, Aralia racemosa Ravine Acer rubrum, Aralia racemosa. Asimina triloba, Bignonia capreolata, Carex spp., Carpinus caroliniana, Circeae lutetiana, Cornus florida, Decumaria barbara, Dioscorea villosa, Diospyros virginiana, Elephantopus tomentosum, Fagus grandifolia, Fraxinus pennsylvanica, Hepatica americana, Hexastylis virginiana, Luzula acuminata, Mitchella repens, Myrica cerifera, Parthenocissus quinquefolia, Phryma leptostachya, unknown Poaceae, Polygonatum biflora, Polystichum acrostichoides, Prunus serotina, Quercus alba, Quercus falcata, Sanicula gregaria, Saururus cernuus, Smilicina racemosa, Solidago flexicaulis. Toxicodendron radicans, Viburnum acerifolium, Viola spp., Vitis rotundifolia

CNA-12, Cheatham Naval Annex, A thyrium pycnocarpon Ravine Acer rubrum, Arisaema triphyllum, Aristolochia serpentaria, Asmina triloba, Aster sp., Athyrium pycnocarpon. Boehmeria cylindrica, Carex spp., Carpinus caroliniana, Carya cordiformis, Cercis canadensis, Cornus florida, Desmodium nudiflorum, Dicanthelium boscii, Diospyros virginiana, Duchesnea indica, Elephantopus tomentosum, Euonymus americanus, Fraxinus pennsylvanica, Galium triflorum, Galium cicaezans, Hexastylis virginiana, Liquidambar styraciflua, Liriodendron tulipifera, Lonicera japonica, Luzula acuminata, Mitchella repens, Parthenocissus quinquefolia, Phyrma leptostachya, Poasp., Polystichum acrostichoides, Ponthieva racemosa, Prunus serotina, Ranunculus hispidis, Smilax rotundifolia, Smilicina racemosa, Toxicodendron radicans, Viburnum acerifolium, Viola sp.

CP-13, Chippokes Plantation St. Park, Athyrium pycnocarpon Ravine Acer rubrum, Aralia spinosa, Arisaema triphyllum, Athyrium pycnocarpon. Berchemia scandens, Bignonia capreolata, Botrychium dissectum, Botrychium virginianum, Carex bromoides, Carex spp., Carpinus caroliniana, Carya cordiformis, Circaea lutetiana, Cornus florida, Decumaria barbara, Desmodium spp., Epifagus virginiana, Euonymus americanus, Eupatorium coelestinum, Fagus grandifolia, Fraxinus pennsylvanica, Ilex opaca, Lindera benzoin, Liquidambar styraciflua, Lonicera japonica, Matelea carolinensis, Mitchella repens, Microstegium vimineum, Oxalis stricta, Parthenocissus quinquefolia, Phegopteris hexagonoptera, Polystichum acrostichoides Quercus michauxii, Quercus velutina, Ranunculus hispidis, Sanicula canadensis, Senecio aureus, Toxicodendron radicans, Vitis rotundifolia 70

Table 6 (continued)

CP-14, Chippokes Plantation St. Park , Hexalectris spicata Ravine Acer rubrum, Arisaema triphyllum, Berchemia scandens, Carex bromoides, Carex spp., Carpinus caroliniana, Carya cordiformis, Cimicifuga racemosa, Circaeae lutetiana, Desmodium pauciflorum, Desmodium sp., Dicanthelium boscii, Drypoteris celsa, Elephantopus carolinianus, Elephantopus tomentosa, Euonymus americanus, Fagus grandifolia, Fraxinus pennsylvanica,Galium circaezans, Hexalectris spicata , Hydrocotyle ranunculoides, Ilex opaca, Lindera benzoin, Lonicera japonica, Matelea caronlinensis, Oxalis stricta, Partheocissus quinquefolia, Phyrma leptostachya, Polystichum acrostichoides, Ponthieva racemosa, Prunus serotina, Quercus velutina, Salvia lyrata, Sanguinaria canadensis, Sanicula gregaria, Sassafras albidum, Smilax bona-nox, Smilicina racemosa, Thalictrum revolutum, Toxicodendron radicans, Vitis rotundifolia

CS-15, Hickory Hollow, Cabin Swamp Acer rubrum, Amelanchier arborea, Amphicarpa bracteata, Antennaria solitaria, Apios americana, Arisaema triphyllum, Asimina triloba, Aster sp., Caltha palustris, Cardamine bulbosa, Carex blanda, Carex crinita, Carpinus caroliniana, Carya pallida, Cicuta maculata, Claytonia virginica, Desmodium glutinosum, Desmodium sp., Dicanthelium boscii, Dioscorea villosa, Euonymus americanus, Fagus grandifolia, Galium obtusum, Galium triflorum, Gaylussacia baccata, Gaylussacia frondosa, Geum canadense, Hexastylis virginica, Impatiens capensis, Itea virginica, Lindera benzoin, Liquidambar styraciflua, Liriodendron tulpifera, Luzula echinata, Mikania scandens, Mitchella repens, Monotropsis odorata, , Oxypolis rigidior, Parthenocissus quinquefolia, Phegopteris hexagonoptera, Poa autumnalis, Polygonum sagittatum, Polygonum virginianum, Quercus alba, Quercus rubra, Ranunculus hispidus, Rhododendron sp., Rudbeckia laciniata, Sanicula sp., Saururus cernuus, Scutellaria elliptica, Senecio aureus, Symplocarpus foetidus, Smilax bona-nox, Smilax hispida, Solidago rugosa, Solidago sp., Sphenopholis obtusata, Thelypteris palustris, Toxicodendron radicans, Ulmus rubra, Ulmus sp., Uvularia sessilifolia, Vaccinium pallidum, Veratrum viride, Viburnum prunifolium. Viola conspersa, Viola cucullata, Viola sororia, Viola sp., Vitis sp.

Non-Calcareous Ravines

CT-16, Casey Tract, Ravine #1 Acer rubrum, Carpinus caroliniana, Carya cordiformis, Dicanthelium commutatum, Diospyros virginiana, Euonymus americanus, Euphorbia corollata, Fagus grandifolia, Liquidambar styraciflua, Liriodendron tulipifera, Mitchella repens, Parthenocissus quinquefolia, Poa sp., Prunus serotina, Quercus alba, Quercus velutina, Sassafras albidum, Smilicina racemosa, Vaccinium spp., Vitis rotundifolia

CT-17, Casey Tract, Ravine #2 Acer rubrum, Amelanchier arborea, Arisaema triphyllum, Bignonia capreolata, Carex sp., Carpinus caroliniana, Carya cordiformis, Diospyros virginiana, Euonymus americanus, Fraxinus pennsylvanica, Lindera benzoin, Liquidambar styraciflua, Lonicera japonica, Magnolia virginiana, Matelea carolinensis, Mitchella repens, Osmunda regalis; Parthenocissus quinquefolia, Quercus alba, Senecio aureus, Smilicina racemosa, Ulmus americana, Vaccinium spp., Vitis rotundifolia, areolata

CW-18, College Woods, Galax urceolata Ravine Acer rubrum, Chimaphila maculata, Fagus grandifolia, Galax urceolata, Hexastylis virginica, Hieracium gronovii, Lorinseria areolata, Luzula acuminata, Mitchella repens, Osmunda cinnamomea, Oxydendron arboreum, Prunus serotina, Quercus velutina, Vaccinium spp. 71

Table 7. The calcareous sites and ravines where disjunct species are located. Occurrence of species at sites indicates the number of general locations in the study in which the species was found. Occurrence in ravines refers to how many ravines in the study in which the species was present. Sites and ravines lists the general location of the ravine first (underlined) and the name of the ravine in which the species was found second. The species are listed in order of those occuring at the greatest number of sites. The sites in the study are as follows: Grove Creek, James City Co; College Woods, James City Co.; Cheatham Naval Annex, York Co.; Hickory Fork Rd., Gloucester Co.; Chippokes Plantation St. Park, Surry Co.; and Hickory Hollow in Cabin Swamp, Lancaster Co. The ravine codes from Table 6 are listed after each entry. One mountain disjunct species Galax urceolata occurred in one non-calcareous ravine in the College Woods called the Galax urceolata Ravine (CW-18).

Occurrence o f species Disjunct Species at Sites in Ravines Sites and Ravines

Quercus 5 /6 5/15 Grove Creek: Fire Station and Old muehlenbergii Country Rd. Ravines (GC-8 & GC-&7) College Woods: Aruncus dioicus Gorge (CW-3) HickorvFork Rd. Desmodium glutinosum Ravine (HF-10) Chippokes Plantation St. Park: Hexalectris spicata Ravine (CP-14)

Desmodium glutinosum 4/6 7/15 Grove Creek: Fire Station and Old Country Road Ravines (GC-8 & GC-7) College Woods: Aralia nudicaulis Ravine, Ponthieva racemosa Ravine (CW-4 & CW-2) Hickory Fork Rd.: Desmodium glutinosum Ravine, Aralia racemosa Ravine (HF-10 & HF-9) Cabin Swamp: Hickory Hollow Ravine (CS-15)

Aralia racemosa 3 /6 3/15 Grove Creek: Fire Station Ravine (GC-8) College Woods: Aralia spp. Gorge (CW-3) Hickory Forks Rd.: Aralia racemosa Ravine (HF-9) 72

Table 7. (continued)

Occurrence o f species Disjunct Species at Sites in Ravines Sites and Ravines

Solidago flexicaulis 3 /6 4/15 GroveCreek: Fire Station and Old Country Road Ravines (GC-8 & GC-7) College Woods: Ponthieva racemosa Ravine (CW-2) Cheatham Naval Annex: Aralia racemosa Ravine (CNA-11)

Aruncus dioicus 3 /6 3/15 Grove Creek: Fire Station Ravine (GC-8) College Woods: Ponthieva racemosa Ravine (CW-2) College Woods: Aruncus dioicus Gorge

Veronica 2 /6 2/15 Grove Creek: Fire Station Ravine anagallis-aquatica (GC-8) Hickory Fork R d Aralia racemosa Ravine (HF-9)

Dirca palustris 2 /6 2/15 Grove Creek: Fire Station and Old Country Rd. Ravines (GC-8 & GC-7) Known to occur in Chippokes Plantation St. Park near the Hexalectris spicata Ravine, but was not in the sampled ravine.

Magnolia tripetala 2 /6 2/15 Grove Creek: Fire Station Ravine (GC-8) Hickory Forks Rd.: Desmodium glutinosum Ravine (HF-10)

Agrimonia pubescens 2 /6 2/15 College Woods: Hexalectris spicata Ravine (CW-5) Hickory Fork Rd.: Desmodium glutinosum Ravine (HF-10) 73

Table 7. (continued)

Occurrence o f species Disjunct Species at Sites in Ravines Sites and R avines

Magnolia tripetala 2/6 2/15 Grove Creek: Fire Station Ravine (GC-8) Hickory Fork Rd.: Desmodium glutinosum Ravine (HF-10)

Cornus alternifolia 2 /6 2/15 College Woods: Actaea pachypoda Ravine (CW-1) College Woods: Ponthieva racemosa Ravine (CW-2) Known to occur in Cabin Swamp, but was not in the sam pled ravine.

Athyrium 2/6 2/15 Cheatham Naval Annex: pycnocarpon Athyrium pycnocarpon Ravine (CNA-12) Chippokes Plantation St. Park: Athyrium pycnocarpon Ravine (CP-13)

Carex bromoides 2/6 2/15 Grove Creek: Old Country Rd. Ravine (GC-7) Chippokes Plantation St. Park: Athyrium pycnocarpon Ravine (CNA-12)

Hexalectris spicata 2 /6 2/15 College Woods: Hexalectris spicata Ravine (CW-5) Chippokes Plantation St. Park: Hexalectris spicata Ravine (CP-14)

Tilia americana 1/6 1/15 Grove Creek: Old Country Rd. and Fire Station Ravines (GC-7 & GC-8) This species is also known to occur in the College Woods, but was not in any sampled ravine.

Aralia nudicaulis 1/6 1/15 College Woods: Aralia nudicaulis Ravine (CW-4) 74

Table 7. (continued)

Occurrence o f species Disjunct Species at Sites in Ravines Sites and Ravines

Panax quinquifolius 1/6 1/15 Grove Creek: Old Country Rd. Ravine (GC-7)

Mitella diphylla 1/6 1/15 Grove Creek: Old Country Rd. Ravine (GC-7)

Athryium 1/6 1/15 Grove Creek: Old Country Rd. thelypteroides Ravine (GC-7)

Stewartia ovata 1/6 1/15 Grove Creek: Old Country Rd. Ravine (GC-7)

Euonymous 1/6 1/15 College Woods: Near Aralia atropurpureus nudicaulis Ravine (CW-4)

Actaea 1/6 1/15 College Woods: Actaea pachypoda pachypoda Ravine (CW-1)

Viola conspersa 1/6 1/15 Cabin Swamp: Hickory Hollow Ravine (CS-15)

Veratrum viride 1/6 1/15 Cabin Swamp: Hickory Hollow Ravine (CS-15)

Monotropsis odorata 1/6 1/15 Cabin Swamp: Hickory Hollow Ravine (CS-15) calcareous ravine. The disjunct species in calcareous ravines occurred on ravine

slopes with these exceptions. Veronica anagallis-aquatica is a floodplain species,

and Magnolia tripetala and Solidago flexicaulis extended from the slopes out onto

the immediately adjacent upland of the ravine, and Monotropsis odorata was

found only in one plot of the immediately adjacent upland. All herbaceous

disjunct species were present in the ravines only sporadically and even when

present, were usually not in dense or large colonies. Athyrium pycnocarpon, a

mountain disjunct species, is an exception to this situation because it did occur in

large colonies. Quercus muehlenbergii, occurred at 5 of the 6 study sites, but only 5

of 15 studied calcareous ravines, and Desmodium glutinosum occurred at fewer (4)

of the 6 study sites, but in m ore ravines (7). Solidago flexicaulis,, Aralia racemosa,

and Aruncus dioicus occurred at 3 study sites (Table 7). The sites with the most

mountain disjuncts were Grove Creek with 15 species and the College Woods

with 13 species. Such numbers are sums of all ravines at a site, because

'individual ravines were unlikely to contain all the disjuncts present at a site.

Some of the ravines examined contained only one or two disjunct species, like

the Aralia racemosa Ravine at Cheatham Naval Annex (10-CNA), (see Table 6 for

ravine names and codes) with Solidago flexicaulis and Aralia racemosa, and the

Aralia spp. "Gorge" in the College Woods (CW-6 ) with Aralia racemosa and

Desmodium glutinosum. The presence of any one disjunct species was not a good

indicator of which other disjunct species were likely to be present (Table 7 and

pers. obs.). However, two mountain disjunct species, Aruncus dioicus and

Solidago flexicaulis, were found together in 3 ravines (Table 7). 76

Associated and Exotic Species

Some species have continuous distributions across Virginia but in the Coastal

Plain are largely confined to ravines so that they are regularly associated with disjunct species.

Associated non-disjunct species commonly found in the calcareous ravines include Asarum canadense, Adiantum pedatum, Phegopteris hexagonoptera,

Dicanthelium boscii, Dicanthelium commutatum, Brachyelyctrum erectum, and Luzula acuminata var. carolinae. However, many of the other species found associated with disjuncts in the ravine communities are found throughout the Coastal Plain in a variety of habitats. Some of these species are Euonymus americana, Galium circaezans, Parthenocissus quinquefolia, Toxicodendron radicans, and Polystichum acrostichoides. Also included in this group are several tree species that occurred as seedlings in the ground layer plots, such as Cornus florida, Quercus alba, Fagus grandifolia, Quercus rubra, Quercus velutina, and Carpinus caroliniana. It is worth mentioning that in almost all of the ravines examined, both calcareous and non- calcareous, exotic invasive species like Lonicera japonica and Microstegium vimineum were present, with the first species usually not comprising a significant cover, and the latter being densely abundant and vigorous where present.

Murdannia keisak, the only other exotic species, was present at one site in a ravine floodplain. 77

Other Phytogeographically Significant Species: Rare Species and those at their Northern Limit

The calcareous ravines investigated in this study are home to species that in addition to being disjunct are rare throughout the state. Most notable are

Hexalectris spicata and Panax quinquefolius. These species were found at the following sites: College Woods, James City Co.; Chippokes Plantation St. Park,

Surry Co. and Grove Creek, James City Co. (Table 6).

Several species at their northern most range inhabiting the calcareous ravines are Ponthieva racemosa, Decumaria barbara, Berchemia scandens and Acer barbatum (Ware and Ware 1992). These species occur in my study plots at Grove

Creek, James City Co.; Hickory Fork Rd., Gloucester Co.; Cheatham Naval

Annex, York Co.; College Woods, James City Co.; and Chippokes Plantation St.

Park, Surry Co. (Table 1). Several species were found only in non-calcareous ravines. Galax urceolata, considered a mountain disjunt species, was found in one acidic ravine in the College Woods, James City Co. The ravine in which this species present is called the Galax urceolata Ravine in Table 6. Other species that were present in this ravine but not in any of the calcareous ravines are Osmunda cinnamomea and Lorinseria areolata. The latter species also occurred in another non-calcareous ravine called the Casey Tract Ravine #2 (Table 6). Two other species occurring in the non-calcareous Casey Tract Ravines and not in any of the calcareous ravines are Euphorbia corollata and Osmunda regalis (Table 6). 78

Effects ofHerbivory

In all of the study sites deer grazing was evident. The intensity of grazing seemed to be greater along the slopes of the calcareous ravines than on the associated uplands of the ravines. Deer grazing was documented on the mountain disjunct species Solidago flexicaulis and Actaea pachypoda. Herbivory was present in the non-calcareous ravines, but to a much lesser extent.

Soil pH of the Calcareous and Non-Calcareous Ravines

The soil pHs for the calcareous ravines are recorded in Table 8, and for the non-calcareous ravines in Table 9. Other soil variables are listed in Appendix D.

The upland edge plots of the calcareous ravines were the most acidic with pHs ranging from 4.2-5.8, with a median of 4.8, and the ravine floors/floodplains were most basic with pHs from 5.8-7.0, with a median of 6.5. The pH values of the slopes of the calcareous ravines have the widest range (4.1- 7.4), with a median of 6.1. While there is much overlap in pH ranges of the calcareous slopes and associated uplands, the median values suggest that a pH difference exists between the uplands and the slopes of the calcareous ravines. In a previous study of 27 stands in upland hardwood forests in Virginia's Coastal Plain

(DeWitt and Ware 1979), soil pH ranged from 4.3 to 5.6 with only five stands with pH > 5.0. The median pH value of uplands associated with calcareous ravines fits into the range that DeW itt and Ware (1979) found; how ever the pH medians for slopes (6.1) and floodplains (6.5) in calcareous ravines were higher than any values Dewitt and Ware (1979) found for the stands they studied. For this reason, the slope and floodplain soil pH medians, 6.1 and 6.5 respectively, 79

Table 8. Soil pH for the calcareous ravines and associated uplands. When more than one portion of a topographic feature was sampled, more soil samples were gathered. The pH values in each column are listed in order of most basic to acidic. N /A indicates ravines that did not have that topographic feature or there was no appropriate place for a plot.

Site, Ravine and Ravine Upland Slope Ravine Floor Code Grove Creek, 4.4,4.3,4.2 6.5,6.4,6.2,5.5, 6.6 Fire Station Ravine, GC-8 4.9, 4.8

Grove Creek, Old Country Rd., GC-7 5.7,5.4,4.7 6.7,5.2 6.2

Cheatham Naval Annex, Aralia racemosa Ravine, CNA-11 4.4, 4.7 6.9,6.1

Cheatham Naval Annex, Athyrium pycnocarpon Ravine, CNA-12 5.2 4.7 6.1,5.8

Chippokes Plantation St. Park, Hexalectris spicata Ravine, CP-14 4.7 7.0 7.0

Chippokes Plantation St. Park, Athyrium pycnocarpon Ravine, 4.4 6.0,5.2 7.0 CP-13

College Woods, Aralia nudicaulis Ravine, CW-4 4.6 7.1 6.5

College Woods, Aruncus dioicus Gorge, CW-3 4.9 7.4 N /A

College Woods, Aralia spp. Gorge, CW-6 4.4 6.4,4.7 N/A

College Woods, Ponthieva racemosa Ravine, CW-2 5.3 7.4 N /A

College Woods, Hexalectris spicata Ravine, 4.9 6.5,6.0 N /A CW-5

Hickory Fork Rd., Aralia racemosa Ravine, HF-9 4.7 6.4 N/A 80

Table 8 (continued)

Site, Ravine and Upland Slope Ravine Floor Ravine Code Hickory Fork Rd, Desmodium glutinosum Ravine, HF-10 5.8 4.8 N/A

College Woods, Actaea pachypoda Ravine, 4.9 7.1 N/A CW-1

Cabin Swamp, N/A 4.6,41 6.1,5.1 Hickory Hollow, CS-15 81

Table 9. Soil pH for the non-calcareous ravines. N /A indicates there was no appropriate place for a plot.

Site, Ravine and Ridge Slope Ravine Floor Ravine Code Casey Tract, Ravine #1, CT-16 4.5 4.4 4.4

Casey Tract, Ravine #2, CT-17 4.6 4.3 4.6

College Woods, Galax urceolata Ravine, CW-18 3.9 4.1 N /A 82

are considered rather high for this region. Therefore, pH values between 5.0 and

6.1 are treated here as m oderately high and pH values < 5.0 are considered as

normal for the Coastal Plain soils. The mountain disjunct species and their

associated soil pHs (Table 10) indicate that these species as a group occurred on a

range of soil pHs that were much higher than the average for uplands for the

Coastal Plain in general. Most mountain disjunct species, including Solidago flexicaulis, Hexalectris spicata, Aralia racemosa, Aruncus dioicus, Veronica anagallis-

aquatica, Euonymus americanus, Cornus alternifolia, Aralia nudicaulis, Actaea

pachypoda, Carex bromoides, Veratrum viride and Viola conspersa occurred

consistently on high to moderately high pH soils in all study sites (Table 10).

Species such as Desmodium glutinosum, Magnolia tripetala, Dirca palustris,

Agrimonia pubescens, Quercus muehlenbergii and Athyrium pycnocarpon were in

found primarily in high to moderately high soil pH, but also occasionally in low

pH soil. Panax quinquifolius, Tilia americana, Athyrium thelypterioides, and Mitella

diphylla occurred in only moderately high pH soil. Two mountain disjunct

species, Galax urceolata and Monotropsis odorata, occurred strictly on low pH soil

(3.9, 4.1). The pH values of the floodplains, slopes and associated uplands of

non-calcareous ravines are consistently acidic (3.9 - 4.6) with no pH differential

between the associated uplands, slopes, and ravine floors of these ravines (Table

9). 83

Table 10. Mountain Disjunct Species and Soil pH. These pH values represent collections taken along the upland, slopes and floodplains where the disjunct plants occurred in the ravine. The following codes indicate the study sites (as in Table 6): Grove Creek (GC), College Woods (CW), Hickory Fork Rd. (HF), Cheatham Naval Annex (CNA), Chippokes Plantation St. Park (CP) and Cabin Swamp (CS). All ravines listed are calcareous except for the Galax urceolata Ravine in the College Woods. ______

Disjunct Species Site & Ravine Code, Ravine and Plot pH Position

Desmodium glutinosum GC-7, Old Country Rd, slope 6.7 CW-2, Ponthieva racemosa Ravine, slope 7.4 CW-5, Hexalectris spicata Ravine, slope 6.0 CS-15, Hickory Hollow, slope 4.6

Veronica anagallis- aquatica GC-8, Fire Station, floodplain 6.6

Aralia racemosa GC-8, Fire Station, slope 6.5 CW-3, Aralia spp. Gorge, slope 6.4 HF-9, Aralia racemosa Ravine, slope 6.4 CNA-11, Aralia racemosa Ravine, slope 6.9

■Aralia nudicaulis CW-4, Aralia. nudicaulis Ravine, slope 7.1

Panax quinquefolius GC-7, Old Country Rd, slope 5.2

Hexalectris spicata CW-5, Hexalectris spicata Ravine, slope 6.0 CP-14, Hexalectris spicata Ravine, slope 7.0

Mitella diphylla GC-7, Old Country Rd, slope 5.2

Carex bromoides GC-7, Old Country Rd., floodplain 6.2 CP-13, Athyrium pyc. Ravine, floodplain 6.0

Athyrium thelypteroides GC-7, Old Country Rd., slope 5.2

Dirca palustris GC-7, Old Country Rd., slope 6.7 CP-14, Hexalectris spicata Ravine, slope 6.0, 5.2

Tilia americana GC-7, Old Country Rd, slopes 5.2

Magnolia tripetala GC-8, Fire Station, slope 6.6 HF-10, Desmodium glutinosum Ravine, 4.8 slope 84

Table 10. (continued)

Disjunct Species Site, Ravine and Plot Position PH

Stewartia ovata GC-7, Old Country Rd., slope 6.7

GC-8, Fire Station, slope 6.4, 6.5 GC-7, Old Country Rd., slope 6.7 Quercus muehlenbergii CW-3, Aruncus dioicus Gorge, slope 7.4 HF-9, Aralia racemosa Ravine, slope 6.4 CP-14, Hexalectris spicata Ravine, slope 6.0 CNA-12, Athyrium pyc. Ravine, slope 4.7

Aruncus dioicus GC-8, Fire station, slope 6.4 CW-2, Ponthieva racemosa Ravine, slope 7.4 CW-3, Aruncus dioicus Gorge, slope 7.4

Agrimonia pubescens CW-5, Hexalectris spicata Ravine, slope 6.0 HF-10, Desmodium glutinosum Ravine, 4.8 slope

Cornus altemifolia CW-1, Actaea pachypoda Ravine, slope 7.1 CW-2, Ponthieva racemosa Ravine, slope 7.4

Euonymus americanus CW-4, Aralia nudicaulis Ravine, floodplain 6.5 .

Athyrium pycnocarpon CNA-12, Athyrium pycn. Ravine, slope 4.7 CP-13, Athyrium pycno. Ravine, slope 6.5, 5.2

Actaea pachypoda CW-1, Actaea pachpypoda Ravine, slope 7.1

Solidago flexicaulis GC-8, Fire Station Ravine, slope 6.6 GC-7, Old. Country Rd., slope 5.2 CNA-11, Aralia racemosa Ravine, slope 6.9

Monotropsis odorata CS-15, Hickory Hollow, upland 4.1

Veratrum viride CS-15, Hickory Hollow, floodplain 6.1

Viola conspersa CS-15, Hickory Hollow, floodplain 6.1

Galax urceolata CW-18, Galax urceolata Ravine, slope 3.9 85

Detrended Correspondence Analysis Ordination of the Ground Layer Vegetation Plots

The initial DCA ordination was performed with all of the 66 ground layer study plots and included both calcareous and non-calcareous plots. Data on all ground layer plots are recorded in Appendix E. Ordination plot numbers and their corresponding sites and ravines are listed in Table 11. The resulting ordination is shown in Figs. 26 & 27. The eigenvalues for the first and second axes of the ordination are 0.766 and 0.593, respectively. Six of these variables were negatively correlated with the first axis at the P < 0.01 level. These were pH

(r = -0.5950), Ca (r = -0.5374), Mg (r = -0.5028), B (r = -0.3379), Mn (r = -0.3658), and K (r = -0.3074). The seventh variable, P (r = -0.2959), correlated negatively at the P < 0.05 level. Soil Fe was positively correlated with the first axis (r = 0.2936,

P < 0.05). Two soil variables also were significantly correlated with the second ordination axis at the P < 0.01 level. These were Mn (r = 0.4219) and B (r =

0.3370).

There is a clear segregation of plots along the first axis (Fig. 27) by topography from left to right: calcareous floodplain plots on the far left, calcareous slope plots mixed with some calcareous floodplain plots in the center of the ordination, (hereafter Group I) and upland edge plots of calcareous ravines mixed with the non-calcareous plots on the right half (hereafter Group II). The correlation of pH with the first axis of the ordination was highly significant, and this difference in soil pH of Group II versus Group I may contribute greatly 86

Table 11. Plot numbers for the ground layer data and their corresponding sites and ravines of calcareous and non-calcareous ravines. The plot numbers indicated on the DCA ordinations are listed below with their site, ravine locations and ravine code (Table 6). There is no plot number seven for a total of 66 herbaceous plots.

Plot numbers Site. Ravine and Ravine Code

1-4 College Woods, Actaea pachypoda Ravine, CW-1

5-6 Grove Creek, Old Country Rd. Ravine, GC-8

College Woods, Ponthieva racemosa Ravine, CW-2 8-11 12-15 College Woods, Aruncus dioicus Ravine, CW-3

Hickory Fork, Desmodium glutinosum Ravine, HF-10 16-19 20-22 Hickory Fork, Aralia racemosa Ravine, HF-9

23-27 Grove Creek, Fire Station Ravine, GC-7

College Woods, Aralia nudicaulis Ravine, CW-4 28-30 College Woods, Hexalectris spicata Ravine, CW-5 31-33 34-37 College Woods, Aralia spp. Ravine, CW-6

Chippokes Plantation St. Park, Athyrium pycnocarpon 38-42 Ravine, CP-13

Chippokes Plantation St. Park, Hexalectris spicata Ravine, 43-45 CP-14

Cheatham Naval Annex, Aralia racemosa Ravine, CNA-11 46-48 Cheatham Naval Annex, Athyrium pycnocarpon Ravine, 49-52 CNA-12

53-56 Casey Tract, Ravine #1, CT-16

57-59 Casey Tract Ravine #2, CT-17

60-63 College Woods, Galax urceolata Ravine, CW-18

64-67 Cabin Swamp, Hickory Hollow Ravine, CS-15 87

Fig. 26. DCA ordination of all 66 ground layer plots, including non-calcareous plots + , upland edge plots of calcareous ravines ♦ , calcareous slope plots A and calcareous floodplain plots •. Symbols that are open indicate plots containing disjunct species, often more than one. Most of the 22 plots containing disjunct species are slope plots. One upland edge plot (□ ) of a calcareous ravine on the right of the ordination contains one disjunct species, Monotropsis odorata, an acidophile, found only in that plot. The non- calcareous plots (O ) on the far right contain Galax urceolata, found only in those plots. 88

o o CO

O O LO

wP ■ o o

cn ‘x o < o oo

o o

CD

•r**Hcxb o o o o o o o o o o o LO oo OJ Z S|XV 89

Fig. 27. DCA ordination of all ground layer plots showing vegetational groups. Symbols represent ♦ non-calcareous plots, ■ upland edge plots of calcareous ravine, A calcareous slope plots, • calcareous floodplain plots. The calcareous floodplain plots are on the far left of the ordination and are dominated by Car ex bromoides (Cabr), Glyceria striata (Gist) and Caltha palustris (Capa). The calcareous slope plots (Group I) are distributed around the center of the ordination with a few of the other plot types. The upland edge plots of calcareous ravines are distributed into two groups along the first axis; the group II-B on the far right is due to high abundance of woody ericads and is mixed with the non-calcareous plots, and group II-A contains upland edge plots of calcareous ravines with two calcareous slope plots. Environmental variables (soil composition variables and aspect) that significantly correlate with the axes are listed in order of decreasing correlation coefficient. The direction of the arrow indicates a positive or negative correlation. The segregation of Group I and Group II is presumably due, in part, to the difference in soil pH between these two groups. 90

o o CD

P* 500 B,M n bo CO s u K

00 CO tf> X o < o a * 1 s™ 1 on P h P-h P h

o o C\J

o o

£ ob tE o o oO' o o o o o o ln on OvJ a ' w . Z sixv 91 to the differences in vegetation of these two groups. Group II, the upland edge plots of calcareous ravines and non-calcareous plots, segregate into two subgroups; one subgroup II-A with upland edge plots of calcareous ravines and two calcareous slope plots, and subgroup II-B on the far right portion of the ordination, with a mixture of upland edge plots of calcareous ravines and non- calcareous plots. Subgroup II-B plots, on the far right portion of the ordination, are dominated by woody ericads. Groups I and II were subjected to further ordination.

Group II: The Upland Edge Plots of Calcareous Ravines and the Non-Calcareous Plots

A separate DCA ordination of Group II, the upland edge plots of calcareous ravines and non-calcareous plots, was performed (Fig. 28). The eigenvalue for the first axis of the ordination is 0.703, and the eigenvalue for the second axis is 0.518. This ordination includes all of the upland edge plots of calcareous ravines, irrespective of Group (including 5, 52 and 38) and omits two calcareous slope plots in Group II-A (18 and 3). The seven environmental variables negatively correlated with the first axis at the P < 0.01 level were B ( r =

-0.7928), Mg ( r = -0.7603), K ( r = -0.7592), Zn ( r = -0.6452), Mn ( r = -0.5598), P (r

= -0.4851), Ca ( r = -0.4793), and pH ( r = -0.4122). Soil Fe (r = 0.6389) and aspect

(r = 0.4916) were positively correlated with the first axis at the P < 0.01 level. Soil

Cu (r = -0.4278) was negatively correlated with the second axis at the 0.01 level.

The contour line encloses to the right all of the non-calcareous plots and the upland edge plots of calcareous ravines dominated by Vaccinium spp. a n d /o r

Gaylussacia spp., indicated as "woody ericads" on Fig. 27 and Fig. 28. The 92

Fig. 28. DCA ordination of Group II from Fig. 27. Environmental variables that significantly correlate with the axes are listed in order of decreasing correlation coefficient. The direction of the arrow indicates a positive or negative correlation. The contour line encloses the non-calcareous plots (♦) and the upland edge plots of calcareous ravines (■) dominated the woody ericads (Group II-A). The upland edge plots to the left of the contour (Group II-B) are dominated by Polystichum acrostichoides (Poac), Acer rubrum (Acru), Luzula acuminata (Luac), Euonymus americanus (Euam), Vitis rotundifolia (Viro), Mitchella repens (Mire), Polygonatum biflorum (Pobi) and Lonicera japonica (Loja). 93

o in

a o p. u

o>o P h m CO

PQ

coo Ph cs

(/>

o o CM

o«J ON—

o o

mo

CO I—) o tn o o o o o o o o o o in in o in o in CO CO CM CM

2 sixy 94

remaining upland edge plots of calcareous ravines, left of the ericad contour (Fig.

28), had lower ericad importance and were dominated by Polystichum

acrostichoides and several other species including Acer rubrum, Mitchella repens,

Vitis rotundifolia, Euonymus americanus and Luzula acuminata. In other words, the

segregation in Fig. 27 of the woody ericad-dominated Group II-B plots and the

Group II-A upland edge plots of calcareous ravines lacking woody ericads is

maintained when these plots alone are ordinated (Fig. 28); this indicates that the

segregation is due to the presence of woody ericads in one group and the lack

thereof in the other.

A further DCA ordination of the plots dominated by Vaccinium spp. and

~ Gaylussacia spp. enclosed by the contour in Fig. 28 was performed to determine

whether the non-calcareous plots could be separated from the upland edge plots

of calcareous ravines, and this ordination is presented in Fig. 29. The eigenvalue

for the first axis of the ordination is 0.651 and the eigenvalue for the second axis

is 0.505. The environmental variables negatively correlated with the first axis in

this ordination (Fig.29) were P (r = -0.4497, P < 0.05) and K (r = -0.5607, P < 0.01).

Aspect (r = 0.5437, P < 0.05) was correlated significantly with the second axis. It

is evident from this ordination that the calcareous and non-calcareous plots are

still quite intermixed. Since the abundance of woody ericad species may be

responsible for the clustering of the non-calcareous and upland edge plots of

calcareous ravines, a new ordination of these plots was run, but with the woody

ericads removed. In this new ordination with the woody ericads removed (Fig.

30), the following environmental variables were negatively correlated with the

first axis K ( r = -0.6521, P < 0.01), pH ( r = -0.6261, P < 0.01), P ( r = -0.4565, P < 95

Fig. 29. DCA ordination of plots dominated by woody ericads. This subset of upland edge plots of calcareous ravines(H) and the non-calcareous plots ( ♦) are still intermixed in the lower center of the ordination. Environmental variables that correlate with the axes are listed in order of decreasing correlation coefficient. The direction of the arrow indicates a positive or negative correlation. 96

o o CO

mo CM

o o CM

mO

,MDo

o co o CO 00 00 O'*

o in

^11 CO Fig. Fig. 29 o o o o o m o in o m o in co co CM CM joodsy

Z srxtf 97

Fig. 30. DCA ordination of the plots in Fig. 29 with Vaccinium spp. and Gaylussacia spp. removed. With these species removed there is much less overlap of the upland edge plots of calcareous ravines (p),mostly on the far left and the non-calcareous plots(^). This shows that the presence of woody ericads caused the plots to cluster in previous ordinations. The four letter codes indicate the second dominant species, in the plot. For plots 61 and 62 the code indicates the dominant species, as the woody ericads were abundant in those plots, but were not the most dominant species. Environmental variables that correlate with the axes are listed in order of decreasing correlation coefficient. The direction of the arrow indicates a positive or negative correlation. 98

t-*rr vo

I a \o O

o o 10

o o ■O'

ffi

o o co

VO (U VOCO Axis 1

a §0l>l co >o i2ml JcO^ hCO o ^O CU o ■fc—( «H CM VO ♦ *o&PP VO cd CO ■V a O-rf O o co' Ph Pm o o VO vo § < loo o £.■ 00 CO ob A ■ u 1 m o o o O O O o o o VO o CO O VO o VO ■M* CO CO CM CM T- T— ^g; ‘joadsy Z S|X¥ 99

0.05), and Fe ( r = 0.4342, P < 0.05) was positively correlated w ith the first axis.

Soil B ( r = 0.5579, P < 0.01) and aspect ( r = 0.5472, P < 0.01) w ere positively correlated with the second axis. The eigenvalue for the first axis of the ordination is 0.872, and the eigenvalue for the second axis is 0.607. In this ordination, upland edge plots of calcareous ravines and the non-calcareous plots separated in ordination space; the cluster of plots in the center bottom of Fig. 29 moved to the top of the ordination in Fig. 30 (an axis reversal), but in general the upland edge plots of calcareous ravines are largely concentrated on the left third of the first axis, and the non-calcareous plots occur in two clusters on the right two thirds of the axis. The plots on the far right (61, 63,62), already somewhat separated on the previous ordination, were very different from the other plots once Vaccinium spp. and Gaylussacia spp. were removed. Plots 61 and 62 contain

Osmunda cinnamomea as the dominant species, which no other plots possessed, and plot had Galax urceolata, which no other plot possessed, as the dominant after the removal of the woody ericads. Several of the plots (55, 33, 58,15, 54, 66 and 56) in the upper left of the ordination share Mitchella repens or Sassafras albidum as the second dominant species. Some of these were non-calcareous (58,

33, 54, 55, and 56) and some were upland edge plots of calcareous ravines (66 and 54). The other plots in the middle of the ordination contain other species as second dominant. The upland edge plots of calcareous ravines (8,11, 28,1, 34 and 37) on the left have as the second (non-ericad) dominant several species not important in the non-calcareous plots. 100

Group 1: The Calcareous Slope Plots

The calcareous slope plots in Fig. 27 (the original ordination) are to the left

of the Group II contour line. While these plots do not all share one or two dominant species, they fall together on the original ordination because they share several less important species, which collectively constitute much of the total importance value of each plot. Further, these calcareous slope plots lack high importance of species that are important in stands on the right half of the ordination. A new DCA ordination of these calcareous slope plots was performed (Fig. 31) including plots 32, 29,18 and 3 and excluding the floodplain plots that occurred with the slope plots in Fig. 26. Soil Mn ( r = 0.5515, P < CL01) and Cu ( r = 0.5356, P < 0.01) positively correlated with the first ordination axis and P ( r = 0.4042, P < 0.05) with the second axis. Lack of a significant correlation of aspect with the first axis.value showed that within the ravines direction of exposure was not important.. The eigenvalue for the first axis of the ordination is 0.817, and the eigenvalue for the second axis is 0.616. Seventeen of the 23 calcareous slope plots contain disjunct species (Fig. 26), though only 7 are dominated by these disjunct species (Fig. 31). This indicates that most disjuncts usually do not have a high coverage or density where they are present. Mountain disjunct species that were dominant in at least one plot include Desmodium glutinosum, Aralia racemosa, Athyrium pycnocarpon, Actaea pachypoda, Panax quinquefolius, and Aralia nudicaulis. Several non-disjunct species characeristic of the calcareous ravine communities dominated some slope plots. These species include Phegopteris hexagonoptera (Phhe), Brachyelytrum erectum (Brer), and

Asarum canadense (Asca). Widespread species of the Coastal Plain that dominate 101

Fig. 31. DCA ordination of all of the calcareous slope plots. The calcareous slope plots are dominated by different species indicated by the four letter code over each plot. Plots dominated by mountain disjunct species are indicated by the open symbols. Arnu ( Aralia nudicaulis), Degl (Desmodium glutinosum), Acpa (Actaea pachypoda), Paqu (Panax quinquefolius), Atpy (Athyrium pycnocarpon), Sofl (Solidago flexicaulis) and Arra ( Aralia racemosa) are mountains disjunct species that dominate their plots. Environmental variables that correlate with the axes are listed in order of decreasing correlation coefficient. The direction of the arrow indicates a positive or negative correlation. 102

co

10

cn

CO

o 4 Pk a o o 0 4 5

o

CO ob o o o o o o o o m o m o If) in o lO CO CM CM

Z 103

some of the calcareous slope plots are Polystichum acrostichoides (Poac), Mitchella

repens (Mire) and Cornus florida (Cofl) (Fig. 31). In one plot the invasive exotic

species Lonicera japonica was the dominant and in another the introduced Acer rubrum (Acru) was the dominant.

Ground Layer Plot Diversity

The mean Shannon Diversity Index value was highest for the calcareous slope plots at 1.49 ± 0.51 ( s. d.), followed by the upland edge plots of calcareous ravines at 1.34 ± 0.55, and the lowest m ean was 0.94, ± 0.47, for the non- calcareous plots. The non-calcareous plots consistently had lower Shannon values than the other plot types because the species present in these plots besides

Vaccinium spp. and Galylussacia spp. were few.

Woody Vegetation Results

Mountain Disjunct and Calciphilic Tree Species

Quercus muehlenbergii, chinquapin oak, and Tilia americana, basswood, are the only large canopy tree species that are mountain disjuncts. The first species was more widespread than the second, which occurred at only one site. Quercus muehlenbergii was a dominant tree species in the Aruncus dioicus Ravine, College

Woods and in Fire Station Ravine, Grove Creek and was present in the

Hexalectris spicata Ravine and Athyrium pycnocarpon Ravine, Chippokes

Plantation St. Park and in the Desmodium glutinosum Ravine, Hickory Fork Rd.

(Table 6 and Table 7). Tilia americana was present in three plots sampled at Grove

Creek in the Old Country Rd. Ravine. Other species of interest are Ulmus rubra 104

(slippery elm) and Carya cordiformis (bitternut hickory), which are known to be especially frequent in calcareous sites in the Coastal Plain, though they are not generally regarded as calciphiles elsewhere in their range. Slippery elm was an abundant species in the Ponthieva racemosa Ravine and Aruncus dioicus Ravine, both in the College Woods. Bitternut hickory was abundant in the Fire Station

Ravine, Grove Creek and the Athyrium pycnocarpon Ravine, Chippokes Plantation

St. Park.

Tree Layer Ordination

A grand DCA ordination of the trees greater than 4 cm at breast height occurring over the herbaceous layer plots was performed. However, all plots clustered over the left portion of the x-axis except five floodplain plots that separated from all the rest. These five anomalous floodplain plots, four from calcareous ravines and one from a non-calcareous ravine, were removed for a better separation of stands on the ordination, and a new ordination of the remaining plots was performed (Fig. 32). Plot numbers and corresponding site and ravine information are recorded in Table 12. Plots from non-calcareous ravines separated weakly from calcareous ravines and are indicated on upper right of the ordination. The eigenvalue for the first axis of the ordination is 0.402, and the eigenvalue for the second axis is 0.307. Aspect ( r = -0.3108) was negatively correlated with the first axis. Soil Fe (r = 0.4250) was positively and B

(r = -0.2586) negatively correlated with the second axis (P < 0.05). The plots can be classified into 5 groups across the ordination, based on the dominant tree species in the plots. The groups occur from right to left on the ordination and are 105

Fig. 32. DCA ordination of the tree layer data. The vegetation separates along the first axis into five groups. The groups are named for the most dominant and second dominant species found in those plots. A dashed line is placed between the tulip popular/beech group and the beech/tulip popular group because these groups blend to some extent and a few plots of each group are found on either side of the line. Aspect correlated negatively with the first axis. Fe correlates positively and B correlates negatively with the second axis. The non-calcareous plots are indicated by the arrows. The presence (not dominance) of the mountain disjunct species Quercus muehlenbergii (Qumu) and Tilia americana (Tiam) are indicated next to the plots they occur in. 106

o 00 in CM CM

o o o CM a> 00 ft MO »o o CO

o

m

CO co . w 4 CO

CM o o o V? CO

CM

" A. CM ♦ mo 00 CO

o

CO o o o o o o o in o in o in

Z s p < v Fig. 32 a 107

Table 12. Plot numbers for the tree and shrub data and their corresponding sites and ravines. Calcareous and non-calcareous ravines are included.

Plot Numbers Site and Ravine

1-2 College W oods, Ponthieva racemosa Ravine

3-4 College W oods, Aruncus dioicus Ravine

5-10 Hickory Fork Rd., Desmodium glutinosum Ravine

11-12 Hickory Fork Rd., Aralia racemosa Ravine

13-23 Grove Creek, Fire Station Ravine

24-26 Cheatham Naval Annex, Aralia racemosa Ravine

Cheatham Naval Annex, Athyrium pycnocarpon 27-30 Ravine

31-34 College Woods, Actaea pachypoda Ravine

35-38 Grove Creek, Old Country Rd.

Chippokes Plantation St. Park, Athyrium 39-43 pycnocarpon Ravine

Chippokes Plantation St. Park, Hexalectris spicata 44-45 Ravine

46-47 College Woods, Aralia nudicaulis Ravine

48 College Woods, Hexalectris spicata Ravine

49-51 College Woods, Aralia spp. Gorge

52-54 Cabin Swamp, Hickory Hollow

55 College Woods, Galax urceolata Ravine

56-57 Casey Tract, Ravine #1

58 Casey Tract, Ravine #2 108

\ the white oak group, the tulip poplar/ beech group, the beech/ tulip poplar group, slippery elm group and the beech/ southern sugar maple group. In cases where the group has two species in its name the first had the highest I. V. and the second had the second highest I. V.

Four plots in the upper right portion of the ordination are dominated by

Quercus alba and hence called the white oak group. These plots have as their next most dominant species Quercus muehlenbergii (48), Quercus rubra (2, 47) and

Liquidambar styraciflua (58). Quercus muehlenbergii, a mountain disjunct species, ranked second in plot 48 and third in plot 47.

Most plots in the ordination fall into the tulip poplar/beech group and the beech/tulip poplar group. These two groups are located from the lower right to the center of the ordination. Intermixed with these plots are a few plots dominated by other species like Pinus taeda in plots 24 and 44 and Quercus rubra in plot 56. The second most dominant species in these plots are Fagus grandifolia

(24), Acer rubrum (44) and Liquidambar styraciflua (56). Throughout the right portion of the ordination plots are dominated by Liriodendron tulipifera and secondarily dominated by Fagus grandifolia. These plots include (from right to left) 40, 41, 52, 9, 27, 46, 30, 29, 46, 39 and 32. Two plots in this group, 7 and 8 are dominated by Fagus grandifolia and secondarily dominated by Liriodendron tulipifera. Four plots on the far right (5, 6, 28,11) are dom inated by Liriodendron tulipifera with species other than beech as the second most dominant and are

Liquidambar styraciflua (5,11), Pinus taeda (6), and Cornus florida (28). The polar plot 40 on the far right does have Fagus grandifolia as the second most important species. Toward the center of the ordination beech becomes the dominant 109 species and tulip popular the second dominant. Some plots (42, 25, 26 and 53) in the center of the ordination contain species other than L. tulipifera as the second most dominant and they are plots 42 with Pinus taeda, 25 w ith Cornus florida, 26 and 53 with Nyssa sylvatica, and 49 w ith Fraxinus sp. Three plots located in the beech/ tulip popular and tulip popular/beech groups have chinquapin oak present (6, 39 and 45).

In the upper center of the ordination are 3 plots with high importance of

Ulmus rubra, slippery elm. Plots 1 and 3 are dominated by this species and plot 4 is dominated by Q. muehlenbergii , which is also present in plot 1. The group of plots on the far left of the ordination are composed of F. grandifolia and Acer barbatum and is called the beech/ southern sugar maple group. In almost all plots beech is the dominant and southern sugar maple the second most dominant species, but in plots 36, 20, 38, 22 and 50 dominance is switched between those two species. One plot (18) was dominated by Q. muehlenbergii. Tilia americana is the second most important species in plot 36 and is also present in plots 37 and

20 in high abundance. Cary a cordiformis (20), Fraxinus americana (38), Liquidambar styraciflua (22), and Fraxinus sp.(50) are each the second most important species in one plot.

Mountain Disjunct and Calciphilic Species in the Shrub/Sapling Layer

For the DCA ordination of the shrub/sapling data (Fig. 33 and 34), the plot numbers and corresponding site and ravine information for the shrub/sapling layer are indicated in Table 12. Five anomalous plots, three floodplain plots and two plots with bottomland influence were removed from 110

Fig. 33. DCA ordination of the shrub/sapling data with the occurrences of mountain disjunct and calciphilic species indicated. Magnolia tripetala (Matr), Quercus muehlenbergii (Qumu), Tilia americana (Tiam), Stewartia ovata (Stov), Dirca palustris (Dipa) and Euonymus atropurpureus (Euat) are mountain disjunct species. Cercis canadensis (Ceca) is a species known to occur in calcareous habitats in the Coastal Plain. Ill

U O' U W O'

9

o

U co

CO co oi> ffi Z s\xv 112

Fig. 34. DCA ordination of the shrub / sapling data. The vegetation separates along the first axis into three general groups named for the most dominant species in those plots and they are American holly group, paw paw group, and the beech group. The subgroups are indicated by dashed lines and are the Cercis canadensis (Ceca), Acer barbatum (Acba) and mixed species. The subgroups indicate places in the ordination with high importance of the species indicated. Plots that are assigned to subgroups are not dominated by those species indicated unless otherwise noted in the text. Fe correlates negatively and B correlate postively with the first axis and pH, Ca correlate negatively and Cu correlates postively with the second axis. 113

< ►' yr>00 O LO CM

Pi o\ 3 C O O PQ

o o CM

o> ♦ CO CO CO 8** CO O LO 00 o co o »o V) a, CO X < (NCO ♦_ Q\ P i o o CO

00 o(N CO

VO

o o o o o Fig. 34 LO LO o LO CM CM 2SIXV

"0 114 the ordination. Four of the removed plots were from calcareous ravines, one from a non-calcareous ravine, and three removed plots were the same for the canopy ordination (43, 55, and 54). The eigenvalue of first axis of the ordination

(Figs. 33 and 34) is 0.462, the eigenvalue for the second axis is 0.367. Many of the plots in the shrub / sapling layer contain either mountain disjunct species or species known to occur in calcareous habitats in the Coastal Plain. The mountain disjunct small tree species in the shrub / sapling layer found most often was

Magnolia tripetala, the umbrella magnolia. It was present in the following plots from right to left on the DCA ordination of the shrub/sapling plot data in Fig 33: 7, 8, 5, 6, 23,19, 20 and 21.

This species dominated plot 6 and was in high abundance in plot 21. Other mountain disjunct species that were present but only scattered throughout the ordination were Quercus muehlenbergii (47, 51, 3, 33,10, 37), Tilia americana (38,

36), Euonymus atropurpureus (51), Cornus alternifolia (31), Dirca palustris (35) and

Stewartia ovata (35). Cercis canadensis is considered a calciphilic species in the

Coastal Plain and it occurred in 13 of the 58 plots in the shrub/ sapling layer, located predominantly in plots at the bottom right of the ordination.

Shrub and Sapling Layer Vegetation

The remaining shrub/sapling plots (Fig. 34) can be divided into three general groups across the ordination: the American holly, paw paw and beech groups. Soil Fe (r - 0.5219) correlates positively and B correlates negatively (r = -

0.2539) with the first axis, and pH (r = -0.2711) and Ca (r = -0.3381) correlate 115 negatively and Cu (r = 0.3426) correlates positively with the second axis (P <

0.05).

The Ilex opaca or American holly group occurs on the upper right portion of the ordination. All of the non-calcareous plots (56, 57, and 58) occur in this group. All of these plots have Ilex opaca as the first or second species. In plots 40,

56 and 57 Cornus florida is the most important species and Ilex opaca the second most important. In plot 53 Kalmia latifolia is the most important species with I. opaca as the second most dominant species. The remaining plots in this group

(except 26) are dominated by I. opaca. Plot 26 occurs near the American holly group in the ordination but does not fit neatly into any of the groups and its most important species are Carya cordiformis and Oxydendrum arboreum.

In the lower center of the ordination is the Asimina triloba or paw paw group. This group contains the largest number of plots on the ordination. The plots in the center of this group contain beech as the second most important species, except plots 9, 28 and 37 which contain I. opaca in that role. The plots 36,

52, and 48 contain high abundance of Carpinus caroliniana with this species being the dominant in plot 36. Above and to the left of the paw paw group are two ordination plots (3 and 25) that do not have much paw paw but have high abundance of Carpinus caroliniana. One plot (44) contained Pinus taeda as the second most dominant species. The cluster of plots on the bottom right of the ordination all contain redbud and these plots overlap with the paw paw group.

Two plots on the right, 34 and 51, do not fit into any of the described groups and contain Fraxinus pennsylvanica as the most important species. 116

The beech group occurs in the upper center and to the far left of the ordination. Fagus grandifolia is the most important species in nearly all of these plots, but there are two subgroupss. In the mixed group plots 24, 2, and 8 have

Cornus florida as the second most dominant; 29,10 and 35 have L opaca; 32 and 49 have Ulmus rubra; 50 and 35 have A. triloba; and 31 contains Fraxinus pennsylvanica as the second most dominant species. On the far left is the A. barbatum subgroup with most plots containing beech as the dominant species and A. barbatum as the second most dominant species. In the subgroup containing A. barbatum two plots, 17 and 15, actually contain this species as the most dominant and beech as the next most important. Plot, 21, occurring just outside of the beech/ southern sugar maple group, contains a high abundance of beech and has Magnolia tripetala, a disjunct species, as the next most important species. Another plot (6) occurring on the lower portion of the ordination outside of the paw paw group has M. tripetala as the dominant and beech second.

Results of the Soil Tolerance Experiments

Of the seven mountain disjunct species for which seeds were available from Coastal Plain populations, mountain populations, or both, enough seeds were successfully germinated in five species to set up tolerance experiments.

The two species that did not have successful germination were Veronica anagallis- aquatica and Actaea pachypoda.

For two of the disjunct species (Solidago flexicaulis and Desmodium glutinosum) sufficient seedlings were available to test soil tolerance of both 117 mountain and Coastal Plain populations. In Solidago flexicaulis (zig-zag goldenrod) seedlings from the mountains and Coastal Plain grew much better on calcareous soil than on non-calcareous soil (Fig. 35). The data in this experiment were not normally distributed and data transformations could not normalize the data, nor were the variances equal, so ANOVA could not be used. A Mann-

Whitney U-test indicated that growth on calcareous soil was significantly greater than on non-calcareous soil ( P < 0.01). Mountain plants grew better (were more robust) than Coastal Plain plants on both soil types (Fig. 35), although this difference was statistically significant only on the calcareous soil (Mann-Whitney

U-test, P < 0.05).

In Desmodium glutinosum seed germination was very low (about 10% vs about 90% in Solidago flexicaulis) and early mortality of seedlings was high. Thus, number of seedlings per treatment were low (n = 3) at the beginning of the experiment, and with only one mountain seedling still surviving on calcareous soil at the end of the experiment. Yet, even so, growth was substantially much greater on calcareous soil than on non-calcareous soil for both mountain and

Coastal Plain populations (Fig. 36) that the difference between soil types was statistically significant (P < 0.05, one way analysis of variance) for both populations. Further, both the mountain and Coastal Plain plants growing on non-calcareous soil had at least one leaf with necrotic spots, which can be a sign of stress.

None of the seeds of Aralia racemosa collected from the mountains germinated, and only a small number of seeds collected from the Coastal Plain did (less than 5%). The Coastal Plain seedlings grew to be more robust on 118

Fig. 35. Mean dry weight (mg) of Solidago flexicaulis from mountain and Coastal Plain populations grown on non-calcareous and calcareous soils. CP = Coastal Plain population and MT = mountain population. Mean dry weight values and standard error are presented next to the growth bars. A Mann-Whitney U-test indicated that growth on calcareous soil was significantly greater than on non- calcareous soil ( P < 0.01). Mountain plants grew better (were more robust) than Coastal Plain plants on both soil types, although this difference was statistically significant only on the calcareous soil (Mann-Whitney U-test, P < 0.05). Non­ identical letters (a/ c, and b/ c) are significant at P > 0.01, and a/b is significant at P < 0.05). 600 n o o CO m o o (6 u i) m 6ia/\/\ 6ia/\/\ m i) u (6 o o A q j uboum CM o o Zl ‘6Z, ZSSI4 Z + ZI, ‘S6 u = U II = ‘COr l-Z'68fr + ‘ZC'Ofr u = 1 = 3 + 8I/6Z U + 9 39 01^ u = ‘ S3 SZ'9tt? + 3 8S ‘0 u o o o O To O CL w O o Q_ o _o O 03 S> O 3 03 O 03 a? O o c 0 03 3 03 03 8> o 3 CO 1 119 3 T . a _o JS >» a to C a> o a 3 c Li_ co un O) Fig. 36. Mean dry weight (mg) of Desmodium glutinosum from mountain and Coastal Plain populations grown on non-calcareous and calcareous soils. CP Coastal Plain population and MT = mountain population. Mean dry weight values and standard error are presented next to the growth bars. Both plants grown from seeds collected in the mountains and plants grown from seeds collected in the Coastal Plain grew better on calcareous soil than on non- calcareous soil ( P < 0.05 ). 2 5 0 M C o o (6ui) iqBieyvy (6ui) ID O A jq ueeyy O O . 1 8 6 9 9 + e 6 ' 8 e u = € Z= Z = U l Z 9 Q+9V P Z ‘lQPlu +£Z6l o lO I = u u = OVGOZ Z _o To O Q. O o CL z o c 0 D C D C o 2 o J J - \ 3 D C O CD d) 0 co 3 O C 0 CD CD CD CD 1 O D Cfl 1 1 CO CD D) 121 w h- . o 73 JS '-M O >* a © CD C o a 3 o c 122 calcareous soil (292.11 ± 66.14 mg dry weight, n = 8 ) than on non-calcareous soil

(160.53 ± 40.22, n = 3), but the one way ANOVA perform ed show ed that this difference was not significant (Fig. 37).

Collinsonm canadensis seeds were available only from the mountains. More than 90% of its seeds germinated, so sample size was not a problem. However, the data on growth did not have equal variances and had to be transformed (log- transformed). Figure 38 is thus based on back-transformed means and their confidence intervals ( posititive Lj and negative L2/ following Sokal and Rohlf

(1994)), instead of untransformed means and standard error. The plants grown on high calcium soil ( n = 13 ) had a mean dry weight of 389.04 mg (confidence interval: Lq = +130.76, L2 = -236.83) and plants grown on non-calcareous soil ( n =

11) had a mean dry weight of 175.30 mg (Lj = +595.11, L2 = -254.30) (Fig. 38).

The mean of dry weight of plants grown on calcareous soil was significantly different (P < 0.05) from the m ean of dry w eight of plants grown on non-calcareous soils. ,

For Agrimonia gryposepala, seeds were available from the mountains, and only 6 seeds germinated (allowing for 3 for each soil type). Two of the three planted in non-calcareous soil died in the first weeks of the experiment. The remaining seedlings growing on non-calareous soil weighed more (281.0 (mg) than the average weight of the seedlings on calcareous soil ( 256.56 ± 116.35 ).

These results could not subjected to statistical tests because of the very small sample size. 123

Fig. 37. M ean dry w eight (mg) of Aralia racemosa from Coastal Plain populations grown on non-calcareous and calcareous soils. CP = Coastal Plain population. Mean dry weight values and standard error are presented next to the growth bars. While the plants grown on calcareous soil were more robust than those on non-calcareous soil, this difference was not significant. 350 - O C o o M C o Lfi (Bui) }i|6idAA CM o o A jq ueayu O lf> O O ‘Z0r+ CS ‘3Z091u =0fr + e 9+H.‘36Z= u>l.‘99 O LO _o "to O CL O _o "w O Du o » a 0) 125

Fig. 38. Back-transformed mean dry weight (mg) of Collinsonia canadensis from mountain populations on non-calcareous and calcareous soils. MT = mountain population. Mean dry weight values and confidence intervals of the transformed data are presented next to the growth bars. The plants grown on calcareous soil grew better then the individuals grown on non-calcareous soil ( P < 0.05 ). 9 0 0 00 o o o o (6 ui) )q6;ay\A )q6;ay\A ui) (6 CD o o o o in A q j ued|/\| 0 0 5 2 - = - 2 5 0 0 a 0 Z 9 U =U u tj o o - = Zl Z1 1969 + = 00 o o

9C2 + = n n = + 2 C ‘9 8 € CM o o oeszt z s e ‘o o o I i O O _o o c CO o CO 2 o 3 CO V) CO 2 o 3 ■ 126 pjg 28 anc* Population Type DISCUSSION

Maps of Individual Collection Locations for the Less Disjunct Species

The maps of individual collection locations indicated that many (8 of 20) of the species whose disjunctions were in question based on their Atlas maps show a wider mountain-Coastal Plain gap on their individual collections maps because the mapping technique employed provides better resolution of the disjunction, and hence a disjunction of greater magnitude. In the future, if new species are identified as potentially disjunct, a study of their individual collections locations across the state (rather than county based distribution) will be the best way to assess the strength of disjunction. Even those species whose distributions form a corridor through the Piedmont and those species with several occurrences in the Piedmont should still be considered disjunct, at least ecologically, because these Piedmont collections may represent localized colonies growing in a specific microhabitat which is rare throughout the Piedmont or at least rare in the eastern Piedmont but more common in the Coastal Plain and mountains. It is apparent that the habitat and edaphic requirements of mountain disjuncts in the Piedmont need to be studied in order to fully understand the reasons for their present distributions.

127 128

Distribution of the Ground Layer Vegetation

The presence of any particular disjunct species in a ravine was not a

predictor of the presence of any other disjunct species in that ravine, nor was the presence of any disjunct species or a suite of disjunct species in a ravine a good indicator of the disjunct species in surrounding ravines. While many of the

calcareous slope plots contained disjunct species (Fig. 26 and Fig. 31), only a few

of those plots were dominated by disjunct species. The patchy presence of

disjuncts in ravines and unpredictable occurrence in neighboring ravines may be

related to difficulties in seed dispersal from one ravine into neighboring ravines.

Wind might carry seeds within a ravine, or blow them into the stream that cuts through the ravine floor, which might carry them to a new location in that same

ravine, but it is less likely that wind dispersed seeds would blow from one deep ravine over the upland and into neighboring ravines. This explanation may

describe the distribution of Solidago flexicaulis and Aruncus dioicus in ravines, because colonies of these species are often scattered throughout a ravine, but do not necessarily occur in neighboring ravines with apparently similar habitats.

While at first glance it might seem that disjunct species with animal dispersed

seeds might be able to better disperse their seeds from ravine to ravine than wind dispersed disjuncts, species with animal dispersed seeds (like Aralia racemosa, Desmodium glutinosum, Panax quinquefolius, and Aralia nudicaulis) were

no more likely to be found in neighboring ravines (with presumably the same

environment) than were species with wind dispersed seeds. While dispersal

mechanisms may influence the localized distribution of disjuncts among ravines, 129 limited suitable microhabitat or "safe sites" for seedling establishment may cause the patchy distribution of most disjunct species within ravines. Further, some mountain disjunct species have persisted in some ravines but not others for unknown reasons.

One explanation for the occurrence of mountain disjuncts in Coastal Plain ravines is that ravines are moister than the surrounding uplands. While this is true, it is also true that non-calcareous ravines possess the same topographic features (upland edges, slopes and ravine floors) that calcareous ravines do, and should also be moister than uplands. Yet the non-calcareous ravines lacked all disjuncts except Galax urceolata, a known acidophile. This suggests that it is the soil chemistry of the calcareous ravines that makes them suitable habitat for the mountain disjuncts. On the other hand, non-calcareous ravines in the local area around my study sites are not as steep-sided as, and are shallower than, calcareous ravines, which may make the non-calcareous ravines environmentally more similar to the uplands of the Coastal Plain. Ravines that cut into the Yorktown Formation are not only different from non-calcareous ravines because they have high levels of calcium, but because faster erosion produces a deeper, very steep-sloped ravine, often with springs occurring at the contact between the upper sediments and the Yorktown. It could be argued that while non-calcareous ravines in the Coastal Plain offer another ravine habitat that disjuncts could potentially inhabit, they are sufficiently different in depth and steepness (and thus soil moisture) from calcareous ravines that disjuncts are restricted to ravines that cut into the Yorktown Formation. Only a comparison 130 of growing season soil moisture in calcareous slopes, non-calcareous slopes and uplands away from calcareous ravines can fully eliminate soil moisture as a causative difference between the calcareous and non-calcareous ravines, and confirm that it is soil chemistry that makes the difference.

Asarum canadense, Phegopteris hexagoncrptem, Dicanthelium boscii,

Dicanthelium communtatum, Brachyelytrum erectum and Luzula acuminata are non- disjunct species; that is they occur all across Virginia. Nevertheless, they do not occur widely throughout the Coastal Plain, but are largely found in calcareous ravines with disjunct species. While these non-disjunct species were present in many calcareous ravines (Table 6), their presence or importance could not be used to predict the presence of disjunct species within a ravine or in neighboring ravines. That is, no intimate associations exists between these associated species and disjunct species to the extent that when one species was present a disjunct species could be found in the same ravine. All these associated non-disjunct species are known to occur on calcareous substrates in the mountains of Virginia

(Fleming 1999) and Asarum canadense is also known to occur on calcareous substrates in South Carolina (Hill 1992). These associated species may have wider substrate tolerances, be better dispersers or be better competitors than disjunct species and, therefore they both occur with disjunct species, and also in places in the Coastal Plain where disjunct species are unable to grow.

There is a clear difference in both the flora and vegetation between upland edges of calcareous ravines and calcareous slopes (Fig. 27). Disjunct species were confined to the slopes and a few floodplain plots with none 131 occurring in upland edge plots. Further, the upland edges of some calcareous ravines were dominated by acidophiles or by species largely indifferent to soil pH and soil calcium. The upland edge plots of calcareous ravines themselves fell into two groups, those dominated by substrate and pH indifferent species like

Polystichum acrostichoides, Euonymus americana, and Mitchella repens, and those that, like the associated uplands of non-calcareous ravines were dominated by woody ericads. These two types upland edges bordering calcareous ravines are different from the vegetation that occurs on the slopes (where most of the disjunct species occur). This difference in vegetation on the uplands versus the slopes is presumably due to the pH and calcium differentials between the upland and slopes, with the uplands being acidic with low soil calcium, and the slopes being more alkaline with higher soil calcium. The similar vegetation (woody ericads) shared by the non-calcareous plots and some of the upland edge plots of calcareous ravines (Fig. 28 and Fig. 29) is probably due to the low pH and low calcium levels that these plot types share.

Woody Vegetation

Unlike the ground layer vegetation in which the ravine slope communities are quite different from the upland communities, the woody vegetation is dominated by species that are common in the Coastal Plain, with the exception of Acer barbatum in the beech/ southern sugar maple group.

Liriodendron tulipifera and Fagus grandifolia, the dominants in the tulip popular/beech and beech/tulip popular groups (the two groups with the most 132 plots) are abundant through the Coastal Plain,with the first an early successional

species (Monette and Ware 1983) and the second a climax species (Ware 1978).

LIlmus rubra of the slippery elm group is a species of moister, usually calcareous

sites in the Coastal Plain (Parsons and Ware 1982, Glascock and Ware 1979), but

by no means is confined to ravines. Quercus alba of the white oak group is the

most common oak species in the Coastal Plain (Monette and Ware 1983).

Quercus muehlenbergii, a disjunct/ calciphilic species, occurred in several plots of the white oak group, but did not have high importance in the groups

mentioned. Acer barbatum of the beech/ southern sugar maple group is found

only in a few places in the Coastal Plain of Virginia (Ware and Ware 1992). The

disjuncts Quercus muehlenbergii and Tilia americana are present in some plots in

this latter group, but neither are dominants in plots in which they occur.

Shrub/Sapling Layer

The shrub/sapling data are dominated by species that are common in the

Coastal Plain (Fig. 34). Most of the plots are dominated by Fagus grandifolia, which indicates that this species is reproducing and persisting under the canopy.

In several of the plots containing beech as the dominant species, Acer barbatum was the second most dominant species. High importance of Acer barbatum in shrub / sapling plots is in contrast with what Ware and Ware found in their 1992 study of Grove Creek. The high importance of Acer barbatum in the shrub / sapling layer indicates that this species is reproducing successfully in the portion of the Grove Creek watershed included in this study. The other plots 133 are dominated by either Asimina triloba or Ilex opaca. Asimina triloba is considered to be an indicator of calcium-rich substrates for South Carolina, but has been observed on non-calcareous substrates there as well (Hill 1992). This species seems to maintain a similar edaphic tolerance in the Coastal Plain of Virginia, as it is found both on calcareous ravine slopes and their associated upland edges.

Finally, Ilex opaca, American holly, is a common understory species in oak and beech forests in the Coastal Plain (Monette and Ware 1983).

There are more species which are disjunct and considered calriphiles in the shrub / sapling layer than in the tree layer (Fig. 33). The presence of more disjunct species in the shrub/sapling layer is probably due to 1) there being a greater number of disjuncts that are shrubs or small trees (Magnolia tripetala,

Stewartia ovata, Euonymus atropurpureus and Cornus alternifolia ) than are canopy trees (Tilia americana and Quercus muehlenbergii) and 2) the combination of sapling disjunct canopy species in the same vegetation layer with the disjunct shrubs and small trees species.

Soil Tolerance Experiments

Ware and Ware (1992) suggest in their study that most of the mountain disjunct species that occur in Grove Creek behave as calciphiles there, when in the majority of their range most of these species are not calciphiles. All but one of the species (Agrimonia gryposepala) in the soil tolerance experiment were found in Grove Creek (Solidago flexicaulis, Desmodium glutinosum, Aralia racemosa and

Collinsonia canadensis). Both mountain and Coastal Plain seeds of Solidago 134 flexicaulis performed much better on calcareous soils, which suggests that it could

be a calciphile in both of these physiographic provinces. This species has been

found growing on a calcareous substrate in the mountains of Virginia (Fleming

1999) which supports its being a calciphile in both of the Coastal Plain and

mountains. Desmodium glutinosum, followed the same trend, and grew better on

calcareous soil than on non-calcareous soil. This species also has been found on

calcareous substrates in the mountains of Virginia (Fleming 1999) and in

calcareous cliff communities in South Carolina, and is considered a non-obligate

calciphile there (Hill 1992). The results of the soil experiments suggest that

Desmodium glutinosum grows best in a calcareous substrate in the mountains and

Coastal Plain; however, a larger sample size in the experiment would enable

better inference about this species. Collinisonia canadensis may be a calciphile, at

least in the mountains, because it grew better on calcareous soil than non-

calcareous soil. The results for Aralia racemosa suggest that it may not an obligate

calciphile in the Coastal Plain, because while it grew better on calcareous soils

than on non-calcareous soils, this difference was not significant.

Possible and Future Studies

There are several conclusions from this study that lead to other questions

that would make reasonable follow-up studies. Some mountain disjuncts are

considered less disjunct because they have occurrences in the Piedmont, but it is

unclear whether these Piedmont occurrences represent typical Piedmont habitats

or whether they are in local microhabitats similar to those in the Coastal Plain or 135 mountains. The habitat requirements of mountain disjuncts that occur in the

Piedmont should be investigated.

The conclusion that many disjunct species have a patchy or spotty distribution within ravines and within a system of ravines is interesting and may provide support to Harvill's (1965) theory that these populations are relics from an early time. Such patchy and spotty distribution in "ecological islands" like the calcareous ravines is characteristic of relict island patterns (Darlington 1965,

Carlquist 1965). Evidence about the degree of isolation of these species in the

Coastal Plain may be revealed through genetic analysis of populations within the

Coastal Plain and between the Coastal Plain and mountains.

The soil tolerance experiments performed in this study were performed on only a few mountain disjuncts, and studies of more of these species is necessary to make conclusions about whether mountain disjunct species as a group are or are not calciphiles in the Coastal Plain. Finally, the ecological studies on distribution and abundance in this project concentrated on those disjunct species that occur in calcareous ravines. Little is known about the habitat conditions required by mountain disjuncts species that do not occur in ravines. Studies of these species are necessary to better comprehend the role of these mountain disjuncts in the communities in which they occur.

A ddendum

Since the publication of the Atlas (Harvill et al. 1992) collections have been made throughout Piedmont counties of several disjunct species and their status 136 as disjuncts no longer holds (G. P. Fleming, pers. comm., 2000). New collections of Quercus muehlenbergii in thirteen Piedmont counties have been recorded, thereby filling in the gap between the mountains and Coastal Plain. While this species' disjunct distribution no longer holds, it is still considered a calciphile.

Other species that are probably common throughout Piedmont counties are

Collinsonia canadensis and Agrimonia pubescens (G. P. Fleming, pers. comm., 2000).

Other species that may be considered locally frequent in most Piedmont counties are Juglans cinerea and Aruncus dioicus (G. P. Fleming, pers. comm., 2000). 137

APPENDIX A

The number of specimens of less disjunct species examined and mapped. 138

Table 13. The number of specimens of less disjunct species examined and m apped.

Less Disj unct Species Number of Specimens

Amianthium muscaetoxicum 53

Comptonia peregrina 50

Galax urceolata 86

Anemone quinquefolius 50

Dirca palustris 68

Bidens cernua 67

Scutellaria ovata 27

Tilia americana 91

Taenidia integerrima 72

Veronica anagallis-aquatica 89

Athyrium thelypterioides 91

Collinsonia canadensis 95

Panax quinquefolius 65

Celastrus scandens 42

Pellea atropurpurea 76

Aruncus dioicus 73

Ranunculus septentrionalis 28

Agrimonia pubescens 69

Hexalectris spicata 37

Juglans cinerea 50 139

APPENDIX B

Maps of the study sites. 140

Hexalectris ravine, H ravine, H = Athyrium pycnocarpon Athyrium ravine (both ravines are calcareous). Fig. 39. Map Fig. 39. Map of Chippokes Plantation Park St. study site with ravines identified. Taken from the USGS Hog Island quadrangle topographic map. = A spicata 141 Ravine, Aralia Aralia racemosa Ravine (both are calcareous ravines). Clay Bank Clay Bank quadrangle topographic map. A = glutinosum Fig. 41. Map with Grove Creek study site ravines identified. Taken from the USGS Hog Island quadrangle topographic map. FS = Fire Station Ravine and OC = Old Country Rd Ravine (both are calcareous ravines. 143

, , . ; S \ J fi 4-MS? V- *' & > V a f t > .a? # .A * • * . ? & v * x 'HI"

/. \ ^ Conlr^^f^rtal / l32i!' ,-'? t ■ ■ w A*; ^ <*A. “ I W High Sch ~}^ y ■Cem „ ., . / v ^ A K ail C ary . Radio Totf/ers •'v _ I:

A ./.♦ ( , , . . . - ">:v _.^i/r j* >/. J > fv •tttUepV" r ^ / *T" ^ *^ ' ;i}] -,V/~ •; /m tM M ANDA N D MARY V 4 H V * <* .y& R BM M &U6 fi * f 'f it. - ——=»jtlQr* ~,.-j*rr^K- A^~(gprrSs. -> ** ■^Kxpol, Tf? " ^ W ^ ‘ (V I ^ ^ ■■ ^ l H : ' ,#• * / . -“#e *• wx ' ' V V I\ / / - ^ ^ j % > < .^V ' tvA'Ajf t t '■ *f- - fa ' ^ v V \ 1 X ^ * *\V” iCH/» • | < _ J / * ^ M ' \ ' X r & 'j(i)h! "'• A *__' _f^ ,- ^ ^^mphilUieafer A -/'" ->S " . ' r / A ' r ' l ' A '>>ifh, \ ~* ^ *• ^ ^ £U?\ ^PF' ^ il 7 ^ y ••• **r ,.;. ~-s'A ! - s ^■f'i , \ ~ v1'^ 1 ' * t'JLfy>S5i * i >’f\, * ^ i y ***...*._ '••*¥ \\ V cn 3etfiahy \ X 1 ! {*? **'- *. ^ ikJsf " ^ * . * V * r ^ .7 :BM>H2 ■m»«n l/ / ^i#%inut.HJi/^i 'C «/ V v tOWN \ >

Winston :'5il i N k ,

' ^ \ r aP*l/

. - v ! f /.A- / . : ^ ^ S £ r Fig. 42 Map of the College Woods study site with ravines identified. Taken from the USGS Williamsburg quadrangle topographic map. The calcareous ravines are: A = Aruncus dioicus Ravine, P = Ponthieva racemosa Ravine, H = Hexalectris spicata Ravine, AG = Aralia spp. Gorge, Ac = Acteae pachypoda Ravine. The non-calcareous ravine is G = Galax urceolata Ravine 144

QL&WAi- NATIONAL ^ v \ : / Ch&tthai \ \ * 1 ' , Pm V *

tjjyerlook

^?i;7 > y « 8 r ~ - ~ /, € S ^^VAI/SjM.CHfcATHAM/ANNKX 'iXCEYTER - ' ^ 7

jTstJokas ^ r$w + *L*h-

m

Fig. 43. Map of the Cheatham Naval Annex study site with ravines identified. Taken from the USGS Williamsburg quadrangle topographic map. A = Aralia racemosa ravine, At = Athyrium pycnocarpon ravine (both are calcareous ravine). 145

^Clayjjitj'

p “Cem"- ' F iV e( JaltigstmraV!1' \ Forks CV

Fig. 44. Map of the Casey Tract study site with ravines identified. Taken from the USGS Norge quadrangle topographic map. Cl = Casey Tract ravine #1, C2 = Casey Tract ravine #2 (both are non-calcareous ravines). 146

^ \

s' V calcareous calcareous ravine). Fig. 45 Fig. 45 Map of the Cabin Swamp study with site the ravine identified Taken from the USGS Lancaster quandrangle topographic map. HH = Hickory Hollow ravine (a 147

APPENDIX C

Seed sources for the species used in the soil tolerance experiments. 148

Table 14. Seed sources for the species used in the soil tolerance experiments. N /A indicates that seeds from that province were not used in the soil tolerance experiments. All counties indicated are in Virginia.

Species Coastal Plain Seed Source Mountain Seed Source Solidago flexicaulis College Woods, The Jones Run Falls, College of William and Albemarle Co. Mary, James City Co. Grove Creek study site, James City Co.

Desmodium glutinosum College Woods, The Monticello, Albemarle College of William and Co. Mary, James City Co.; Hickory Fork Rd. study site, Gloucester Co.

Aralia racemosa Hickory Fork Rd. study N/A site, Gloucester Co.

Collinosinia canadensis N/A Peaks of Otter, Bedford Co.

Agrimonia gn/posepala N/A White Top Mt., Grayson Co. 149

APPENDIX D

Soil data for all study sites. Table 15. Soil data for all sites. Environmental variables are listed by site, ravine and the topographic location from which the sample was collected. All values except pH are give in ppm in soil. ■H^oqNq^cNON^cninintNrHN^ ■H^oqNq^cNON^cninintNrHN^ U N o c U P © Cu^Nd^Nb^NO^inNd^Nd^t^ cd 0 5 c St a> h ~o7 • PS CD 4H rs > C a S4 o W V fS Si u C4 o cn h s y cn O O cE in d ^m^coroONfnm^^Nococo J^ o o o O O ^ O N N NO co CN co O coco co^rooq^lrv.rovqcsj'^ CD ’ G o G o o o cn o O (D .CM ; . h d c nIn I cn "cn u tE tE •rH U in rH NO no ncn cn c o cn CN 4H d t O O O O O O ^ - O G lH D D G G - G o o W G CL D ^ O h ^ m o o § d U o U •rH in CN CO +H J cT 5 j ± 0 6 D h h

O r tE nc cn cn cn o • HH CO in n CN +-> G G o J " c o G G CD O *H h

h d cE oOOoOO O o d O O _o O U m no in CN d lH D Gv o O I G LCL CL D h J X tE *cn O v u _5 JP- O C o O O O O CD V G D G h h d EtE tE _J cn cn d O uv 'E in CN CN t< n CN rH NO CN NO rH d d d d d d rH d d d CN d CO O C co rH )G a) G G G G G 0 6 D O h h G r O U n I • m NCO C rH CN in in m oi NO NO NO tv! NO CO CN ■H co d J E h O o O G CD h H d o O O tE J^N ncn cn •H NO NO _V n in in N C N C 00 in co Hr HrH rH rH rH rH rH CN t -M - DCD CD CD G G cn o O h h h d u tE d in CO CN tv IF) CN ON CO OCN LO O d G In o o I— G o O D V ( h d d d 'c« < c < c < < Pi in _G noc CO NO 00 rH ON rH rH rH CO ON d i-i g I U CD £ C/3O G o G § cd o o £ CL, CL) h i Pi Pi In m m o c tv in in tn O C O C rH CN CN *

z d < < U U • ^ P s • •4—» d G I G £ G u G o U cu & G O G G CD o o >N h h h ' in O O ^ NO NO rH o in ^ d §od m rH NO rH rH in c CJ C "cn co ON O CN H r G o Z o n h d n 7 JO < tv!t>> ^ P C _ O in v t rH in in tv HrH rH NO NO o co rH o o d CD ! G U G cn S CD o o £ G O G G G CD h n tv. tv. h Pi in NO '> in in ON O C m rH rH CN O g. G £ G & 6 O u O G cd G CD ■ §■ §■ G h *cn U dZ d £ Pi in 00 in ON in oo o O N 00 00 ON ON NO d CN in tv d ON -M cd G £ O > G CD o o s u G O u O G h u u « o £ <*■ PC P Z rG CD d 0) ^ C •f •f ^ m ■C ^ v tv t tv v t • - . cn tv. no n N ON ON ON ON O CO NO ■n rH N\q in o\ N H O rH N H th O rH r CO t-h rH CN d d d d d CN rH CO CN ^ p* D G C w G O o 8 H H u D d CD 60 CD £.8 O V l in h s. is ^ O & £ ' n i CN - CN ON NC NC l N j T—I rH ^0 + *J +JH cn m X D s d cd cdrs h

h

Id’cd u u cC cl Dh DC nO O P4 'G v v ’C G nmin m in n o oo CN rH D CD X CD X l t u H’C cncn 60o ) 0)0) cncn u u cdcd G Gcd G CD CD d CD h o c o c 'S. u Pi ■ in m NO cd G hh h

UU 7S P d d XJ o CD J < < 'C'C ’EhEjcd •?•? +-> NO G G £ £ G G u u G u o o u c3 G OO GG G cdcd G D CD d o o O h V V G c3 h h O G h O

h h NO in in tv d in NO o o 00 d CN ON O d O G n n h 150

151

m CTv CN COCN CO COCOCN T-h CO IN T-h CN In CN m oo T-Ht-h PQ o O T“l cd cd d d d d dddddddddddddd

CN in ON IN IN OV T-h VO 00 CTV CN O) CN co 00 (Jv oo CO CO CTv oo in IN IN CN o IN cd m o HIN 00 T-h vd CTv m IN ^■s d d

PS CO LO CO COCO COCN CN CO CN CN CN CN t-h CN CN CN t-h CN t-h t -h CNCN U o cd cd cd cd d d d d d d d d d d d d d d d d d d

rH i t-HT-h T-1 in CN vq co OV CN CTv oo vo CTv cq in IN vd vd vd vd vd cd vo T-H t-h r—I T-h CN T-Ht-HT-HT-H cN OOT-h OVd oo CTv CN in d

c CN t-h co ON CO VD cq cq T-Hcq oo vq oo m T-HCN CO vq oo CO T-h t-H N T—CT-h CN T-HCN t-H CN t-h t -h T-Hd d d d T-h d d T-Hd

m in in in in LO in in in in in in bA in in in m OO o oo OO ro On ro CTv d d d co co co O CN co t-Hvd CN t-HIN in n m n vo in m CN (N CO CN m CO CN

oo VO CN ^ vo o IN IN CN O OO OO VO o 3ooLno<3Jg^£3i Ej ^ o ^ t N CTv oo vo 3s cn in o co CO ^ oo U CO CN t—i t—i °° in t—i co H2 m ^ in fo? ^ l H{Nmininin H N coScocTj

CTv T“Hm in in in in m in in in m CO CTv VO d d d Os CN r—I CO vo vo d in co 2; ^ co ^ 44 IN 55 CO d in CO CO co co ^ co m rr1 co CN

m in in LO in in in in in in IN vd CO CO oo co c o co ^ CN CO cd

^|T]N^inH^^^incovD^K^^in CTv CTv ^ CO ^ CTv CTv O CL, in VO ■d ^ tv LO N ^ cd

cu Dh Dh 3 S-H o o ‘g 3 > -T* O o cu a> _G Dh 3 cu ^ v t3 RS 03 G3 Dh Dh c3 JG cu cu u 3 3 G G qJ* CCS u G bJD .£ cu « CUT3 bo £ V V oT ’> cu O d R3 b C R 3 O 60 3 d o CCS ccS RS bO bp cy ra cd G X 3 > G ' 3 O 3 rD P4 & t* s RS rs fy fy •£ C4 “ 5 'C C 51 ‘G RS CCS BS [1 RS G rj s CU CU CU 4-4 4-4 4-4 VU o >-i u w m CCS id (S t/i o 43 cy O) w tg H N N CN bO bO u g g o D cd G § 3 3 cu CU CU CU CU £ ? rt .y .y g cu h o o r9 Dh D h D h . 9 ! cu SM G Gh id U G RS G G G G G o u L2 cn cn cn q oS .U ^ .5 91* ;N.y .y S-4 -G o 4 -4 Dh Dht 3 t3 V •? v v ■> cn cn cn -o g 3 rs o3 cC RS c3 03 Dh Dh Dh os G nS cdy ^ u G & DS cy cy cy h h ’C -G ^ o cu g g G 3 C3 G cnD cn D cnDh u u cn a>r* > Dh D h N G 4-J" H-h " 4-h ' 4-1' 4 -*' cu cu G « 3 G .2 -G 03 03 tS u U u u u u CCS CCS 2 u 3 Gh G CCS RS c0 ccS 3 3 G 4-> % 3 LO > £v 3 3 r*H i-i Vh 3 3 3 X X G c t—I RS H E- H H H J -l S-H S-H cu cu o g ^ u 3 QJ < £ X < < Dh Dh < < U < < < < ■ cn cn cn cn cn cn RS •4 w4-* eC 3 2 >• 03 CCS ccS 03 ccS RS CW, Galax CW, Galax urceolata Ravine, slope 4.1 1 18.5 84 19 1 2 0.2 76.8 0.1 H CD u u u U U u U U U u uuuuuuuuuuuuu HF, Desmodium glutinosum HF, Desmodium Ravine, ridge glutinosum HF, Aralia Ravine, slope racemosa Ravine, ridge 5.8 4.8 3 2 64.5 107.5 4.7 3.5 696 948 37.5 78 103 228 1.6 1.2 9.3 5.5 35 0.2 0.3 14.3 9.8 1.4 0.5 0.4 1.8 0.2 38.3 0.1 152

ID LO 04 vq h ; T-H t- h 04 co O o O o o o o o OO o

QJ ro CMCMvq LO o. LOoo VO o t-H o t- h oi T-H pH ID (N 04 cd . T-H m oo 00

CMCM04 04 t-h CM04 04 04 ol cq OO OO O o o o o o o

OOLO CMOO00 t o CO t- h Co ON ON tH CM t-h t h OOLOvd 00 tVvd o cd T-h -

c oo ^ \q in ^ n oo oo vq N O t-h T_H H O t-h t-h t-h O t-h

m n ^ CO CO j ^ |*i LO ts , w~\ 00°g^^in^lO^MrH^ co co vo ^r1

oo5^oo^ooooS5^^^ u

H ^ • ^'T VD • wC Min...... m m m m vnfr5^cm rO Iv^^tlt>-vC,r<^'sC)T:^ co co in cm cm co

LO LO LO , , LO LO *0N^ NN dNN^HN

*"G ^ Oj Oj IS N ts vo CAp ,vq 'OLo^'omiO'O'^^io

a> CD CUC cu a> O o 'c3 cu cu G a> G C4 cu-2 o '(3 Cu 3 u a> p 1/3 0) ’w B fl) ^Dh- o H • ^ G o tj bJD *p bJD bG P a> p J5 '£ O -p P -a P P O P Cu o Pi ns U U U U U U o o o o T—I «s p P P p p p ^u ^5 u M u M u o» l""H o o o o o o S £ £ £ UP "a»H* «S • u u u u u u cn cn co cn H cn o o o o o o O U U U APPENDIX E

Ground layer data. 154

oo Tf CM I'- CM CM CO ■'3’ "M" T f (M oo oo r*. oo co co oo T— O O o 'f­ ^—CO oo c CM co CMCM CM c cn eg cn to r- oo o •'4' M- TT Tt o CD CD CD c o o c as as as CM c r CD CD CD O CM CO m c CM CO CM CM CM C CO CO CO o CO as o o ’ o xz d o ' o ' d s z o o o 1 1 CO 1 1 1 m •M" m as oo as as CMCMCM 00 oo ■M- as ■M" T“ OSo m COm m COCD CD T—m ■O' T—■M- oo OO oo l''- CO CM CD CMCM os OS as CM ■M; OO CD OOOO o o o o' ^cl o ’ i ■ ■ i 1 i 1 1 1 sP >p sO -P -P >p 'p >p O''S o ' o ' o ' O' o ' O' o' o' o' o' o' CO ■M- O —I CO OO OOO in CMCM o 00 T— O < T— CM OO oo O M; cs £1^ CM O > cd OO CM CM d § in CMCM d CO CO o CD CO CO CO o T— ^4" -M- o Ol ALL. a _ CM CM T~ CM 1 V? >P n P vP vP sP >P 'p 0 o ' o ' o' 0 "SO' o' "■So ' o' O' 0 O' o' o' o' h- CO O > O h- h- 1'- O CM OS OSO > CD CD cp O > COO O o Z COo ~z_ o CD z oo' o' r \ o' cd cd cd o ’ OS as d o O) o eKJ \ m T— T— •T— o o oo o o T- u T— o T— cn cn cn in in o m tn m to m m in m m CO 0 I'-i CM 0 CM CM CMT— CM CM CM cn CM cn CM LU lu LU > > > o O o o o a >P vP 'P 'P «p O' o' o' o' o' O' o' o'•P o' o' o' o' as T— O CO T—COCO O CO co CO O I— T~ cq O T— CD t-; T—O COcq CO O cd cd d cd T— cd CD d cd cd cd d f- CM o ■t— to ■*— T— o COco CO o T~■ LU LU l U Q Q a cn cn cn 00 in in to oo m to in in us m in > - CM d > - CMCM CM id CN CN CN N tz H c o £ 0 0 0

LU LU LU Q a a as CD CD CD c C c c > > CO > ■> w ca CO CD CO co CD cn cn • g c n cn XJ CO CO ’o CO CO o CD CD CD CO CD s z a E _co L> CO o CO CO _ o Ts o o CO £ a V) < < 2 2. CO < XJo a) Q. < o CO w in o CO CL r - 3 CO o o » ■a v»— XJ XJ CO CD ■ a CD > » E CD CO o o CL) O TO o Q. C 0 CL TD o o a > E CO C o O o O E a E ■a 3 CO “ I k_ 3 3 0 l_ £ W 0 CL 3 1 CO 0 2 O E 2 . ^ XJ XI o UJ O) o LU CD C O CO LU UJ O cn JZ CD CD o rs CD CM CO o CD a 3 O c d CD co > . CD CD cn cn CO cn X c n to CO o V> E co 4* O CD ■ a W f t U in CO 0) j D a 3 a> CD S? 1/5 0) 3 '— — L U > 3 CO o a) i— (0 o LU > 2T co c n CO _ o cn a) o o i_ O 0. o 2 co o 2 2 CL a 2 -co CO Jo o "o CL o CO o CO O O h - a. 0 CL > O h- C L 0 < C D < O JD E O CL 0 Q_ LL < O College Woods Actaea Ravine

T T ransect 1

Plot # 4 ridge

SPECIES DENSITY R. DENSITY COVERG R CONVG IMP VAL ln(pi) shannon '- f ■xT '- 1 ' o o o - r n i n i O ' o >P l O CO MCO CM o o o T“ > d " 03 ' o vP CM ' o cvi 03 O DCO CD T— CD ' o O x— CM x—■ o ' cd CD om co 03 o cu E in . Q . Q 3 ■ 1 0s >p o T— p o n OC OCO CO CO CO CO n i m © o o o CO r-* 0 Ll_ ' o CM CM OO X CO ' o n o o o "rf r M" ) T .TO cvi & CU CD cn 3 0 3 L_ CU 3 — P O P ' ■ P v - r n i O ' O O v o oo • > O O ' o vP J? ■> d in o ' o CM O O CM n i oo O DC H O -a T— o o ' O ' o <= < o o ra cu CO CO c 2 o o o cu cn

CM c L CO CL o % - T ■E •R m CL O CD CU co 2 > O CL • z s < _c h 2 UJ o J U CD w QC O > l _ t Q UJ 2 CO CO o O > DC Q LU CO q cn o c c c _ ' o n i o ' o m m m - r ' O n i '- i o 5 " o p > ' o T“ OO oo CO OO CO CM CM CM 03 " M Oco c CO o c CO ■ s° MCM CM o o ' o O O o O O cvi in ’ in CM in > < _ u > c in .E .2 § § .2 m u 5 a o _ i S o 3 co co a E cl 1 - -h- h '- l OCO CO 3 0 - M "M" M" M" OCO CO x ’ o n i CO CO CO CO ' o vO cvi ' o 'S Ooo’ CO CO ' o ' o CO p 3 m m CM CM OCO CO — to CO 1 ;

’ o 03 M" CO m ' o 5 " T— CO O CM CM ' o 'S in CO CO E 3 1 o n i '- f m o c CO CO ' o >p CO CO ' o x—- CO o o CM 3 0 "M" CO CO M" ■M- CO o c CM ' o CM cvi O m in E 3 i

Oo CO CM t a c o o NO o o ' o >p CM o o c o o o o o ' o o Oc CO o o ' o o ’ o o ■> h- O a ■ < DC 2 o co c cu cu > a cu o o CJ CTJ cu CO (/) CM CO . 0 O : * cm yj CL O w co o CL a> 1 a. z s 2 > _C ‘n o DC CD CD ^ ac LU H- - > o o > LU DC w o < > Q UJ 2 CO Q U J J U tn CO e m m O ' o r'- MCM CM CM P > CM S ' MC\i CM O " M x— x— CO M" ’ o CO CO lO OCO o CO O CM ' O p > n o o o m m m to c co to in o X o ' o CM MC p cvi CM CM L < LL ■a O o CO cd cn CD co c: — i ■

iS ' o O m n i m m O ' o P > "M- p V -; h O " M x— CO - M m CM O ' O MCO CM ' o O v X CO 03 m c o cvi ■o CO — cu co co a . a >x CL o t 1 c\i cvi CM '- l m P ' n i O O 3 0 3 0 CO CO CO CM x— CO CM O ' o n CM ' O - x M" ' o x“ CM OT“ T CO 03 J O UJ C CO 'C CO C co E 1 3 aj ^ c cu o CO c CO .ss E P i 1 o o n i n i m q i n i O ' O CM 'Xf O CO M" CM OCD CO OCO CO o c O MC CM CM CM O ' o CM CM — r P v MC CM CM CM O ' o CM v CM cvi 1 ■ ■ ■ n i MCM CM O ~ x ' o ^ 1 Mcvi CM M" OCO CO * 'I CM o O ' o vO V— o O ' n i cvi P s MCM O CM O ' o X H- -i ‘•O ■a t= t= ■a 2 E E .E o cu o o co e E * a> -Q to c f i co cn — ' o n i 1^- x— M "M" CM CO o n i O ' o g s O o ' o 'S ' O P • X cvi " M cvi — 1 1

20.5 100.00% 20 100.00% 200.00% -1.650222 155 College Woods Actaea Ravine Transect 2 Plot # 3 slope SPECIES DENSITY R. DENSITY COVERG R CONVG IMPVAL ln(pi) shannon Adiantum pedatum 8 61.54% 12.5 71.43% 132.97% -0.485508 -0.298774 Li­ < o' in P v T- in m m i O CO CN n NCN CN X— 5 0 CN CO o' -p cvi m in d N" X— N" NCN CN s 0 OO o' I-- o Is- m o m cq - OO N oo CD cn cn CN X— ■x— OCO CO OCO CO n co in j o co i_ E 2 o sq a =5 c .£5 2 CO P l 1 ■ ■ •N* i O o' n in X 5 0 CN CO o' -p T"“ ' o O r*- CO CO in O O CO* CN CN 3 05 — P

>p O ' o ■vO O O ' o P > o CN o T CO r~ in o m ’ o in o o o' in x— o a> CO OO Tf ’ o 1 1 X3 a: < f =*Sf g CO 0 V) o CO (O CO CO 3 eu > CN CO Q_ 03 03•c 05 o o CO > 2 .3 _l ’a. Q_ LU p LU a LU > LL > o o > UJ o: ' O N" x ’ o o' N; Is- ' o CN o T” oo OIs- CO T— CO O CD o o CD CO X-; 5 0 'P cvi 05 N" 3 W -rr L C Q.S — t 1 in in s 0 -p T- r- N; m 0s >P CO CN 5 0 in X— ' o -p in CO N" CD ao CO o oo o' co CN CO cvi CN CO O W i_ co CO 3 3 > 1 1 ' Np iq oo OO © 0s vp o 0s vp o o CN o o' o o o o in ’ o p o o' N" T— o jO 1 a: '> o T3 < V) CO CO E <0 o 5 0 0 a CO <0 co co ca 3 cn 05 a % T" o 5 0 05 Z > >- - > a LU o o > LU o: cvi O 9 5 a: o o 0 § ® g 1- ) f i tr □ LU 7 c/3 o W - T o 1= 00

N" oo m cn o 5 0 o 5 0 5 0 co 00 oo in p o 'P u_ > io I CN d d d d o d o o o' NC NC CN CN CN CN CN cn co 5 0 3 OJ . u CO o CO

P > o CD o cn CO N" CO 00 o OO oo CO ’ N s 0 0 0 CO - N 0s >p in P ' Is- in OC OCO CO CO CO CN oo OO CD CN o' CO CO E -Q(/) CL CO Q. 3 1 ■ cq 05 - N oo * x p O ' 05 o O 05 ' o P - CN CN p CN 5 0 O O 05 0s -p X- in o 'p in in a a NC CN d CN CN oo OO cvi o' CN 05 CO 2 in 3 3 1 1 o o ' o p > JO CO 05 05 N" co o o ’ o oo oo o o oo o o o o 5 0 5 0 m o o o ' o 'P CN 5 0 c\i 3 CO l_ O 3 cn co CO 1 1 " N S ' 05* p - c ' .CO ' o cq CO ’ o cvi 05 05 ' o nin in o o' 'P m 05 c ' oo s ’ Is- i n o a co l_ CO o co L C o 1 • 'P p o O o' P v LO X— o _ T CO o o o CN o ' o CN o d o o ' o p - d C\l ’ o o 5 0 CO 1 156 157

r'- cm r-. r-. r- r- i"- in ■vj- ■M- vf CM o co o o o o o o oo o O O r^- o h- r'- i'-- I'- w CMCMCM «o o m m h*. m in m in m m co co CO CO CO c T - t- m CO CO CO 03 <= cm CM co CM CM CM CM CM CM P COCO O COo o o O* O O O O O CM o O O T- in 1 ■ 1 1 M" ■M* CO ■m * ■M" -M’ ■M" CM CMCM CO T“ t—T" a> O i 03 03 O i 03 03 03 CO CO CO in in CM m in in in m m COCOoo T“ m t— r— T“ 03 0303 CM -Vf "Vf ■M- ■vf •M" 'M- p O O CM cvi cvi cvi cvi cvi cvi cvi T“ ■ ■ ■ ■ ■ i ■ ■ ■ v i 1 sP vP n vO vP vO vO o ' O' O'P O' o ' O'vP o ' O' O' o '* o'NO o' >5o' •PO' CM CM CO CM CM CM O CM CM O m COCOO O O p OOO CM O O O 03 p O O $OO OO 1X3 OO* CO cd CO CO* o § -r-i O T—lr—CO T— CO T o T— ■M- O CL CM CL T“ CM

>P nP >p sO>P >P vP sP >5 ^P n P vP >P > P o o ' o ' O' o ' o ' o ' O' o' O' o' CD O' o' o' o'* > 03 O i O i 03 03 03 I"- 03 03 O > CM 03 03 O z O O o O O O CM O O p z CO P p o o> oi 03 03 03 03 03 03* o 1^ o o o o co o CM o o a: IE in in in in m p in m m in in in in m CM cvi cvi cvi CM cvi cvi CM CD cm cm cvi cl CM CL cm co UJ UJ > > o O O o O'>p O'>P >po^ o' sPo' >Po' o'>p 'Po' .'PO' 'Po' vPO' 'SO' o'

p COCOr*- COCOCOCOCOCOO > COCOCOo O i O i p p O i O i O i 03 O i O p CO COo WCOCOCOOOCOcd oo* COcd O W COCOCOo " z CM O 2 COCOCOo UJ T~ Ul 'r“ Q Q of CL m tn oo in m in in UOin oo in m m >- cvi cvi cvi cvi cvi cvi cvi CM >- cvi cvi o i CM* h - w co Ul UJ O Ql CL CL CL CL Ol o a) a) c c > > CO CO in CL £3L E o CO *G ro CD 3 co CO o CDO 03 in c o In < ■o in 1_ CO CO < o o o 03 g l_ cn a . jd E .£ 5 *b_ tn o a . ■O >% E tn Z3 o "O co —I o” CD ■O cu CO CO o 03 n E 3 o ■o :t= o CL o 03 o L_ o s s ^ sz -a E o W -Q CO CDg ro CO <: O CO Q. "a5 ’l. ■ § d. co a ) E ~ 03 'sz 03 ... c l c= co cn a 3 in cm yj CDxz >* o in co in I/) o v 3 3 ™ OJ (U c xz m 2 m 03 w CL S S « ^ •i= c o J? £ =» P. o E 3 X cn i - c O a? 2 ^ ° W o i_ UJ CDCD 'u- £ ■§co <— 01.2 y O — £ — LU Z o (U o co _o CL O O CDl_ 03 "ro .EC w o o o .g >* O 2 5 CL o co 3 O CL CO < b CD < CD _J < O > > CL £L _J o 1 - CL CO CL > a College Woods Actaea Ravine Transect 3 Plot # 4 ridge SPECIES DENSITY R. DENSITY COVERG R CONVG IMP VAL ln(pi) shannon Vaccinium spp. 8 61.54% 17.5 77.78% 139.32% -0.485508 -0.298774 in -r— n i r- o Oi o CO ’ o CO O v cvi -r_ T—_ T— CM oi in DCD CD ' w 1 1 1 1 in o o- O v o> CO ' O n ' o c\i in 'r_ X™ T—| ^r- ' o vO m o O CO co CM CO oi i o c cn < 2 d O i i r- Tt CM n in © o> CO CO cvi o d o O sP o o O O ' o >p CM CM O O T—■CO o o’ P 158 159

X— IO CO -N- N- 03 N" 03 •'4' "H- CO CN to CO ■»— T~ CN x— CN T— c p p o c p o p cp p p Q 1 o p p" o' c c c c CO CO .e .£= CO CO to ■N* 03 T— T- tn T- to T” T— oo CO N- o o CO o oo o o o o 03 CN o o o o o o o o to X— 05 N" N' 03 N" 03 N" co I'- 1'- tn m CO in oo m m m ‘q . CM ■q _ oo o o o o o o o o CO CO 1 co’ 1 COCOCO C ■ 1 c: 1 1 ■ 1 1 1 1 s O > p x P > p v P v P x P o> 5 ' O ' o ' O' o ' o ' O' o ' o ' >o P ' ox P ' o ' ox P ' 0 3 X— O _ l m N - CN O CO O CO CNCN o CO p o < CN CNN" ° ° . p CON;N; p X-! CO* o > cvi CO OO OO* in CO* in oo' CO o CO CO o A oo CN ’ T ~ T“ - r - T“ o T“ CN LjL CN 5

n P V® > P 'S > P > P v P 'S x P xO x P 'S o ' O' o ' CO o ' o ' o ' O' O' O' O' 'SO' O' o ' o oo CNO W CNO O O O O o > m N" o p p P P T— r - T— t '- | P' o z CN o ' z O OO CO* CO CO T“ COCO O o 0 3 o o N" T— 1— O o T— o ■*“ QC cn tn p CO p p in m to tn p tn tn P c\i o" CO o cvi cvi CN cvi CN cvi cn CO cn CN CO LU LU > > o o o o 'P 'P xO 'P 'P x P x P x P x P x P 'O xp o ' o'S ' o ' o ' o ' o ' o ' o ' o ' o ' O' o ' r * 05 O T- CN CN 03 CN 03 CN CN CN O CO T— O P P- P- O P- O P~ P~ P~- O CO CD O* ■N" N- m" ■N* in N" N" ■N" o CN P- o ■N* x“ o 0 5 co T— 0 3 CO 0 5 z 0 5 z LU LU a 04 Q of Qi '> > - cvi o > CN cvi cvi cvi cvi cvi cvi tn g> co CO a : CO on CO CO z co z p^ > LU UO > LU CD Q _ Q _ V o j Q CL CL Q_ (D a x : c •*—> '> c CO O o Q_ Q_ CO cn CO C/3 C/3 CD co ■o "O % > 0 0 ■g CD E <° o c I E 5 c 1 1 CO c ■w .2 o co CD CD o ^ .co • | i c c o CD CO 3 JO =H: O 3 ■to £ _a> o 3 o j CD t 'C D ;g u- Q. LU o U J CO co 5 = ^ 3 CD i- "o CL CO co o CL co CD 2 O CO u . o d o O CO

O CO > 5 a .2 H CL CO < Q LL CO Q_ QQ Q- < CO < O Cornus florida 160

0 0 5 0 0 5 0 5 0 5 0 5 0 5 0 0 5 c o N - 0 5 CJ5 0 5 CN 0 5 0 5 N" 0 5 CN CN 0 CN O CN 0 O O CN O CO CM CM CM OI CNCN CO CNCN c d d d d d d d d d d £ o ' d o' O T- d d d d T— 0 1 ■ 1 1 1 ■ 1 ■ I 1 ■ O I I o c c c c CO co x : x : t/> u> CO •t— CO X— CO r* r — T- CO T— 00 05 05 05 05 05 00 05 X— CO V” 00 0 OOOO 00 X— OO 05 i f x f x f Tf Tj- 05 Tf 0 CN 0 CN 05 CNCN CN 0 CN CO LO LO LO LO LO CO UO COCO CO CO CN COCO CO CO CO X— - i f x f x f T“ ^ Lf5 CN LO CN r- CNCN CN LO CNCO CNCNCN CM CN CO CN I-~- cvi r-- -N; t ' - r~- r^- cvi h- ‘r x CO CO OO CO ~ OO OO (D CO -2. co I co' d co CO CO ■ co d X— r o ^ 1 1 ■ 1 1 1 1 ■ ■ 1 1 r~ i i i i

ln(pi) c n P v O > p x P x P x P > p ' p 'P > P O' o ' o ' o ' O' o ' o ' o ' o ' o ' o ' o ' o'P ' ox P ' o■p ' 'po ' LO "N- LO 0 5 x f N- ■N- N * i n ■N" 0 J oo I"- C- o CO CO x— CO 0 CO LO c q 1 ^ ■N; t n LOLO 00 LO 0 < ; i - c n c n c n o •N; N; CO 0 § CO LO d d d i n LO 0 LO d > d co co co o § ■N- ■N- cd ■N" d CN T— T“ 0 5 CO 0 n CO CM CN CN O CNCNCNCN 0 CN x - CN CN

v P x P x P x P x P x P xO 'P v P ' p 'P xp 'P x P 'p o ' O ' O' O' 0 ^ o ' o ' O' o ' o ' o ' o ' O' o ' o ' o ' 0 CO COCO OO cO CO CO CO CO CO O 0 f '- N " N " x f- C 5 0 CO CO O CO 0 > c q T— X- CO T“ T“ T— ▼* ■x— O > LO x - t - r - O > cq CO O cn 0 z to CO CO 0 5 c o co' CO CO CO co d Z oo d Z 00 co' LO CO d o CN CN 0 o c - o o c- 0 O o o a : Cd Cd 10 i n LO m i n m i n i n LO i n 0 uo to m in in to in LO in 0 00 CO 0 CN cvi cvi cvi cvi CN cvi c\i cvi 0 n cvi CN CN cvi cvi cvi cvi CO Cd T- CN CN Cd > > o o o o o o x P 'P 'O x P "P > P 'P x P » p x P 'O 'P 'P 'P 'P 'P x P O' o ' o ' o ' o ' o ' o ' o'S ' o ' O ' o ' o ' o ' O' o ' o ' O' 'So' o' o' O''S CO CN CO CN CN CNCNCN CO CN 0 x— CO CO CO 0 CO CO T“ CO 0 I'-. h>- CO ■N; N * h - ' i f 0 cq ■x-; x— 0 > - 'T x— cq x—■ 0 b cvi cvi cvi cvi cvi cvi cvi d r d CO cd cd d b co CO X—’ cd d XT- 0 5 CO CO 0 0 5 00 in T_ T_ 0 05 CO 't_ T” m XT­ 0 0 5 z o z 5? Z LU LU LU CN o Q Q Cd Cd Cd 05 05 CD e 00 to 00 m LO to 10 LO 00 to LO C OO LO LO LO LO c LO LO OO LO LO > cvi cvi N’ cvi cvi c n c n co > cvi cn c\i io ■ > CN CN cvi io CO CO CO co _ o ' CO Cd CO Cd co CO z CO z co Z > LU > LU > LU CD 05 O Q .32 Q c o o O CL Q_ CL in .52 in cn •a XJ XJ 0 is 0 0 05 E 05 E 3 3 3 3 c r 1 w CT 1 1 c 05 o cn .E a 05 in e 05 O 05 05 ’3 O) '~=Z 3 cn «2 0 5 tn O) o* 05 CO tf) JD 05 s ? n ^ O ro n tn CO E O o tn -Q c "o .o «- "o d . 3 CD E 3 05 CL J 2 ro CO Q . (/) O C L x 3 O v2 X5 O 05 C c c 5 m E o 0 5 in co ro = 0 5 £ 3 in » O co E J±2 cn II ■g > "P CN r o _ — E £ X J 2 ro 0 'o w CO o .5 % ^ l — o > v r - X J 05 in 0— 5 Q- C L j 05 - ; ro 3 in cn in O XJ in 3 2 E o 1 ° > 3 - Q5 3 05 x - 3 COm C(n in m ro co to O o £ OJ XI O =tfc in v_ cn 5 E 7 2 £ o c o ro ^ 3 o 05 *- o -c co w — -t—> CO 3 o tn <- ro o 05 05 o t cn 05 O CO _ _ CO —o •—o 3n O ro > ro 3 o o ro ro < a CO CL OO < Li_ > Q — I Q_ > Z O 0 H a. < O > CL Transect 2 College Woods Ponthieva Ravine 7/21/99 Plot #2 slope DENSITY R. DENSITY COVERG R CONVG IMP VAL ln(pi) shannon Polystichum acrostichoides 2.5 19.23% 27.5 64.71% 83.94% -1.648659 -0.32 Aruncus dioicus 2.5 19.23% 7.5 17.65% 36.88% -1.648659 -0.32 - o h- O CO OO " CM LO l"~ O I CO o O p LO •M" O o T- O O LO d cn 1 o o> io CO o oo LO o © o CO 03 CO O ■*—1 CO CO CO £= o -

CM d d

io o o: - 0 h- M CL l^» M = E Q. CM ° O 03 03 "O w ^ w — co C CD „ o ?> > 8? CO ) O CD s S S s oj ■- o CD o o cn o « sz o o > LU CL l c $ CO cd Q LU z £ cvi 0 o o Z > Q LU Z CO 0 tn ■ co I c: c o o O C __

' S NO p p O i O O O O O i M C p O i M C O L O l LO NO ' o CO d o t " M o t CM CM CM CM CM CM CM dcd cd M M■M; CM d c 'M- ' o OCO CO CM CM CO n CM CO oo OC OC CO m CO CO m CO 3 CO 0 CO 3 0 n P 1 I

3 0 ^ ' o d c d c ■M- p O i O L O L O l O i O i O L O l O i O L - " r CO oo ' o p ' P v CO CO ' o P v CM CMCMCMCMI^CMh-iCMCMCMr^ ■M- ' o c O > CO < i t . O .in = O ■ cd tl CO o S’ *— E C «= 5 E 1 m c r-- ■M" LO ~5 .tn ' o P ' Np 03 CM d CO LO o d o d o d CO ■8 I ' o ' O 3 0 CM OCO CO oo - M ' o P s oo CM O -( T CO T- (O T- CO O - - O - CM T- CO T- T- CO O co CO cd 1

oj rvioj - - f o i o d d " M d c ' O •vP CO 3 0 CO 3 0 CO CM ' o dc d cd cd CM d c d c 0 0 =5 1

>p >p "- 1 ' o m d c oo 9 E =9 d ' o 'O ' o CO CO CM CM CD Q O in S o CD E E o o - 1 ■ “ m ' o P v oo ' o >p CO CO CO cm CM 3 0 CM 3 0 CM CO .i * S ' o 'O 03 CO D O " CD o > p cvicsi pg ' ' I ' o ' o n d o t d c CO 3 0 oo ' o ' O P v ' o ^p ddd d cd CO CM CM O J CO d c 3 0 c o to E 13 P 1 n i d p o cvi CM CO CO - ' i - h o CO CO T3 oo ' o •sP CM MC CO CM CM CM 3 0 CM CO p CD C cn o a CD e « « e 1

* f S n t d d CM cvi CM ' O S ' CO o ' o S " d c CO > D oo CO ' o 'S CO d c d c p c .2 c m I c 1 ' o S ' n i ■M- n i T“ T— •M; ; M - ' [ d c CO 3 0 oo ' o P ' CO ' o S ' d cd CM 1

- M T— T— d - h O " ' o ■vP 'S n d "o 'tn CO d c CO 3 0 oo o c ' o CO ' o CO CO d c CM CM 03 CO c CO CD c c CO 2 o tn CO c P ■ T— ' o P ' CM o d p o l'~ Oto 03 CO ' o P ' o ' o P ' o d o o d o p

o CD a> CO I'- tn c c 1 O " CL CM 03 3 0 CM O CD CO CD O O 03 3 0 CD 0 o tn E S E l CD CD l E > LU CL 0 CL CL o LU CL O LU O 10 CO z s o o o o Z > 0 S p “ > E E r CO c o c CD C L L 03 C E tn CD CO c - h-h- m m “■*“ T“ o o d 'P d p o ' o p N o o ' o o CO 3 0 CO - " i CO ' o P ' o . Q 1 'S c\i LO LO m m m d O d O ' o t - Is CO m o d d ' o o d O O' P v O O CO 3 0 CO o o d p ■ — m o d P ' O o d O ' o P ' CM o ' o 'S

l CL _l - ■ 0 ■— .03 2 9- °" " O CO 3 is .2 -C CD o o cn cn 3 162

CM CM CM CM CM 00 ■M" "M" 00 h - M" ■M" 0 CO CO CO CO CO CO CM T— T— CM co t— T— T— T— — a* O O O O O T*" 0 O O 0 0 O O O O 0 ■ - 1 1 1 ■ 1 1 1 1 ■ • roc . c tn to 00 oo oo oo oo CMCM CM CMCMCM CM CO CO CO CO CO cn O i Tf x j- O i cn CD O i O i ^ cn 0 CD O i CO CD 0 O CD CD 01 Oi Oi Oi Oi CD 0 CD CD m CD 0 OO O o o o o o CO 0 CD CO CM O 0 O O O •O' CO CD CD CO to O i T— T— O i cn v - •t— T— Q...... cd cd ▼- 0 cd cd cd cd cd ■ ■ ■ ■ ■ ■ ■ 1 ■ ■

v P v P >p 'P sO - 0 nP ^0 «P >p > P 'P o ' tf' o ' o' o ' o ' o' o' O' o' o' o' o' o' o' O' o' in T- OO CO 00 0 o> CO CM t - 0 CO 00 00 0 CO 0 CD 1^- CO CO cq 0 O i 0 CM ■M; q O 0 0 q 0 0 § 1^ ■M" in LO id 0 $ 1^ co in cn CO 00 00 cd cd 0 CO CO CMCMCM 0 T— CO in CM 0 CM CL CM

v P sO ^0 vP vP -p s P vP 'P vP > P o ' o''S o'S ' o''S o"S ' o ' O' o' o' o' o' o ' O' O' '5o' O' o ' CD LO T” 00 CO 00 O CDr^- i'- T— 0 CD h - r- 1^- 0 1^ O > CD CO 00 co O > r^; p CO q p q O Z q q q q z in in in O c d cd 0 id cd cd cd id c d O o CD O o CM CM O o o a : DC l o m m to tn cq m in 10 in q in in m q m O — CD rsi cvi c\i c\i Csi CM 1^ h - cvi CM CM CMCM 1 QL CM M" Q< >UJ >LU o o o o ■sO NO v P v P s P -P 'O 'O 'O 'P »p 'P nP 'p 'P 'P O' o ' o ' o ' o ' o ' o' o' o' o' O' o' o' o' o' o' o' o> 0 O 0 OO O O) T— O 0 t — ■M" O 0 0 0 0 0 5? > - p O p O O O ■O; q q CD q q q q q 0 t — I— 0 O 0 O O O ■M" ■M" t T cn ■d CD CM CM CM CM CM O CO CO O ^ zm z g)® nLJ g)® sLJ o o : O Q< CD CD in q in in q q co LO LO o o q 'S 'S 'S in (O CM o ' o ' o ' 3 CM CM cvi CM CM c\i 3 c\j CM id CD O in o £ O £ 10 IO 1— CO o C0 "o CO "O z ~a z cn UJ to LU 3 Q CL Q- CL CL 3 Q Q_ Q_ a . CL o O d c 3 .23 (0 to to "O CD is ■O 0 ■g a> o o E 3 o E SZ CT 3 1 g 5 _C ro to CD o CD c O o t o ’3 CD d 03 ro o cr cn ro ro i_ ro a) l _ CO T 3 m j d CD o o 0 3™ to .9 ro CO CD "o & 3 3 ■0 ro ® c .E O cl CD ■— CD ro E Q_ 0 3 h - o ro O %S to « - to OR ®o . t _ 10 — to E E e tn £- to E O) © e a ^ _ g 3 E d . E 1 3 CD o 3 £ r o ro 3 ,25, =tfc 3 o f S l s § ^ tn r o 0 S* 1/5 c d o r o 3 ro ® . 0 tc: t5 ® d S *0 0 (D ° 'cz X3 t o cd ^ E > » 0 5 O $ to * ,(/)£ (13 2 CD E s8 1 S , 0 3 s z 45 0 0 o S 2 3 XT 3 £ E d E d t o 0 3 ^ * => £-5 E tD L— 0 5 10 CD 0_ .9 o i_ d ■?:' ' OCD ) Z- Z4 L3 tCO o ^ ■e = e-S ro o c : r o ’l— t n c r o cd O TOO(DO” ~ ?CD E ro ca ro o | a CD tnE 0 O ) d a> d co- i= ro 9?> o o g o a . LL Q. 2 □ Q. CL CD O CL I— CL £3 c q < c d c q < 3 QZ) E D = J Q. < O 163

CN o CN CO o to u) m m o) CO CO CO O) o co co co co co d d d o £ o d d d d o O ' ■ ■ ■ ■ c r t= c r c r .cco CO CO tn 0) 00 0) N" N"N" c o o i n Oi Oi cn Oi t o u ) t o CN CN CN CN oo m oo CO COCO CO Tf oo ''t 00 oo oo 00 ~ 0 xf CO *o CO CO cq CO SV d T— T— T— ■c I I _C 1 1 1 1 vP o' o' O' no'P o' CNJ T t o _ J o _J o i'- h - O O CO CO CO o < © < o cq cq cq 5 o o> o o > o > in d T— d CO CO CO o N"N" o CL 1 - CN 9 = ^ CL CN

vO vO 'O s O 'So ' 'So ' O'" 5 o ' O' 'So ' O' O''S o ' o ' O ^— OO t- O o oo o 1 ^ O > T— T—' O > o z> p cp p p o Z d Z d z d cd cd to d O — i — o o o o i n o o o ■*“ o -r_ CL CL CL i n i n n i n i n i n i n i n i n i n i n cvi r - CN CN CD O c\i c\i c\i T— DC T— CN DC ▼— T— CL UJ UJ Ul > > > o OO o o o s P > P v P 'P > p v P 'O 'O o ' O' 'So ' o ' O' o ' o ' O' o ' o ' o> CO N" CO o cn O Oi O O o o O o> CN i n CN o 5? > - O O O p p o Oi i Oi d ^ f - d i n m ’ i n i n d CO o o CNCN CN CN o t o T~ t o T ~ 5 t o ^— h- z ^ Z h - Z UJ O) LJ D ) L J 0 a O o o 0^ 8 * 0 o d I/) in o o m c o oo oo to m i n i n m 3 c\i c \ i 3 c \ i c n c \ j c \i O£ o H O d CO d CO o CO d z d Z d Z to UJ to LU to UJ O3 o 3 Q Q_ Q_ Q_ CL Q_ O3 Q Q_ Q_ Q_ Q. c 3 CO to ■Oto cu "Oto CD "Oto o ■g 0 -g 0 to o d o c CO x: co CO c r g 1 2 1 g CO co cu t o cz CD o c o C c d s CO CO "o CD E CO CD O CD Q - CO £1 o CD Q . co *1 O CO o d O g.S 2 Q. CD CO g cr o E CD CO a) 01 T3 — o § "a o t o ■c 3 CN co t— 3 cr II co CO ■4—> to - C CO 3 E E E E *“ F c o O to O) co d ___ 3 s i s co 2 3 O CD 3 = 1 5 O CD 0 cn co d WWWtD d o O ® E f; *fc to "co S* Q ~o 1 3 to =» o V- £(— m CO O O to Q) E _>> c ■*-< cd o

3 g 3 CO tn o g CO l l ' S CL LUCL X Es -Q« CL > LL < CL CL > 5 X H O _i < xj Transect 2 College Woods Aruncus dioicus Gorge 7/21/99 Plot #2 slope DENSITY R. DENSITY COVERG R CONVG IMPVAL ln(pi) shannon Toxicodendron radicans 2.5 10.64% 2.5 9.09% 19.73% -2.24071 -0.24 Asarum canadense 8 34.04% 2.5 9.09% 43.13% -1.077559 -0.37 Solidago flexicaulis 8 34.04% 7.5 27.27% 61.32% -1.077559 -0.37 ("■’ 10 1010(0 1 r— i^o 5 B CO ">x 3 _ CM CM CO CO CM CM d o T- T- d o CO o x* CO x* p O CM CM O CM CM CO < ~ 3 O J O p x— M CM CM CM CM xj- o xf o i"- r- OCO CO ’ o CM f x ’ o ^ CO a) a) CO o (0 E (DQ. E (O C o © ro ( .2 ~ T ' o s 0 vO MC CO CO ’ o CM ■M" 0(0 cd

CM CM CM O O OC > o > a > o CO CO o t O O

CL Q_ Q_ < ° < m S o .c E g ■5 E CD s s 3 0 cn _ CC 03 _ -s | ) C O O CO C CD .0 0 2 - L < CL - I 1 z ^ — I T— CO C M — CO CO — M C 0 J T J TJ Z O CO ! £ o o co ^ o o « o 1 * w CD

>- > LU a: o a.: > L £ sz o o o o z CO £ DC > _l -- v-’ M M M M M M C CM CM CM’ CM CM CM CM CM ’ - v -r-' ’ S " 00 (0 0 0 0 0 0 ( 0 0 1 0 1 ^ 0 < 00 -- t/3 CO c O c £ .1 0

E

P ' >P ' o CM cm to Ot p ’ o to CO CO o o - h Is- - M CM CM CO CO s 0 n CM p 000 r- h- CO CM 2 CD c CO CD P ’ CM ' O O s to CM o o p CM 'o' o' O < L C l _ _ 0 < j J < s 0 H ' C g l s S ■ OC O«*= g .©. =5 § 2 ~ £ CO s & •§ 3 c 3 E _ : 2 CO T M" CM CM o' CM ~.2C3|*N(D~E ' o (30 O t CO — Qi_ i c Q I— O o § £ E ES ° 2- £ © s > CO —

n p > f x ' o S ' n t T- - M 5 0 5 0 m c M C M C M r— C M r-— C M i r~— C M r C r-— M C i M i C T— 3 0 ' o M C M C M C M C M C M C M C M C oooooooooocoooco T— T— CM p CO P ( ’ o ' o to x— x— •M" P > j- x c\i T— x-^ ' o Ot to to lO ~ ' o P ' CD CM 0 - M p > -O r- ' o CM CM (O in 3 0 T— ( T— CM P " OC OC CO CO CO CD CO _ T T-^ ' o o' ^5 3 co 0 co lO T— 3 0 xT ' O n ’o |- x ' o X c\i O' xj; 3 0 ( T— CM 'O p 5 0 5 0 ’ o ’ o o 3 0 (D CO 0 — P —T- T X— ' o 5 > j- x ' o 'O CO ■O’ — T— T—■ T— to ( CM T— _ T _ T o' > o 3 < E o co P 3© 0 x— cm f x ' o 'O CO f x 'P T— ( o' ot to to to T— CM c o g a

- r to to o c\i X 'S ' o T— a> ■M- •M- ' o ( T— ' O 5 0 o' 3 0 CM co o 0(0 X — 0 — p > "r _ 3 0 ' o r-~’ M- t X ' o 'O to nO O in O M; o o t > a t c\i CM CD p o' n co E o (O co 3 O) co — — P CO ' o ■*— CM o O o 'O o o o o CM o o' 'S o ’ o CO CO o ' o o = E co $ s £ O > COCO 03 o o O © CO . Q ■e CO hQ->02 f'C ■a TO 0 z ^ CJ) M C! 55 # i l i i s t D o ID o c ? ® o> CD o o co o g o O O ” CO CO — E CD CO 3 a o 3 3 CO J L 3 0 a, LU

LU LU DC > Q z CO £ DC o > 0 DC o z > S o CM CM CO o CO CM S ^ 1 CL < T X o o 0 h- o (13 ) CO O) I I I I c CO ■ i i i iO ■ CO (= O a O O O C ': - (O >- 'f: C CD s t a

CM CM o t L x CM ■M; 0 0 CO p CO 0 0 3 0 (O lO N ' o ° s P ' O ' o P s CM j 0 03 03 xj- xf- CO f x CO 03 - M • ' o CM t— t a o | M M CD CM CM —|

164 oto to cm o t o t ■O' CM MCM CM to P CO ' o 'O ' 5 o " ' o 3 0 3 0 CO p g E co co ) O O C ’ -C- -T— P > to cm CM o t P CO P 'O ' o CM ' O o t CO ' o 'O ' o m c - § ’

- jq a CM r'- T“ d O O P O o p O O O ' o 'O ' o CM o o O O t —

165

OO CO CO CO CO U) in CO T“ co COCOCO co r - 1"- r ' - r " 1 ^ CM CO CO in CO COCOCO c "M" T“ CO CO CO CO CO CO CO ID o ■O' '<*■ O 1 ". *0" CO o CO COCO CO OO c h ~ h - CO h - IO y— M" T"* T- T” OO c CM CM CM CO CM CO o CO d d d o Tt CO O d d O d T“ d 1 o ■ ■ ■ ■ JZ ■ * 1 t/3 ' 1 1 1 1 T-- T— T— CO ■*— COCO CM COCOCOCO OO o o OO 0 3 CO CO CD T— t— — ^— o o o O o o CM M" CM CMCM CM ■M- -M- M " t— ■M" o CO oo COCO COCO N- h - CO l '» r^ COin COCOCO CO 0 3 0 3 0 3 cL 0 3 d CD oo CD 0 0 CO CO OO t— t— ^— 1 ^— x— CM d CM CM CM c\i _ c i i i i 1 1 ■ 1 i 1 ■ x O N ° -vO n O xP xP x° xP x° o ' o ' o ' o> p ' O' O' oxP ' oxP ' O' o ' o ' o ' o ' o ' _ j i t T t- l O M"O CMoo CO oo CO CO OO O < CO CO CO CO CO O OO oo !'-• oo CO OO oo O > I'-’ d d cd 03 CO 03 03 03 03 d T_ CO T_ o oo CO o CL T“ CM CM

'P xP «p x§ xP xP o'P ' 'SO' o'S ' O''p >po ' o'P ' o' o''S O' o' o ' o ' O' 'Po' o l O m m T— m O 0 o o O o O O o o > CM O > o C3 O o O o o o z CO CO c o CD c o ’ o Z cd osi T f d o OO o o CO X— o o o DC m i n u n m i n i n i n in in in in in in m in 0 CM c\i CM CM CM CM CM CM CM CM CM CM CM a : CD cn ■M" CO LU LU > o> o o o 'O 'P xO ' p ' p xP 'P xO xP xP o'P ' o ' oxP ' o ' oxP ' o'P ' o' o' o ' o' o' O' O' O' 0 3 0 3 0 3 ■M" 0 3 O CM CO CO oo CO OO OO o £ CO OO OO OO O OO CO ° ° . CO CO oo o CO CO CO CO Tt" CO d oo in T- in in in in d z ■M- o in o LU LU a Q a: a : i n i n i n OO i n CO oo in cm >n in i/3 in in £ CM CM CM CM CM ^ CM CM C\i CM CM CO C0 M" z 'O ’ Z LU LU =*t Q □ Q_ CL CL Q_ 03 T 5 t 5 a> 03 03 c/3 CO 03 c C ca ca ro f a t/3 to Q 03 c 03 r O) ca ca 0 3 CO ca p ■D o c TO o c 03 in t5 w T3 ro ca E m o in CO O ca c CO E Li­ w 2 ■£= t/3 CO i_ _o t/3 03 .2 fa ca Q Q. ~ S c E c . 0 3 c o ■a '3 Oc fc F Q. E o , b O 10 C 0 ca C/3 ca CO ca Cl E o -D 05 o o ca S’ C W TO TO to > 3 t/3> 20 £ ca —i 1 ^ CO 03 = E 3 o _3 3 3 2 to CO ^ w w O x 03 a . TO £ =3 O 03 to % O 2 t= T O C .2 5 it o t z O o 3 ^ ■*-* LU 'x o o ° l- + - LU f a o ‘c o N x c 03 CO " o 2 o q . O =3 f i CO o 1! O CL 3 o >x 3 ■® 2 3 .2

O < 0 - CO I - LU > > O < Q. CO < LU _J _ l x o_ a Q acerifolium Viburnum Aralia nudicaulis Ridge, Transect # 4 Plot # 3 SPECIES DENSITY R. DENSITY COVERG R CONVG IMPVAL ln(pi) shannon Quercus alba 2.5 20.00% 2.5 20.00% 40.00% -1.609438 -0.321888 mm m m io ^ CD > — »P 1 M \ ci \ ci \ S-> c\i c\i c\i c\i c\i O CM CM CM cd d o o o CM o c> p o p o p p o o UO OCO o o CO OO OO s 0 P o O p o ’ o O O O ' o vP ' o m c CM CM CO CM CM CM C3 CO OO o o M- o o o 03 03 O 03 0 0 o era a r e to 3 D P "D CDCD = ! CD _ CD = r~i O _ _ i I i CDQ u_ ' S >P UO D CD CD 2 . vO O O o O o' ’ o OCO CO V* o -M- M- p P p v MCM CM cvi oo CO o o □ = § N£ o 8 1/3 r— ^ 1

UO CO o' O v O O O ’ o f v o CM “T 03 T™ T“ o O >P oo S § co CD ■ i Op UO M" CM CM oo CO — CO O 03 vf- ' O vO O O O O ' O vO O O oo OO OO O ) D CD C i i o' O v O O ’ o O O CO o o' CM ’ o m c o co 00 1 "co.2 o i h ■g =tfc < CD : M"c: CD 03 CO e CO 03 o O CO * CL

$ £ CL UJ -O LU z CO d c □ LU z CO o o > LU O' a: o O z > O LU g o o c CL o S3 Q cd O \~ CO _ _ (0 J O ooo £= iS 53

r'-’ cvi p m n ■M" ' o n P 03 P 03 03 ' o t"^ UO CM CM CM OO ' o 3 T T3 CM cd O 03 co ■M" 8 g CO 2 co P P ? N —03 T— p UO h- O' - < T CM ’ o - T o CO O CO OM" CO " M CM O CM 3 0 " M O 00OT- h- >p oo’ cvi CM p OO o' - co t O)h- o c h- t o - " I 3 0 C E ' | o' m c J _ 03 O O 03 o 2 jjj CD d) O CD m o L i'» >P m o' vO ufj M" ^— p CM m p p oo o' >P CO r-> o' CM t cvi CO CD „ — IO vP o c\i - vf t r- CM o' o CO O ( rfi'- dcd id CO NP o o o' n o' CM T“ M" c\i CO o' 3 0 - T 0 0 - 3 ' 0 I CM r- o - T CM - r^- T oo 3 0 00h- CO CD P o' vO id M; vP id T— oo O' vP o' CM CM M; CO CM c . .2 ">* ■D CD CD CD E 03 O O O un m o' \P P P 03 03 o' CO*co’ I'- - T N 1 CM (M O 'T ' 3 o 0 0 0 O P CM CO p CO 0 0 CO 0 0 CO IO M" p v cvicvi O' sP OOO OO 3 0 • 0 O CO 0 o OO O 3 O 0 O 3 0 CM CM t r O 0 3 0 3 0 00 0000 t- CM o m c 03 to . Q CD O CD . Q 03 £= V) t/3 C E 1'- p m m >P ' o P x o' v Cvi cvi P o' o CM CO _ i _ i O CD C w 3 3 CO 3 CD 3 3 n 'O C- o' t CO CO CM O 03 CM CM CO CM o' o' T— Oo CO OO _CD o' 'S CM O TO E 3 CD o CD P -

M" 'O o' 'O O O O O O O T— O o' O O O CM CM o 166 167

m - CM r* r— T— CM h- CMCMCM CO o o o m - CMCM co CO COCO cvi CMCMCO o to m in c CO CMCMCM CM COCOCO CO e'­ CMCM U) o T— M-M" ■'t Tt COCOCO O) en CO CO 05 c M" 05 05 05 CM CO CO CO © CO co p c COCM CM CM CM CO o CO o o O 1 o o o o o ’ o T^- s z ■ ■ 1 ■ 1 © .c 1 1 1 1 t/5 1 1 t/5 CVI CMCM CO 05 05 CO 05 05 05 M" CMCM 05 M- ■tfr M" COCOCO T— CO CO CO tn tn tn 00 oo CO o CO oo T— M" 05 05 05 o COCOCO CMCMCM OOO cvi COCO *2. CO CO CO oo ■ o' o ’ o* 1 i i 1 1 c. 1 1 1 1 sP vP >P vP sP vP >p vP vP >p "5O'1O' O' o' o' o''S o' o' o' o' o' o' o''S r - r- r - O CO T— CO o _l CO oo CO CO o c o c q c q o T“ r'- T—| o < CO CO CO CO o § CO c b c b o § T— 05 05 o > cvi cvi c m c m o CD CO CD o CO t— M- o _ CO CM CMCM o CL CM Q_ CM CL ■*“ CM

'O 'O on P ' o's° o>p ' o ' o ' o ' o ' O''S O''P CD CO CO CO O CD co CD tn m in to O > CO CO CO O > oo > CM CM CM CM O Z c b c b c b C 5 z cb to o z cb cb cb O o CO CO CO o o h- o o CO o o o o T— 0L QC on t o t o t o t o to to to to in m m m o cvi cvi cvi CD cvi cvi cvi CD cvi cvi cvi cvi M" QC oe co '*■ on CO LU LU LU > > > o o o o o C3 v P » p 'P < P V- ^ to s . o ' o ' o'S ' o ' o ' C O C O o m T— CO co CO O C 00 - M- o TJ c1— — °? co co o t t o CM CM C5 0 CD T- T—■ O C/5 co co co o 03 co c o c o o (/) cb cb cb C 5 Z co co co o t T T f o in t— T— T— O Z *- 1 z ■t— LU LU 05 LU Q Q O) Q 05 ■ on on 1 * m to m m to OO 00 to O co m to to to cvi cvi cvi h-i CM OO t o cvi cvi cvi in £ 05 C/3 03 CS 03 Z M" Z > LU LU CO ill * Q CL CL CL Q_ =tfc Q CL CL on Q o -t-'CO to g c c CO CO CO ' cl to 3 to 05 0) • s « 05 0 3 cn CO - 2 3 or O) O" ■g c ° CO c ■g 05 c on to S CU tu '5 be o O ' S C/5 co to SL « to CO -O 05 to c 2 w c 3 co 1 3 O 05 o3 S J5 3 Q. 05 c d S i » CO CL = - g to CO co Q. CL CL S3 tO — g Q. > CO 40 E CO CO g ■Q CO § E -a to CO to CO ■o CO E 2 3 3 c 05 C > O t : 03 to co E 03 = > s O ■ « to P 2 -IO T 3 3 CO ■O T3 3 tO O LU c LU o a> 3 i CD a “ » 3 O to _ 2 to c « ■= a> <= 05 05 .S=c mCO 05 S CO o O) w O O C/5 LU Q. * a a S - E E 05 LU 3 ato f Q- flU B o o 05 to coE o O (O t CL CD • c >» E co 5 0 . = C 0 « O 0) (5 1. 0L co >* co t=: < 03 C/3 O O < O < Q- Q- 03 O > 2 < Q £> 0- h- CL 03 > Z 0 . > Transect # 1, Hexalectris spicata Ravine (College Woods) Plot # 2 SPECIES DENSITY R. DENSITY COVERG RCONVG IMPVAL ln(pi) shannon Hexalectris spicata 8 13.45% 2.5 5.26% 18.71% -2.006535 -0.269786 Ulvularia perfoliatum 2.5 4.20% 2.5 5.26% 9.46% -3.169686 -0.13318 X O M M M M M M M M M M 5 0 CM CM CM CM CM CM CM n CM i o i n i o c m n i n i o o n i CM n i n i CM o o n i n i M -" O M -" -M" CO •M" -M" -M" CO ■M" i in o o o in vl; CM o CM "H;CM CM CM o o t I''-’ NP T— o t r~- O' 1 05 (15 5 0 5 0 5 0 'o' o' 5 0 CO p x o c o CO CO ■X CO 5 0 CO "X— CO OCO CO — ■ 1 O l o t ' o p > CD CM CM Q. co 5 0 5 0 5 0 5 0 Nf CO CO CO 5 0 T— CO o CO ■X oo CO X— CO — 1 1 > h- o •p o t 05 vO x nin in ' o 05 x E o 3 o ~o O' CM CO co V CM xP D) c Co - * CO o t «n o o CM 3 O =3 CM 5 0 o c CO ’ o CO - h CO CO — ■ i o TO UO MCM CM

o t nin in CM OCO CO P v O O . Q o' >% 3 CO o' 'O OCO CO 05 2 O. CO CO OCO CO CO 3 05 3 OCO CO CO 00 5 0 ’ o x OCO CO o o o o — 1 ■ 1 D J Q J S w 5 2 & E 1 in CM ' o 'S CM 5 0 vt; o' P s CO CO O CO g C O O o ~ 3 N 3 5 w c — r~ ' ■— O 5 0 x CO CO X «X CO ~ o co 0 «X O 5 0 CO 3 3 O x CO o o x— — — 1 C m O O CO P v in CM n O' CM OC CO CO CO T— o o x ' o P x o t CM - h CM 5 0 O in CO o CO o CO CO o o — i i n t cvi i \ c m o' 'O CM 5 0 5 0 " M o' 'S OCO CO CO CO ▼- CO x O CO OCO CO o o 5 0 5 0 0 0 T™ CO 05 — i ■ o in in ' o 'S CM vf o' x— CO x— ’ o c 'S 5 C CO CO o o o o x— CO 1 i n O o o CM o o o iq N E > JO O = CO 5= o to 3 C E CO O 3 E 05 3 168 Transect # 1, Hexalectris spicata Ravine (College Woods) Plot # 3 SPECIES DENSITY R. DENSITY COVERG R CONVG IMP VAL ln(pi) shannon Veronica glauca 2.5 6.94% 7.5 10.71% 17.66% -2.667228 -0.185224 « = ■?■«o = m l'- b c O) ) O "M" M" ' o 'S n i n i m m n CM i m o'* n i n -■M- '- l - r O E E E : n i CO CM b b MCM CM o'

CM v CO cvi CM CM ' o ' o P v o n i ' o S " vP cq if) O O CM M" CM ' O O b CO CO M" CO o )O) O) cn ■

n i l"- ' O 'S "S T— oo n i CM Q D CM n i )CM O) M" CM b c b b c T" b CM n i n i CM o' oO co - r CM oo b CM % CD C E o 'R c O) E 5 ■ ■ O ' n CM cvi ' o 5 " CM CM ) O ' o n • i"- b CO CM CO CD T— o' M" n CM CM Oo ooo o oo oo CO Tf CO .5 O O o o CO c CO 13 E P ■ ■ - n i T3 5 - - r ' o 'S n —T— T— n i m d c 3 0 "M" M" ' o MC CM CM CM T“ b CM CM CM CM CO in o' co - r CM oo b CM CM CM O - 0 CO 1 < OJ r— 03 E 03 c CO CO I §03 »— O <2 03 P d ■ 1 ) = = ) W q i 1"- d c 3 0 3 0 3 0 'S Oo LO n i m ' o O ' n b n i n i n i n i n i n « ' O cb b c b c *” b co n i n i n i o' CM CO r~- oo oo oo MCM CM CM CM CM M" CM M" M" . s cvi MC CM CM CM o P I ■

sO n i - r b M" ' o T_ CO \i c f"- MCM CM DCD CD ' o 'S b b o' co cvi I I S I < « C CD o i->E 03 03 O E O <13 03 > m 1 • = M" CM o n i - h ' o P ' o' T“ b 00 ' o P v T” CO CM co - r CM 2 CM CM 1 ■

Is- o 'S CM n i o CM o b o o ' o p " b ' o CM o' sO CM CO T— o o b O O CO i 1 c •- ^ & I _ _ L _ _ Q Q_ QL Q_ Q_ 'fe E c E COCO O N Cl) CD 3

R c ® o CO o o CO CO _

I < -I C3).E .2 E ■o £ s = CD -= ! ? 1- D O CD °- o CO 03 ’P

169 Transect# 1, Hexalectris spicata Ravine ( College Woods) Plot # 4 SPECIES DENSITY R. DENSITY COVERG R CONVG JMPVAL ln(pi) shannon Vernonia glauca 2.5 7.35% 2.5 4.00% 11.35% -2.61007 -0.191917 Luzula acuminata 2.5 7.35% 2.5 4.00% 11.35% -2.61007 -0.191917 vP MCM CM 05 in o'* m 'S in m m CO ’ o ■ X— 505 05 CO "d- CO SP o p oo p CM CM CO p CO p CO CO ' o cvi o co Q 9 . r- -3 N _Q o CO m E Q3 O 3 co o n t tn o « « i ■ - c vO 05 T— CO ■M- in O' ' o ' o 'S r- 'p CM cvi m p 'st- o t ' ' o CO CM o p oin oo ' o M 0 o CO CD ■ 1

m 'P m ' o 'S ~h- h h~ in ' o D CO CD 3 . ^— T 05 O O o X— CM CO p o p M CM CM CL < 2 ^ 50 OO 05 05 T > Q CO _ 3 a E I " o i z _ i -=

vP O' p , 1 , 05 T— 05 CO ■M; ' o 'P CO ' o 'p CO ■M" CM CM m ■ 05 O CM CO CO p o ’ o m 3 _ _ ■ -

CM ' o sO 'S in cvi CM s 05 O ' o O O O O CO co CM O ’ o 1 "D U O L 3 3 O o O CD CO ro cd 3

- O. Q- _ L L L CL CL CL CL Q_ tn co -52 -3 m CO -k 3 2 o co S 2 o t 2 ^ 2 o t

O CO CO ^

T3 be t I ’o. H ts 05 CD CD 03 TO 03 O 03 tn tn O TO 3 tn X 2 — T CL m o 1 _3 .3 m > f o Q o > n LU i \ ( a: O a.: o o Z > 0 . 0 < U L Z £0 LLI z o 05 L0 O 03 CL LU LU Q C 0 O 3 tn CO 3 3 Li. o 0

' o 'S m m 1"- f'- n in in O O ■M" "M- ’ o OCO CO 05 CO T“ ’s_ m in m o in in d ’ o o o o o cm in in o CD O o O o h~- OCO CO 05 P t i ■M" ’ CM CM ' o ’ o o ' o o o I T3 cn tn CO cl o 03 CO X CO 1 i o r^ d CO T— ' o vP m 05 CO ’l_ ■O CM o o 13 O o CO tn 3 3

sO CO o CO ' o d CM o o O

•O o t ' CL CL CL CL C/5 CL LL O o o r a/ co o c 5 a P 5 . o CO (— CO E CO 3 to o co ^ ^ O) d E 3 o c c ^ CD iss» _ 3

cn O l O ~ CO ^ CO

170 Transect #2, Aralia Gorge Plot # 1 SPECIES DENSITY R. DENSITY COVERG R CONVG IMPVAL ln(pi) shannon Polystichum acrostichoides 2.5 20.00% 32.5 76.47% 96.47% -1.609438 -0.321888 O' O O O CO o 03 sP in in n i n i cvi in <\i in csi m c\i cvi in in d ' o o o o d o d p CMCN CN o CM o d O o o o X— oo CO oo d Oc co co CO oo o' CM CO oo CO °9 cvi in h-iu >a n > o .9 TD CN OC OCO CO CO CO o ) o (o £ o "m E c c 2 . O C CO c c o. co co o -2 § u o CO tz tn o !- o X I 1 o 'p to o' P - P r P in T" CO CO O) ■N- 00 CO ' o CN in OO OO OO CO CM in CD 3 ~ oCO oo CM o i 1 vP in 'O' O' X \ v cvi cvi c\i in X— 00 303 03 -N-■N- o' CM m o c oo oo p p oo CN ’ o — 1 i x— in’ 00 oo oo CN O CO 00 o' CN in p CO oo nin in CO c tn > CO I ■

o' 'p 'P O o ’ o o Tt CO CO 03 CN o ’ o O O o' p o 1 L _ _ _ CL Q_ Q_ Q_ CL Q_ CD i_ C tn tn o c CO 3 3 UL T3 £ — O) tn 2 3 ca ca 3 O) *l_ "i_ SZ _3 < CO ca E Q. CD CD _l CD CD 3 E c ca CD 3 N 3 O o a CO CO (D 2 3 tn =tfc CN < CD I- I- E o o co =«:w co a> E o 5 0 •*-“ -

> a.: o o Z > Q_ O LU z (O od Q LU o o LU a: cd CD > U M LU CO QJ Q Q_ | O lu CO .E (/)

"a 'S T“ p CO O' CN x— o CO Xp i'- m cvi CN o ' O xP c-’ p in cd N" CO CO o CN d O' ’o cvi p p p p p p d CN in CO o E E Q. co 3 E ■ ■ '- I x— O' 'O d 03 d CN CO CO O 03 CO CO CN CO p CO r-'-’ CO ' O xP LU□ .2 « £ o CO CN03 O CN ' O 'S in m in CO o ~ ,22 0O c\i 2 - 3 i- E c CO C coco • ■ o 3 ro OC OCO CO CO CO nm d o in o m o o Tf X“ tj CO CO CN CN o in O' csi x—| o' 'S v s s io \i c csi csi cvi O ' O 'S OCO CO CO d OCO CO N C CN CN CN csi n i m csi CO L. • ■ -

N N- "N" f T x— o O' xP cvi *— xP d CN p p p CO d ' o 'p C CO.CO .2 o o o CN o ' O cvi c\i CO J < > -J cvi — C/3 CO — = O o I C CD P c: ,P C/3o CO “ != « l M i ■ •vP P x xP NCN CN X“ CO CO O O' CN ■x— ' O d "it CO i N" CN OCO CO d CO ' O t CDit: CN p CN CN in cd CD 3 i ■ P > O' x— d ' O xP CO ' O xP n i in oo m CO CN O cn id \i c cvi d E 2 3 • ■

o O' xP p IO CN CN CN o o d ' O 'S CN o o CN ' O •p o m o CO o o o ■ a CO 171 Transect # 2, Aralia Gorge Plot # 3 SPECIES DENSITY R. DENSITY COVERG R CONVG IMP VAL ln(pi) shannon Carpinus caroliniana 8 38.10% 2.5 4.55% 42.64% -0.965081 -0.36765 Brachyelytrum erectum 8 38.10% 7.5 13.64% 51.73% -0.965081 -0.36765 vP m m t- t- cq O '- i r'- T s c\i c csi O CD o 3 0 o o M- csi cvi Cs| ' O OO CD T— OO ' o CM CM Csi oo Csi Csi CO CO Cs| Csi d Csi LO OCO CO CO CO CD CO T . D = < < 2 O

' o m m >p - v ■M;m vP ■ in ' o cd CM t OO CM LO ■, O > - * m 2 o 8 0) CO CO — — i ■ - O m m 'S Cs| O T— O O O ' o vP CM o d o O ' O T“ CM CM O CM CM 1 E < c £ fc i s if oo O It 15 Cs| 0 T5 t/3 cu CO o E> 03 CO c LU Q LU z of o 111 o > on cn o > 0 $ z x CO o C c Q. t/3 CO : c o c >P ' O vP ' o in (O (O - c m ■M" '- l in CO cd OCO CO m m m CO csi OC MCM CM 03 CD CO o oo T—T— O CO CD d o o o T— o OOO CO ' o 5 " CO 3 c T3 n CO < cn < 0 Z O O — iZ 03 00 *- 00 CO O) o «- 3 (D > o -QE _ c ^ U CO 2 i CD =3 -C ■ ■ P v o T—; ' O vP 00 03 oo n i o OO - h CD m o o d O ' o vO o o C3 T— m O d CO ' O oo 03 03 o =3 E • ■ '£ MCMCM CO CO CMCM m m - T 1— i"- - c m OO r"- cp —T—T— ' O 'S o CM O CO CO CO o c CO \i c ' O CM dcd cd nin in CD ' o cvi s Csi Csi T T— Q. E — ZJ w ■ 1 in .o '. I T— ' o d CM CO csi ' o vO CM 00 xO m to 3O ' 03 o ' o csi -2 -2 J* c 0 o 5 c — ■ 1

'P O ' o o CM CM CM CM o vP CM o d d o -r~ m o t ' O O d CM o : 13 ■o CO 03 CO03 P c L CL CL 13 " 03 c n o "O ■O £ O 03 cr o C CL 5 4t Csi 0 "5 c V) 03 TO CO o E> 03 CO L CO CL t O =tt y in - UJ «- CL ° v c . c r— o LU 01 0 cn o o z > 0 § Z CO o > cn a LU Q LU Z CO CO CO c 1= C 1/3

p > n i - h ' o '•e m m d CO CO CO CO CM CM OC CO CO o CO o o -M- M- OC OO CO CO CO dc cd cd cd ' o m CO in CO CO CO ' o CO cd cq 03 03 O 03 oo oo COCOCO CM OC CO CO CO L LU > LL 1 c s-'t I . Q £ s cm CO CO CO 2 § § .2 *> 3 E 0 | 3 ~ Q. ~ co CO O 03 O) .E t/3 JO O 3 1 1 1 ■ 1 i

p > n T" d CO q i n i m CO ' o vO oo CO oo 03 ' o o CM si c ' O cm P

CM d CO n T- T— \P M" M- M; M" ' o vO O oo T“ csi ' o cvi CM O' in cm CO P o O p > CM n i o d O O ' o vO CM o d O O ' o vP m 03 00 CO CM ' o d * r o L CL CL 11 CO O = E to c CO CO _Q CO O 03 E o CO CO 172

Transect# 3 Aralia Gorge Plot # 1 SPECIES DENSITY R. DENSITY COVERG R CONVG IMP VAL ln(pi) shannon Vaccinium spp. 2.5 50.00% 7.5 75.00% 125.00% -0.693147 -0.346574 Epifagus virginiana 2.5 50.00% 2.5 25.00% 75.00% -0.693147 -0.346574 CM o in o d o d o o © <© CO T— ■** N o d o o o o> •I § CL Q_ Q_ (— X re C tn I/) — CD 2 3 3 » "O -O d .° O o ■O 2 o co c tn O)O J- O e c 2 I— X

CD 2

% CO O < 2 O 0 tn CD o eg (D CM i o Q LU > LU 01 CD O > CO ^ Q_ 3 E UJ o 3 LU Q LU o CO £ o o E co

CO ' O - r M- vO C MC MC in MC M in’ in in Mr o> v° cd CO T— CO CO ' O cd CO d COo CO CO CO CO CO O O CM in cvi cvi cvi CMCM O' CO co o a> E 3 * ■

'P M" T— oo" o' Vp CO CO CO o o o M" M" in o' m 00 CO 00 CD o' o CO < C Q_ CL < l _ c 1 — cvi E.E 3 - co 3 CL CL 3 «- o a. 3 E CO CO E N ■ ■ C- T— o' cd o M- •vP r"- \i c m CM O' vP CO CO o' co m o o o o oo o o h "co 2 CD re CO ■ ■

r~- OO T— CO o' >P m ▼** o o o> d o> o' vP m cd r^- CO T— vP CO oo o o> d oo CO CO d * tn .*2 co o' 'S cij £ reD) {- o . a C D) o ■ 1 in in o> vO CO M" d oo" T—' o' vO cd oo o o M" csi m csi CM i"- CM CM o' «p OO o' tn Q. ■ ■

O v o d O o' "t o in T— o d o o' Np O o o CM o d O o' vP CO CO o t co o T- O i l l L L L CL CL CL CL e tn re CO O) 3 tn CD co re <

a £= ■a "3 * O i _ CO o re a) §■ 2 3

Brachyelytrum erectum P Aristolochia serpentaria P Hepatica americana P

bareground 15% 173 Transect # 3 Aralia Gorge Plot # 3 SPECIES DENSITY R. DENSITY COVERG R CONVG IMP VAL ln(pi) shannon Desmodium glutinosum 8 51.61% 27.5 55.00% 106.61% -0.661398 -0.341367 Amphicarpa bracteata 2.5 16.13% 7.5 15.00% 31.13% -1.824549 -0.294282 S " —x— x— CL Q CD 5 . II io ' o NCN CN in N C OCO CO CD T— x— \ c\i c\i ■a ■a X ■a m ' o O O S ' N Ooo OO "N" N" CN O OlO IO 03 o' -I x s— CO NCN C CN NCN CN 03 ^1" 1 N 1 N NCN CN OOO OO CD CD C/5 O) C w E d O - Q E - r CD 3 1 1 ■ ■ -C in x: ■ x: O O O' •sP in cd nCO in m (O' n O N1 'O' O' x-L OO__J o O ■s— CO y CN 3CN 03 CN 3CO 03 2 l c CO cu P -

' o o d o in o O O o' P > in m o O Tt CN T- ’ o CN o o T— CN CO ' =tt CO < .2 0 h— CO o 2 o E> CD c CD CD ■N" . Q O s. c r— Z LU LU UJ Q LU h _c / L | o O > LU cn o z CL cn o CO D O CO Q CO cn CO < > o /N o o c c c c CO C/3 l m - r CN o' ' o vO x ' o p > N" csi CN O) O CO d d d ’ o o' ’ o CO O cd h- CO V NC OC CO CO CO O C CO CN CO CO 03 OO o 03 fi o a 0 ~ - r br b a — 1 ■ i E ~ E • ' -r'- h- e'­ - h N" in ' o P > x ~ x O cvi CSI CN X > O m m m m CN t T N " N T— ' O ° N csi csi N Tfr ■N" cd c\i m v \ v v d cvi cvi c\i i c cvi CN O OCO C CO X— CO O o O :9: CO ^ CO 'o w — 1 1 fN"Nf ' O m n i in in n i ' o ° v O x i— ' o n e s csi csi csi N C o N C x o c 2 2 E s o =s — — — i

nin in vP I X x m m NCN CN - N - N - N csi 1— N" o' o' P s nin in m m Y™ ' o NC CN CN O CN O \ cvi c\i TD LO SZ CL '■*-> CO OCO T— CO O o dc cd cd cd "t/3 CN o O o O E CD t/3 a CD o 2 o to 3 >. — 1 i ■ 1 o' ■N" T3 —T— T— N" >p O' P v X— ' o 'S csi nin in X T3 1- ■a CN OCO CO O Y“ N’ 'N n c O CD c to C t— o C 2 o o o CD X — 1 ' o p > m ' O in m d - N N" I'- O s ' o >P csi o cvi X— NCN CN CN O CN x— CO " N O csi Y— '> ‘c .2 LU •s Q. 3 0 CO 3 C/3 c ■ ' o ' O m Y™ O vO O O vO CN O ’ o d ' o 'O ■*— o O O d r_ 'r o O O m in CN CD CN 1 ljl — C o 3 > 0 "O CO P y •—JS L _ _ Q_ Q_ Q_ CL ) § O § D) X 3 0 2 = "O CD2 o E m c/3 c hr,rr > (1JCO « C z Z -Q oZ nz O 2 / O P O c/3 S 2 174 Transect# 3 Aralia Gorge Plot # 5 SPECIES DENSITY R. DENSITY COVERG R CONVG IMP VAL ln(pi) shannon Viburnum acerifolium ’ 2.5 20.00% 2.5 11.11% 31.11% -1.609438 -0.321888 Polystichum acrostichoides 2.5 20.00% 12.5 55.56% 75.56% -1.609438 -0.321888 T— ' o in T— -r-i t-; "8 T •r— T— o o o o < -J < X .!2 cvi CO E CD ~ •E v? CM U"> CM CM in CM O m in CM CM CM O O O O O O p O O CO CO O x* 05 p p O 0s ^8 CO CM v oo CO OO U5 To £ (0 O CD > g ” ” CD = >, — i ■

a o ■a T- .2 to T— x "8 ▼“ T~ >8 >8 CO CM CO 00 CO 00 CO co co o •M- o> CM CO o o 1 & a E _ ■ — ^ _ ■ 1

>P T T— T-’ T— T— Tj- in p 05 CM CO o'* 5 CO CM oo CO CO o CO CD n — 1 1

O >8 p T— o CM CM ’ o O ' o CM O s CD O O O o'- o CO O 05 i -Q « E s / <0 1/5 ■O c o 175 176

CO 1'- 1'- 1"- 1'- f'- r^- h- T— T— <0 r*- i'- J'- 1^- 0 5 T— oo oo oo co oo oo QOCO 05 CO CM CM CMCM CMCM in c CNJ r"* Is- h- h- i'- h - CM CM CO cz COCO COCO COCO 1*^ o CO 05 05 05 05 05 05 05 T“ CO CO o oo oo oo oo CO oo c 05 ■M- ■M" "M" M- M- CO T—■ N 3 05 05 05 05 05 05 0 5 TO CNJ x— CO 05 3 CMCM CMCM CM CM h*. CO o CO d d d d d d d d d d ■ d d d d d d .c- 1 1 1 1 xz co 1 1 1 1 1 tn 1 1 1 1 1 1 T— CMCM CM CM CMCMCM T- CM 05 05 05 05 05 05 CO COCOCOCOCOCOCO co CO in in in in in in to r*- 1"- 1^- h- r- h- I'- 05 1"- h - 1"- h- h- h- I'- CM m in lO in in m in o in T— T— ^—^— T- CO 05 05 05 05 05 05 05 CM 05 05 05 05 05 05 05 o OO 05 05 05 05 05 CO 05 h- 1^ h- r*^ LL 05 05 u . r-> h-- CM CNJ CM CNi CNJ CM CM d CNi T-I T— X— .c 1 ■ i i 1 1 1 1 ■ I c ■ ■ 1 1 1 1

n P s ° n P N? > p s P x O vO *>p v P 0 s o ' o ' o' o '* o'* o ' O' o ' o ' o ' o' o" 5 ' o'S ' _l in lO in n in m in m in m o _J h- l^> h- 1^- h- o < CNJ C M CNI CM CM CMCM CM C***; CM o < cq CDCDCDCDCD o > CM ■t-I t J T—X-' T-I d > fL T— yj d CM oo T- o CO CMCM o CL T— T~ ■*” T— T— T— CM Q_ CM

'O 'O 'P *p *p vO 'S * p vP 'P 'O 'P >P *vO *»p o''S o ' o' o' o' o' o' o ' o' o ' o' o ' O' o ' o" '5 o ' o ' o ' 0 c n i n i n t o m i n i n m i n i n O 0 O O O O o O O > CM CM CM CM CM CM CM CM t '- CM O > o O <3 O o O o z Z c d c d c d c d c d c d c d c d co c d d i n i n i n i n i n i n d o o o T— CM CM CM o o o T~ QL O' c n i n i n i n t n i n i n i n i n m o i n i n i n i n i n i n o 0 CM CM CM CM CM CM CM CM CM c n c o o r - ’ CM CM CM CM cm’ m a: ££ UJ UJ > > o o o CD o LU c 'O *p "5 n P 'P *p *p *P •p 3 *p *p vP -p 'p o ' o ' o ' o ' o ' o ' o ' . o'S ' o ' o ' o ' o ' o ' o ' o ' o ' o ' o ' > o O OO O OO O O O O > > - r^ r - r**- 1'- r - O CD t o O OOO O C 5 o C > O o CD CD co CD CD CD CD O O' COcd in in in in in in in in d m CO cd cd cd cd cd cd d cz T- 'U- o cz z — *i— T— X— o o z T“ o '■*-> UJ LU ■*“ +—>co 0 ra Q CO 01 CO Qf (D p OO in in m m m m m CM m o 1__ m m m m in m m m >- cm CM CM CM CM CNi CM CM CNj LL cm CM CNi CM CM cm o> 05 a> CO 05 CO oo z 00 z oj UJ CNJ LU ■*—> •*-« cn CO CO UL Q a CO c TO CD TO ■g o CD E CD ’o TO 3 TO c-i O £CD o CO CD TO .10 CO CD E ‘a_ TO O Vi CD > E > = > O 3 .2 v_O CO TO g to .£ 2 O TO m 0 a . f- O , . « .E 2 > 0 S- TO -a ^ 1 TO If Q. TO -5 tj a> tn CDc ’x CD oC 0) § > TO E 8.-0 E TO (D ifc . 5 TO Q . TO= 2 5 ■— 3 1— CO 2 CD JQ ^ o .52 I—CO CD ‘ co o "2 3 E o t 5 UJ ■° J2 CD M TO >; o o ffi | 1 3 CO O) CD t - ^ a > £ CD CNJ CD CO _Q .to to Jr CD CO t o CO TO O to x : 5 cd CO % O ° TO C '= “ 3 > LU i_ JTT 2 Jjr CO TO C IU r > .5 E gj o 5co _o _ m CD o CD § 2 ° TO 05 Q. u O ~ O 2 O -TO TO «B L_ 1 .- 0 0 ( 0 0 ro 0 I- Q- CO CL < 2 < LL CO —I i n E j q I- CO O Q_ < ■< < u_ Acer barbatum Transect #1 Grove Creek Data 6/28/99, Fire Station Ravine / Plot #3 / SPECIES DENSITY R. DENSITY COVERG R CONVG IMPVAL In (pi) shannon Luzula acuminata 8 19.05% 7.5 6.25% 25.30% -1.658228 -0.315853 Aralia racemosa 2.5 5.95% 62.5 52.08% 58.04% -2.821379 -0.167939 5 " w m in in m m m m in in m w h- in in r co Hr 13 b 3 w •— c ' o s j v c n i o c o c o i o c n i n c ' o vP CM ^— CO cn 0 0 ' o p • ' o ■M- OO CM OO o T— cn oo cn CO cn (D cn cvi o o v ci v ci cvi cvi cvi cvi cvi M M M O CM CM CM O n d o cd tn in o o CO l C C fl) P ,^ d ^ >, ) ^ 0) °- > O X E co x: i 1 p m 'S m Mh MC h- CM CM oo h' CM cn CM 00 d CO cn ' o p • r'- 't m M C n c p ' o ' o CO CO T— 00 CM m CO P> — 1 1

p 'P e'­ CM p co - CVJ T- n c n i m p ' o CM T— cb CO ’ o ■*— CO cn ' o OO en CM ' O d E 3 E E V) ■ ■ ■

n i n i n i p in OO MCM CM d CO CO m T CM ' o p M C ' o p ' o ' o n CO CD cn oo cn oo oo CO cvi =tfcCM CO LU X ■§ 3 o 3 3 c 5 cd . a o — P 1 p m p ' o m 00 m o ' o CO cvi n c OM" CO CO OO T—| CM d O O CO ) 0 CD <_ 3 CO CL O) i-i — ■ ■

cvi T— co cn t CO r'- CO CM OO d CO CO cn p in o> in ' o p ' o O o O O ' o cvi E CD O CO — ■ ■ Tf O' O f T •

IO p O T— cn co ' O e ' o d d O ' o ' O vP O CM o d o> T“ O O CM o O o 1 OO ’> Li­ cn 5 O 0 CD CM oo e CD _ 32 Q_ 2 _ s ° * - 3T - L 0 O (0 CL 3 . H - > Q_ > > > LU cn cn Z < l _ 0 o o o o o n i Z C/} a LU CO LU co co 3 3 o 3 . u in 3 ■T— p - h in n i p ' o P OCO CO CO oo n c T— r-- ' o b c d T— ' o oo cvi r^r^h^cvi cvi i cvi i v ic v ic v c ii^ v ic v ic v ic v c ^ h ^ r ^ ir v ic v ic v c co’ cb M C MCM CM o c tj o i m o i o i n i n i m M c n i o c o c o i o c o l CO n c 00 n c oo n c CO co cn . a 1 i ■n- in d CM o o T“ n c cvi T— CM n i in ' o O v n i bcb cb - h ' o p CO CO T— X— ' o vO T_ p M C ■ ■

'- r d M" n c CO CO CM o o CO CO 00 oo n c x— x— p M C 5 < ' o S ' co co n c CO m ' o p CO n i CO ' o b c CO CD o CO CD cn cz CD o 3 i_ 3 ■ ■

m n i o ' o p in ' o p CO CO CO n c t p > cvi CM CM ■n- Mcvi CM T— ' o CM T“ - CVI M C OO — i i

j t cvi - r n i f) if CM d oo cn T T— n c n c oo ' O p ' ' O P in - h P CM ' o = a O) -a O - —ICO Q. < U Q- "S ° O CO cn D 12 .1 CD 3 co l r r o o o co a) — T: x i 1 -

p p M C P CO OO d •M- CD ^— i o o f c i CO b c x— 'O nO in ' o p T_ in U) OCM CO p M" - ' o cb CM CO ' o 2 cd — 1 ■ ■

p p p - in ,2 5 ro ro 5 ,2 in r~- CO ' o p CD T- CO P < CO CO ' o m o c d T— CO CM ' O CM cn n c O C d CM 9- = 5 § § 5 ® w c -SE s Q. -4=T. E n o ^ c .o cn ^ ca CD i- _ CO '■= 1 > ■ T” CO T— h- "-sf CO M" CO CO CO oo n c d h- CO CO CO CO o c CD CD o o CO T— CO ' o "O in ' o 'S °°. ' o cb cb p bcb cb M C M M M M M M CM CM CM CM CM CM CM & CO ■ 1 p r^ in ' o ' o r— p M C ncncncn c n c oo n c oo cn o oo o o o c oo CO oo CO CO - T b c ' o p • T— p °°. CO 2 I ■ m ' o p p t CO —T— T— r*- in ' o p M C bc bc cb cb cb cb cb M- d T— 1^- CO ' o P ' CO °°. cb 3 ^ E 1 o S - 0 O I

m ' o —▼ T— ▼— T— T— -M "M" M- M- o o oo CO oo d - r co’ CO. CO ' o S ' °°. cb in M C M C M C o E Z* -E ®co § § co E tn s 43 to ° 3 2 *” CO 1 - 2 ■ 1 p p '- 1 CO d CO t^- P s CO T— nmO m in ' o p ' o p p n c oo CO T— ' o OCO CO Oco c CO p cb 2 i ■ E o ^ r CO n c d CD ■V— -O r- ' o P ' co’ T p CO CO ' o n i p ' o cb p -- 1 ■ m f r n i CM ' o P ' CM d M C o ' o p O o d CO 0> O 0 1 o o ■ d n in cd E . _ Q_ Q_ 2 o 5 " co 12 D 'i= CO CD 3 co £2 >s > ca c o co c cc >"■ o CO X (D '3 E 177 0 in

0 Q '•*-> cn a CO M C co OJ cn CO •4—' +-> O CD i— CD > CD CO CO CD co o c co 3 CD > 178

T—M" CO 03 03 T— CO CD CD TOCMCO CMo o o CM CN CM CM CM CM C M CO CM f - .C d d d d d o d d d o o d d d CM to 1 1 1 1 1 1 5U) 9 I I I CO LO CMc- c- CO CO CO CO CO CO CO C D CO CO T—T—03 co co CO CO CO CO CO CO CO CO oo CO 1"- T—M- oo 00 M" Tf M" M- M- CM N- o 03 CO COCO V" T- T - OO T— CMO CO oo oo ^ o o o o o o o o co o LO in M"CO CD S 10. CO CO LO in co CO C O CO co 3 CMcvi cvi csi csi cm CM csi T-' CM* c csi1 ■ d■ cb■ cb■ C «

I 05 O CO o o JCOcOiOCOiOCOlOlOt-CDO <( r; m WCD O co •<— co cb d >cbcbcOM : cbcbcbcbM:M:d n CN CO 03 1- o n t-t-t-CMst-t-t-t-IOCMO Qz CM 9 : CM

vO s» v-O sP v P sP sP v O vO 'P 'O sP O' sO' P O' o ' O'sP O' o ' o ' o' o ' o ' o ' o' o ' o' O' o in 05 CO CO 03 O 0 COCO CO h- COCO CO CO CO h- o > T—CO CO O O > LO in m CD in CO O o Z m in m z in 03 cb cb 03 o in in ib cb ib in in ib cb o o ST** co CO o o CM o o o T— a: a: co CO CO co co CO i d iq inioioininmininin o CM CM h - CM I"- CM 0 c\i c\i cMr^cMCMCsicsicsir^Tj' a : i — CO CM oo CL LU LU > >o o o o 05 sP sP sP ■vO •p - p 'P 'O v P 'P s P ■ p 'O o' O' o' o' O' O' c o'S ' o ' o'S ' O' o ' o ' o'S ' o ' o ' o ' o ' >- M" T—CM T— i — O > o o o o o O o o CO o o p s—j OO m LO O CO £ CMCMCMCMCMCMCMCMCMCMo CO cb cvi M" cvi cvi d a: CO oo cb OO cb CO OOOOOO cb cb d z CM CO o c z CM o LU o LU o CO o a: CO of oo cm co co co cq s IO i o LOLoioioiquqooioiq > 0,1 M- CM cvi OS Ll csi csi csi csi csi csi cm csi csi d CD 0 5 £ co ctT CO 05 to z oo z LU CM LU CL CL CL CL CL Q CD a +-•CO CO Q JX. 05 E CO CO 3 o 2 E 3 E (15 "c o 3 E V3 CO 'c § E CO o C/3 CO > :> CO 3 2 E _ Ifl c >s E c w ts to -5T _ r o 2 co ‘c .55 <2 co CO '3> C 3 M E c E 2 c -*-< CD ' "E g> 05 c Q. 05 13 X c : CO I s (/> ro £ 0 05 C B 2 C/3 5 .3 co ro 2 > ,0) E I ' - 2 * <8 Q . (/j 05 Xi (/) CO *- 3 05 g H > CO £ CO £ ® 3 n o o Vi LU ^ CO o co >* 2 Ho ■+-1 ,2 ’ CO 05 05 2 *5 TO ^ ^ c o to -Q TO C/5 £5 CO % o 05 o •E 05 = co s= ' o ' o UO UO O LL(O 1 O) — \ cvi c\i p OO UO IX) T— d CO O C P v ''- I 3 0 T“— 00 CO CO ' o cvi N C ■N" O ' O v cvi cvi CO O C O C r— O C OCO CO O CN N C O C vPO co CO” o w CO — , E O) O D r— CD 5 .5 J = 1 1 ■N" T— d CO N" 03 ' o T“— '- 1 CO 'S 00 ' o n c CN N" 0 00 h- CO d co 05 1 1 == p * ' o p q u CO IX) CO 03 ' o 00 o'* 'S f'— UO cvi P O) OCO CN CO 0 UO CO CO d CO OO CN 03 CD i— cz C/) CD Q. CD ■ 1

p * Csi IX) CO 0 d O O ' o '- 1 p -a- cvi T_ T N- CO CN •sP rf ' o O' CO N >P rt 00 — ■ to c " g o _ _ CL _l ■£ _l E O r 3 d CO 5 «

i !- xi CL Q_ Q_ = «- 5= "(7> 5 CO E O 03 o CO § CD CD 'R P O CD 3 ■a CT . Q

5 '3 .c .55 cr cr 3 CD

■> $ 5 o Q CO OJ 03 03 (/) DC OO Q. - o o CD o c 5 CO CD > i_ CD ro ro CD ro c CD CD CD CO o = =tfc LU a: Q_ a: o z > UJ cc z > CL $ O LU CO LU LU CO CO o o o o O z CO O co ro S ' to d CN CN OO o' Vp t T— 03* Is**;CN O O O o' O' oono3l Nw CN cocoincou3flO ■S p UO N" CO N" ■vT 00 CN vf 03 cvi vO — -L ■ 1 ■'S co o' *p 03 CO 00 h- CO O' O' 'p T— UO p CN CO CO t ■Vj" T~ 03 00 d CN O cvi a> d d o D l c E . > CD « E — 1 ■ 303 03 ' CO P ' 03 03 ▼** N" —T T- d T— " N T— N" o' O CO CO O CO -N" CO N- CO CO CO CO o' 'S cvi cvi o' 'P ' ^1^ 1^ 1'- p ’ N - N h«- N" h- CO 1^ CO CO N CVJ CVJCN Q _ > JQ ra K .P j§ ’ N C E = P < =F x .E 10 D C _C CO P CD C O 1 ■ ” E o « P ' *p — T CO CO 0 ( 1 "N" 03 co d o' o' P o' .J£ o E 1 p 'e S S O CD CO 1 ■ ro j- ro j- * T 03 o' N- CO o' 'S 03 "co N" CO O CO CO 03 v v cvi cvi cvi UO CO O' p N- p -N" N- CO O T— O 'O 8 CD — C CD E CZ r 1— CD ro CO o 1 1

5 . 0 1^- o' 'S p T— UO 'o -g t— CN CO x— a> d o' 'P CO CN CO O co CN cvi p CO o' 'p N" UO CO N" N- CD •“ 3 co ■ ■ P ' d 'O N" to’ CN to CN o' O h- CO o' ■S-; CO CO O U CO OO 03 'o' o' CO CO OO CO p s CN "CO N" CN d CO 1 1 ■ d un o t t O 0 to UO CO o' •*p O o' CO O CN 0 O d sP d O 0 T □ 3 XZ 0 z CD iz CO CD 3 iz 03 P- CD .E c CO CO CO *f l a. - O 0 0 CD C CD

UO o 179 Transect #2 Grove Creek Data 6/28/99, Fire Station Ravine Plot # 2 SPECIES DENSITY R. DENSITY COVERG R CONVG IMP VAL ln(pi) shannon Acerbarbatum 8 28.07% 2.5 7.69% 35.76% -1.270463 -0.356621 Solidago flexicaulis 8 28.07% 17.5 53.85% 81.92% -1.270463 -0.356621 1^ n i n m m m m in m in in 1^- 1^. o i m ^ 1 o' \ ci \ ci \ oo c\i c\i c\i c\i c\i J CO UJ .S>'E CO CO 'S T- x— CD OO CO CO ' o ' o ) O CO CO CM n i m - h d CM CM cm b c CO I® I® CO c L CO CL O CO 3 CD 2 R- 8 a n 1 i '

Q- I/) o' 1^ V? Ooo OO ' o ' O O v CD o M" M; •M; CO CO CD csi '- I OCO CO OCO CO ■M" CO CO CM bcbcb c b c cb b c d V" CO CL i ■ ^ x OCO CO ■tf - r n i d CM ' o 'P ' O ' O n OJ CD csi n i OC CO CO CO CO \i c O ■ ■ c>- n i o' 'O - _i I- ca ■a T d od CO CO CO CO ■*fr csi ' o ' o X— CO ' o 505 0 05 CO CM M" —X“ T— '- i - h m d CM CM CD O X5 <5 co E .E o O CD c g co >< -a I s ■ ■ 3 ’ C 1^- 1^- o' X- ' o >p n i m Oo CO a> m CO vO CO 0 0 ■<1- cvi CO CD csi d 1 ■ ' O S " T” N d CM ' o 'S CO o CO T“ CO o' •>P O O CM o d O o d o cvi 1 L CL CL d O ro o o E w ro d s i LL CD 5 0 C/5 5 0 t_ CD : c CD 3 > ■ co CZ a 5 0 L 0 CM oo cn L CO CL H -♦-J s o co •4—* H—> r co zr L_ c ro / It O t I y t/5 o c g a> 2 > CD CD CD CO (D cu o UJ o 2 c L_ CO l

CL UJ Z o ^ QC Q z > UJ CZ DC o o x: . . — O CMf— - > Ul ^ 1 o c o o Z > 0 $ o V) cl 0 CO c: c o c 1/5 ' O ' o - M n CO - c - ' i o o' o - o n i o Oo CO T d CO o ' O x— CM CO M" ~ T m cvi m - ' r n i n i n i n i o c n i o c o c n i o c 5 0 - h -- P ■ t T— m o c p > •M; n i CO CO '- r o' CM . - r CO o CO s 0 CM b c 5 0 n i E £ £ .E m CO cvi 'O CO CM _cd ^ rvi rvi rvi r\i rvi CM r\i -1 0 CO 10 CO 3 E CD «- 3 CO XI O 3 ■ ■ < p ' ^ 1 - h d CO o T“ ■M- P ' T— M" csi b c M" ' o - h - r o o' - T n * hZ CM CM ' o CM CO CO vO csi CD CO O O rx ■ ■

P v ' o P > o x— 5 0 CO - - r '- 1 o M t T •M; n i '- 1 o - ' i OoCO o CO OT— CO d CO r- s CO o' CM cZ CO ' o ■M; 'S .2 m m 1 .<£> 5 0 O I CO ro ^ ca 0 ro CD O CD 9 05 ra 3 X E E X ■ ■ Q. c Q 5 0 m n i CO ' o S " '» f o o m r~- ^ 1 n i d ' o 'O CO —x - X — T x— T— cvi CO .2 Oc-C CO CO - c CO o' 'P \i c CM CO CM CO ■ ■ ■ p ' ’ - c o x— d ' o '- r - h o T— ' o o ' o CO m hZ CM 3 2 . * > = o CO CM CO si c I t 8 I 1 o < a □ui a < o t r (/) (/) r « t C ^ E 3 — ■“ co 2 co O — > > —O E C o a r d c " co ■ _ . r r 3 o. n i m o p > ' o ' o ' o S ' m m o o - r" O l - c CD n i m X— CO ' o ▼— i s c 5 0 CO cvi m d OCO CO o' P v n i n i n i n i CM = o 9- .9 ro == CO M M M CM CM CM CM si c 3 i ■ o T— CO 0 0 o' CO ' o S ' csi 5 0 5 0 5 0 M" csi OC CO CO CO m d 'P cvi csi MC CM CM CM CO cd ■ ■ o) ) .o o m " M O s - M - r ' o m m CO LO o o —x— T— OCO CO ' o d si c CO x— CM CO o o OCO CO 2 CO L_ ■ ■ £ m 'O m - i^ ' o O s —- CO X— ■M- CM m d ' O ' o CO o o cvi csi ' O CO vP \i c i ■ t T “ T o 5 0 O ' o S ' CM o d o O O O O O csi CO n i d ■

180 Transect #2 Grove Creek Data 6/28/99, Fire Station Ravine Plot # 4 SPECIES DENSITY R. DENSITY COVERG R CONVG IMP VAL ln(pi) shannon Acerrubrum 22 39.64% 7.5 12.50% 52.14% -0.925341 -0.366802 Acerbarbatum 2.5 4.50% 2.5 4.17% 8.67% -3.100092 -0.139644 m CM OJ X— s 0 vO CO in OJ OJ OJ CO ° N 5 9- = "5 .«2 ; M M; T_ ’ o OCO CO O v p CM CM o 00 O'' nmi i ou) u io lin if m in m o o o o 'r_ T~ ■d r— cvi in in CD OJ o o .- S. 9- rx c *- 0 .9- X >%co

vO C- p p p p f'- ’ o T— DO OJ OJ CD p o' xfr P > CM in JO OJ O OJ OJ CM O CO CO CO co CO T— CO ■M- ' o cm O 3 CD 1 ' cvi cvi c

vO f'- o' r>~ •M1 ’ o o T— T— ' o vP p T— cd T— O O CM CM O O O CO CO xtf- ' o n csi m o O CD P I 1 xt vP - " i c- O O O p N CD CO p ■M- cm ■M" ' o n p o' T— ' o co" T— CM cd oi P 1 1 g e 'o' o' r'- -'- r "M" o X— X— NP OJ CO OJ P p p t xj- oo x}- T“ d ' o 'S cvi in MC CM OJ CM OJ CM ' O O cd CD O O O .2 j LL G_j CD > — o 5 o to | s ' o p co p o = 5 «-CO W CD - p O 3 •- •- 3 cn .E ® — > Q. 3 3 Q. p - ' i x* CO —X—| X— •M- xf t X m cm m p - h o' o o OJ CO O o CO CO oo I cm ' o CD ■ » ’ ' o ’ o h- OJ xfr NP r>- x}- OJ x— CO n O O o CO cd M CO p X— cni xj- ' o p N cvi .S cd 0 P cn 1 ’ m )

I''. d >P CM CO n p o' O O o CM o' O O cd P > O o CD O o ’ o in o o o ' O x— P V*—"o ’o CL CL CL JZ c3 ■c a- 3 cr CO 0 3 o in in cn 3 3 0 CO 3 C/3 CD CD a cn cL 3 Q a: ’5 L o J!*Z o> CO •w % CM o CD cm oo o> ca o CD CD o © £ £' 3 D O CD a 2 :> 00 E «n tt 0 CD l

m .3 CL I — z D LU p p p p p p H > 1 < o A > on CO -> / L on rr ’ o o o’CO o o o >- o O LU o o LU Z LU O CO CD 3 n 3 O 3 L L 3 n n o in in r- ’ o CO 1 M M n CO CO xfr in CO m f'' T_ o o cj ■M" o' p N o o' x— o CM o m in O p dcdcd CM m cvi m m v*— O o E E cn 0 o 3 J O 0 !_ 0 o 0 P 1 1 1"- h- ’ o CO - M O O f N xfr o' n O ' O n CO ^— CO cd OJ o cd m CM p ’ 3 * _o JD < ■*-> 0 l/J e 3 0 P P 1 i p CO ▼** xt OJ CO o' p N CM o o' o o o cd X~ m o o cd o

L _ Q - 0 QL Q J CL < LU E is. 3 3 cn E> o 1 § 8 I > o 2:1 0 CD

181 Transect #2 Grove Creek Data 6/28/99, Fire Station Ravine Plot # 6 SPECIES DENSITY R. DENSITY COVERG R CONVG IMP VAL ln(pi) shannon Acerrubrum 2.5 25.00% 2.5 16.67% 41.67% -1.386294 -0.346574 Luzula aciminata 2.5 25.00% 7.5 50.00% 75.00% -1.386294 -0.346574 n t ' o >P ■M" o m o o m to cd CO <£> ■M- ■M- p p r>- >p OO COCO CM 05 CO ■ COCO d c o t o n t o O p O O s 0 cn cn o to ■M" - cn ■-3 T” cvi c\i O CM CM CM CM T— X X m O y) CO D CD CD X CL O co > fc co o co co ■ ■ 1 - o t h- r*- n M C Y T CO oo 05 ’ o cn tO r^- ■ m — O i -

T“ to o O o'* '-S O ' O vO to o o CM O O O cn OO CM 05 i _ L L _ Q_ 0_ CL CL Q_ Q _Q a . o CO CO 2 CD E co co ZJ o o 1 B c ° CO co -Q -Q co f? 0 co O 3 CO a3 fr 2 oo I CO c co l_ o CD E o cn CO CO w o ■< T3 _cz / -Q C/J co cn CIS CO cz 03 COf CJ CO cz 03 Z3 CZ 9 0 _ "O cz CO i_ > o o ZJ CD O' LL S Q CO . I < < O W Q. h cd o CO CM OO 05 ct ■4-< "5 -*—* c o cz CO > CD e 2 CD CO S CO CO cz CO CD CO T

=tfc O LU ^ Q_O > N LU Z CO - M O C (/) > UJ CL CL o > I — .c £ ad Q o O CD O z 0 Q_ < LU LU Q z CO UJ C/5 o c cz . Q in CO CZ

n i n i Y— 500 05 CM O T— o i CM ■Y 'M- ■*“ ' o ''S csi CO OO © ’ o O ’ o O CO Is-; p cm m m o t cm o t o t T- co § p i L * o ' COS ■§O o tJ CO O *- CO 1 0 ci s cn csi csi 04 ’

' o OO ’ o n c n c Y oo 1"- CM cm 1 CM 05 MCM CM CO CO oo cm p - 1

r^-’ cvi cvi r^-’ n m in m 05 o m "M- Y CO 00 T— T— V h- oo cm 00 \i c cvi p 1 CO OO T— 05 p - o o i-L O - T o Y o'* CM ' O n .cn T— CM CO O T— ">* ■> P ^ o r*- o o oo —I H— o CO CD X co cn E? P 1

Y ’ o CM O CO CO n t O co o m c O CM o * E o cn in 182 Transect # 3 Grove Creek Data 6/28/99, Fire Station Ravine Plot # 1 SPECIES DENSITY R. DENSITY COVERG R CONVG IMPVAL ln(pi) shannon Acerrubrum 8 39.02% 2.5 16.67% 55.69% -0.940983 -0.367213 Polystichum acrostichoides 2.5 12.20% 2.5 16.67% 28.86% -2.104134 -0.256602 ? ' '- r - c ' O vO X MCM CM ' o ' o csi X m CM CO °°. CO cd o c ' O vO m cm m m CM CO CM CM O CM CM CO o m o CO CO CM O o o CM O LL X s | : W CO .W

o m ' O ? ' X— o m CM d c CO CO ■M- CO OCO CO CM CM d c X ' o vP cd vO icsi c si c cm OCO CO csi ' o ' o x: O " Q a) -Q CD S 03 °- - Q S c £ O <23 CO _ _ c .ti o o o 03 >% — s J is i ■ ' o n in r^- sO CM CM x— O d c ' o CM CO °°. CO "M- CO cd o m m m n i CM CM CM t— P ■ ■

vO ' O m O ' o CM o T— d c CM CM o c O r“ 'r o d c O O O O ' o 'P o d c o CM CM d c • L 04 CO co DC CO Q CO 03 o>“ o o «♦—' - L O L < < O CL CO CL h- G £_ e 03 cn CO 03 CO o c CO C CO c 03 > 03 i. W W . i . L L ^ . L l

cm yj r . Q 5 ■ .c _c O N CO N ■ > > UJ O' o o Z > CD $ —I O O CD CD CO (O CO h o o a: CD CM in Z LU z CO £ o' a a o CO C/3 CO C cr o cz q . cd m m 03 C- CO e ' n m in n i r 00 r -■M" C'- c- o csi oo o 00 o ' o CO C M CO O O T- O O CO M C CO o 00 M CM CM MCM C m CM oo m U y y CM M C cvi csi oo CD CD 3 n 03 in' 03 -t-* L. O C CO CO O) <3 O CD 1 ■ l p 'P oo 03 x— CM O' M- 03 cd co CM o 03 ■n t . ° ° s i n c — CD i— = *— C Q_ 5 = 0 CO E O co O C/3 O CO 2 .E S 3 «! CO - 1 1 ; o o in o o in x— csi in l"- CO ' o 'O o OO o cd c> oo CO W 1 1 1 ■

J V in CM 03 oo co x— CM 00 cd CO oin oo ' o - D O CD t- in m m O CM CO CO 00 o m o' co o o oo cq p h- m c o' m 03 CM m c • s cvi csi m m

c- o in -s c- •vO 00 1 r cd x— co o o in csi co o ' o m c OO X IS' CO CO CO o CD X > 2* CO • O r- in o ' o 'S o d c o 60 CM co

183 T ransect#3 Grove Creek Data 6/28/99, Fire Station Ravine Plot # 3 SPECIES DENSITY R. DENSITY COVERG R CONVG IMP VAL ln(pi) shannon Acerrubrum 8 23.88% 2.5 4.35% 28.23% -1.432104 -0.341995 Saururus cernuus 2.5 7.46% 12.5 21.74% 29.20% -2.595255 -0.193676 o i o o u i n to in in u) io oo in io 1^ OCO N- CO CN CN CN OJ* CN 0 ' o to N C lO CO t ' ' o OJ CN N C uo m P v CN to to CN h- 10 o E t; a) S. io cvi rvi rvi cvi CO CO vP 0 ■X— CO OJ CO co ' o ( < cd (0 D = x - o o - i c T3 -Q 5 CO o CO r— rt m ° i n 55 cn > 1 1 ^ 1 ' o O IO T“ p N ' o n to 10 p > CO CO "N2 CO p to CN IO CN OJ 0 OJ CO ' o X— o _ co x zj zj x P 1 1 1 to NCN CN to CO 00 OO CN CO O' vP to ' o ' o n X— CO CN 00 OJ OO OJ OJ CO O " N x OJ ' o ' O p ^ O CO — P 1

o■N" to CO T— X— CO ' o X— ' o vP to to op to CO cn csi CO CO CN X— OJ 2 I J _ < O —I d CO co CO CO o D D c CD c C CO C .c . CO W n c co ^ CO o V > > VT >; 3 ■ ■ co \ ci \ co c\i c\i c\i h~-’ ■*a- CO ■x—to X— to NP O L 10 UO 10 10 1^ — CN 0 CN 1"- ' o ' o CN CO O 0 OJ £2 co CD cd 1 1

= r ' o P v 10 x-^ CO OJ Ip OJ NCN IO CN 10 CO ■xtf" OCO CO csi CO CO CO h- CO h- CO ■ ' o vP 0 “ OJ ▼ OJ si c .*2 M 3 ' o a n E O =3 £ 1 1 l co t/) o ' o P h' 't CN O X— vO c\i p n ■N" S ' LO IO Op UO p ' o co CO ' o 0 X— sz P 1 1

1'-" 0 0 0 P > CN 0 0 0 0 o' r»- X O O to O 0 co '* o >p oj CN 0 ' o 0 csi — ■ 5 "co .55 L L _ Q_ Q_ CL CL co g a o - co / a> i/) O o CO to CO c (D "cz g ro ZJ ro ro . a Q.

> 0 ro ro . a C l u_ ’■ C£ XL Q 3 0 cn CO CO O o co OJ oo *«-' "5 4 i_ co o (D ro ro CD CU o tz CO c CD !> ro c a> —* 2 } L E E LU■}- . . ro Q. DC Q LU z (/) o > LU CL O' O O z > G a LU z CO o $ ro w V) co c c o c trj - h o t o t Oao CO - r si c ' o n x oto to CD J O CN p CO CO 0 0 N- N" 0 0 0 CO OJ CO 0 P ' CO CO CO ' O n ' O P — O ■ 1 - c - C : - I J O o a 0 ^ i v c > o n X— 0 00 CO OJ N"CM to cq CO CO 0 0 0 0 CO ' o ' o sO X2 < O _ S L- CD _ E E ZJ O ■ ■ 0mUJ m 00 Is- L"- r-' ' o x— CO x-^ O UJ CO ■*t "0 ;g 03 5c "5 CO ' O n N? 0 UJ CN CO 0 CO CO CO UJ ' O CO 0) W 5= ro ro O ro CD 0 O) X P 1 ■ ' o - r ’r_ CO CO x x P p UJ CN CN si c 00 icsi c si c to CO J O CO J O n J O J O CO x CO x ■>5 CO CO J O J O m CO "cz CM CN O ' o P ' ' o ro 0 ro ro CL — — P — — • ■ UJ - r x— x - " i n i si c °°. 'O m ' o p ' x— T— CO x OO OC OCO CO CO CO T3 O ' O ' o n < w ro _ i c ro ro CD ZJ E 0 o r CD — P — 1 1 ■ C xL UO ' o C- T~ -‘ C CO 0 00 m O CO ■N- 0 0m 00 OO 0 UJ CO 00 0 U LL LU S h co ro ~ S ° ‘E 03 ' O P ' Cs| CO O ' o 'O n h t •h 2 O) - g -c E , ro P n ■ . c x x c ro § tri CO C- J O ' o x J O in P P CN p ' tn \i c O x— si c J O CO J O n CO. CO X— 'p CO •r- c- T— CO N CN CN ' O ' o 3 — P ■ ■ . UJ trj 1'- J O x ~ c J O tn CN NP UJ cvi o c T— si c CD CO CO x O CO x • T— ' o -Np CO ' o ' o n 3 — — — P 1 1

Lonicerajaponica 2.5 5.62% 2.5 7.69% 13.31% -2.879198 -0.161753 44.5 100.00% 32.5 100.00% 200.00% -2.042775 184 Transect # 4 Grove Creek Data 6/28/99, Fire Station Ravine Plot# 1 SPECIES DENSITY R. DENSITY COVERG R CONVG IMP VAL ln(pi) shannon Carexsp. 2.5 9.09% 2.5 7.69% 16.78% -2.397895 -0.21799 ? s o'* I"; CD ID CO M C CM Is- 05 e- oo 05 m 505 05 >p m c CO ' o OO OCO CO 05 JOOO O O CJ o o' P csi 05 9- 3 - .9 d i d i d i o i d i d i o i d i d i d i d i 05 | _3 - e i \ c i \ c i \ c i \ c i \ c i \ c i \ c i \ c i \ c i \ c 05 _ ' s_ E O -P CO ■ 1 p > ' o DID ID s " -e-C- - e e- I"- Is- 05 DI DID e- ID ID 05 ID P O 05 OO csi CO ' O O CO* CO* OO CO oo 50 50 05 05 05 05 05 o' p csi 50 505 05 05 05 05 < .Q 00 co e o 0 1 i

d d d d d CM CM 05 05 OOO h- 05 OO 05 505 05 OC OC CO CO CO CO CO 50 50 05 05 05 05 05 ' o ' o csi p CD 05 o' P csi cvi a co w ja U —I LU < — O 3 CO«— 0 0 coiS E o ^ E I 1 t N !t= -3 0 d i t'- ' o vO ' h-; T— co I'- ' o o' n csi CO I • CO 505* 05 3 co — — P 1 1 ' o ' o DI DID ID ID ID M C cd ^cd 1^ 50 05 05 05 50 05 OO 05 OO 05 CM 05 P v CO 'S s s v v s csi Csi cvi cvi Csi Csi CO CO -P o' 9 co i ■

CM DID ID c^- cn ' o cd 00 ' o csi p P P o' 505 O 05 O 05 E ro .E l ^ ol o c q cn (D cn i- u q § CO CO cn x i co co i 3 x cn ■ ■ 1 If- >P I'- CM ' o m c o' e'­ OO n05 en 'O CO —^ oo r h- P o' oo 505 05 CM o csi . £ d. = c ■ ’ e- MC CM CM CM 05 50 05 05 05 ' o cd Is-- e- ' o p 05 - r- e-‘ 'S d d d 05 05 05 oO OO OO e- oo d i csi co P v CO O o' 05 0 1 1 ID -e- e- 50 05 05 05 r- ID ID 505 05 ' o dcd cd OO o' 05 CO m c CO CO P s 'S o' P O O ‘c 505 05 •E, o 50 O 05 05 0 3 i- o ro cnS- § o CO 1 ■ ■

▼“ N e- ' o «P“ Is-; ' o 5o 05 ID Is-* csi P - OO VO CO *3 O' sP CL ■e in cr c 3 cn 3 r c i 05 ID P - CO CO csi ID d o ' o o o ' O P o o d P CM o d o CO o' CM 1 V-> cc ■> Q CM CT> (0 5 o CD OO o> •*—» 0 ro cn 0 o o 0 i_ 0 ro 0 CO O c: c 0 ro 3 > CO

t O ft it! CM L CO CL O o > LU a: 0 01 O 2 > CD o 0 V) h~ >“ LU £ LU 2 Q 2 W 0 UJ C/3 . .

ID -r- CM e- d CM CM 00 CD CO Is- e- 50 50 505 05 05 05 05 05 05 05 50 05 05 05 T— o' vP ID CM DI Dco •d ID M" ID ID ID ID o' -p CM CM T— T— e- Csi o' NP o o c uo m m o i m o i 'T— qc cq CD cq cq M M M M s ci T“ c\i csi CM CM CMCM 1 1 ■ 1 ■ 1 1 i CM CO ID o V* r- o' p I"; ID CM o' 'S o' P csi cd 1^ h- e- T— J _ < Q_ _J i - i c SI n in o ^ O)"O“ X3 ro o - 3 ^ Z O ^ = 3 0 U- O CO o h l_+-i 3 l_ 0 f C O h- CM CM oo CO OO CO ID e- e- o' ID lO o' t 05 d —t —T“ T T— t" V— p P cvi Csi ■d p CM CM cd o' -O C CO 3 — CO 1 -e- e- CsJ DID ID r- p ID o' CO - M M; 05 d CM CM 05 o' h-; o c CM p oo oo p o' cd DC CD CD CD -F E 1

CM ooo CO oo CO Is- 05 e- h- CO d 05 05 o' p cq ID ID d o' e- o' p CM o o 'S DCD CD 1 e- ID Is-- d CM CM 05 h- DID ID o' p d ID CM T ID o' "P T“ e- p CM o' Li- ■o CO 05 cn 05 L- CO 3 co — 3 1 ID e» sp- 1". ID O' d o' d 05 05 P -P o O CM o O O P O o' O O d T— o ■

185 T ransect#4 Grove Creek Data 6/28/99, Fire Station Ravine Plot # 3 SPECIES DENSITY R. DENSITY COVERG R CONVG IMP VAL ln(pi) shannon Acer barbatum 2.5 25.00% 2.5 16.67% 41.67% -1.386294 -0.346574 Acerrubrum 2.5 25.00% 2.5 16.67% 41.67% -1.386294 -0.346574 - h - r M- n in in p o m OO CO CM CM 05 ^ 1 d o c CO 0 1 o m m CM CM o o I'-l csi CO CO CO f T X CD ID - h ' o xL ' o 'S Q_ P cm _ l cz to m a> CD zz ZJ — ■ 1 v T" cvi m m m 05 ff> d in ' O d CO CO p M" d O O N° - ' i O O O sP ■a _Q Q cz cz CO ro L C O cu cu CD 1 ■

0s CO t a n i 0 ' o CM 0 O NO CO o t CM ■*“ T— 0 d -N° p 1

01 ■> ft J* Q CM OO 5 0 o> W H O O CO o cz c ro cu ro cu ro c cS _ L cu cu CD _ i ca to cu o cu > t o ft L O CO COCL LU ^ CL ° _cr _l > o z > O < _ Q LU z o o > LU m 01 Q LU z CO 01 0 CO CD 0 yj CO cz c CO c 0 c ro O CD Oin i CO x— •M" 0O CO o c CM T- CM X X— d o' n CM n i 05 ■*“ n’ in n i CM ' o n i ■V? X—j M- cvi cvi x ' O X— OO CO M; o - o i ° 1 s CD COCD ro — ro ZJ c l l — O 1 1 ■ CM 0 CM 0 m CO 05 o a - M o' 'S x p P v 05 d 05 T— o a ' O NO xL ' O p CO n i v cvi cvi '- i? 's- 3 — 1 CM ' o CO O -05 h- Oin i CO d x— M" x” CO t X O ; M ' o m x— sP 05 CO 05 5 0 p ' n 0 0 M- ' o ; M X— cz £ c O w E CO — P — ' ■ ■ CM m CO CO 05 CM - M o' ^ M" r^- M" n O CM d 0 -CM M- >P 00 Oin i CO M; IO xL p ' o ' o n p CO P O 1 ' o P v - r m m n i n i MCM CM X V— CM CM “ T NP 00 o c d CO 0 p x ' o p CO CM x— cvi cvi P ' X— CM CM ' o MCM CM - CD •-= 5 • c p o -p 0 c m 0 R f COI C 7 o E 3 CO — 3 (0 3 — 1 1 o c c o - r X T— CO CO d d d d T— O ' o CO x— n i O0 d c 05 CO M; 5 0 ' o 0 ^ ■*“ -l h m 'O \i c p x— cvi ' O CM X 2 CD O CD — — * ■ 1 > M- CO r- n i CO N-° co p 05 T— p CO ' O X— M" ^ r ' o P ' CO n i 0 1 p ' o M" ' o 'S P p CM p cvi CM OM- CO CO M* CO $ $ 1 1 00 h- CO CO m m cm MCM CM —T— T— T“ O o' CO d - M ' o p ' CM p p CO cvi 'S CM X B ra 'B o c o — CM CM x— cvi X— MCM CM S r o ro o £ £ o ro ro ^ ro . >,3 L ro ■>. > CO ro ^ ^ C ^ ro 'o c o r O cd X > ) 5 x jo Is- - x T-“ CM M C IX) 30 )03 cvi O) 03 03 Is- OO 1X3 P -- I u> o' CD CM CD vx M" CD vl- CD V co CO CO T“ - o CD c/7 >> ■ 1 CO x— Oini f)i ) if ) if ) if n i CM IO T— CM " M X- X- CO Is-' CM x— s 0 vO p Is- O O o' CO CM O ■55 £ c 'E Q < t: o CO o ro £ i ■ Is- Is- Is- T“ o - T_ Is-; cvi oo s 0 CM CM o'. s 0 O v vX IX) CD P CO CM CVj xtf- £ £ CD E o 3 • I O • X-^ x O' sO CM vf vf CO CM CM CM M C —T— T— cvi T— UO CO - X O O s 0 o - CM O o cm ) CO E "O V) = 5 J _ O Q — P 3 P 3 o 5 E 3 O o CO 03 8 i ■

c ^ x— s- Is OCO CO cvi X CM O p 03 CM ^x o c ^ 1 T— s 0 sP s 0 n X X IX) IX) 1X3 CM O o cm o — ro O ■ •

'xX Is- s-. Is CM O) cvi oo oo s 0 T~ CM x— s 0 Np CO cvi cd cm .9 .9 co Q) q ■ i

CM o d O s- 0 >p CM CM o o X-’ 03 o X— o cm o o' o o c cm

_ u 01 CO ct J + - 1 o a CD CM OO 3 0 % M 0 o t CD o CO £= CO . c a) in a) O CO c L— o ) a ) a > 03 CO T CL CD -i—' O £L T” m > o o __i "n P < XT a: Z > h i o o LU z >■ O > LU CL 0 o o 0 CO o LU i— CL LU a z (/) LU (/) o O < CO c o C CO c c W. P Is- 1X3 o' ■vO M" 03 Is- CM x Is- 00 vP cvi CO CO CO o o 0 0 m xL s 0 n CM m n i Is- T— s 0 cvi M; 03 M- ) X -Q ■*-> £ CO Q) L_ — O CD P 1 ■ i Is- m IX) o in to OO -M- o c s 0 s 0 o CD o c CD o CO M OO d i ' o n O CO OO cvi 03 O O CM cvi s - O CO ■M" CM 03 CM s 0 l _ •+-> £ O c CO 3 N TO CO ca 3 P 1 Is- IX) O CO OO Is- if) oo o - M M ■M-■M" •M- 1^ s 0 M s 0 -P —X- T— M" o CLX o .2 g 2 O O o l 13 C E IS > 1 1 r- X p IX) -o if) O CO o CO o IO O x— d i CO j o ooTf o' Is- ■M- m n u cvi m cvi cvi 00 n i co O ^1 1^ 1^ 1^ " O 3 0 id 3 0 M" M O CM xXO xX CT 1 1

x— - v s 0 o - Is- Is- O CM o r-- 00 s- 0 in CO cvi CO 03 03 CD NP ▼— n M CM CM 5 X e O c o co c co .o t7) a> CL > a) o o a) C x i 1 a § ?

.« * s s Is- d o «d O' O O oo m CO cvi - o x- p o vP CD : O CM n CO o o oo s 0 'p J _ 2 2 • d P v s- Is — o o t Tf 00 CM ' O -P O J T o O d CO

187 Transect # 4 Grove Creek Data 6/28/99, Fire Station Ravine Plot # 7 SPECIES DENSITY R. DENSITY COVERG R CONVG IMPVAL ln(pi) shannon Polystichum acrostichoides 2.5 9.09% 27.5 52.38% 61.47% -2.397895 -0.21799 o o CD > o - ' o sO CO LD 5 0 5 0 5 0 - h > o LO O 05 O O 05 ' o 8 " m -- c CO CO CO CO CO 8 " ~ h c\i o ' o ' o c E -c = 9 3 .9- < < m O C CO E E r CD trt

m n t ' o 0 0 ' O 8 " CO n i 05 8 ^ m m s}- CO CO si c - h MC MCM CM CM CM 5 0 05 v cvi cvi I X n l_ ca co P v 5 0 5 0 o o - i" ' - h ''- i - c - c 5 0 5 0 O m m m m 05 s}- " o CO o o P v P v si c T“ ) N ~ O) 2 . 50 05 05 05 8 ^ < L —I LU 5? B E i co oi E ® CO i f i i

- P v 5 0 n i o o 05 5 0 O 8 ^ cvi m - h ' S cvi - T"* c T“* - c O ' o j- s CO '- o W CO W I X - - r n i 5 0 CO 5 0 5 0 5 0 nmmm m si c m in t s CO P v cvi cvi O O O O O O ' o v8 OC OCO CO CO CO o o CO I I CO c 8 " 5 0 5 0 5 0 ' o n i «s- CO p < 0 0 CO CO CO CO CO » h - h - c CO o o O ' o 8 " 5 0 5 0 5 0 CM 05 si c i - r - r O m m m -vO 5 0 n i n i m MC CM CM CM ' o 05 ' o 8 " r s 5 0 CO o c 8 ^ o o o o si c si c cvi Q. O §s CO p.c GO o CO c CO CO ■ Tf* ' o vO 5 0 Is- - c - h 5 0 5 0 s- (s O 8 * 5 0 5 0 ' o vO OCO CO si c O > CO C ry ) v (D i- X X (D i- 5 a> 1/5 1 ■ P v 5 0 5 0 - h 5 0 ' o — f ’ o 8 ^ 505 05 m t S j- s 8 > 8 ^ CO CO cvi . s f 5 0 5 0 5 0 ' o 505 05 si c CO OO & £ R io = CO ® O C _ CO

O - c m CM vP nm in CO ' O O T— '- o P v cvi - c 5 0 5 0 o m CO si c OO *0 1/5 1

N O 8 ^ OO > u o c CM 5 0 o m ’ o ' o 8 ^ O C5 ' o o o o CM o O Cv| oj i 188 Grove Creek Old Country Road 7/20/99 Transect 1 Plot # 1 ridge c\i 0 SPECIES DENSITY R. DENSITY COVERG R CONVG IMPVAL ln(pi) shannon ' o m lf> ' O ' o P s DC CD CD CD >P i—-r-_ N? in in CO T— CM CO CO 00 CM LO in ■M"05 O CM 05 s \ CM c\i csi CO 05 05 05 CO ' o CM 00 00 ■M- CL XI '■3 o ' CM TJ o CO O CD CO CO o O E o CO 3 1 ■ in CM CO T“^ CM d T_ o' vP in T" 'S CM CM 05 05 CM 05 ■M" OCD CO 05 CO ' o _Q 1- XT 'u CD o 0 s O 05 c CO 0 >» CL CO CO O > c _ i i ' O P v m - h m 5 0 d CMCO 05 CD o' ' o ^P o in oo x ' o in CO ^— in CO oo d CO T— CO CO CO r— XI XJ < -*—■ 1— CO CO E 3 o 0 L_ — i i

■*— OO CO ' o n T“ T— -v° CM CM o in in o r^ O OO CO M" 05 d CM ■M" CO ' o CM oo CM P ■ 1 " >p o in 'S in d O ' O >P d o CM o in o d o o' ' o CO T“ CM CM T* CM T“ 05 CO 1 189 Grove Creek Old Country Road 7/20/99 Transect 1 Plot # 2 slope SPECIES Acer rubrum DENSITY R. DENSITY COVERG R CONVG IMP VAL ln(pi) shannon L X j _ CL Q : x csi m H—' ' o iCM \i c «4— * 5 > ID ) f I CO 'O MCO CM o CD CO lO \i c o o Vp CO ' O \| C CO m 0 0 o t h- o o t ' o o oo o CO o T— a> o CO c E E 3 o o E CO 3 E CD 3 1 1 CM MCM CM CM ' o P ' vO o t o ' t co ) U ) f I i s c ' o CD CD ' o MCM CM - r^ CM - r -in C- o o CO CO o c CO CO d CO CO CO CO o o co L c CL 1 ■ to S ' 8 " o o - f f 8 ' OC CO CO CO o o ' o si c OC CO oo CD CO ' o r'- t'- csi CM ■M- d h- CD o o CO CO 2 ® O °- COE O CD E Q- O CO CO o o to CO 1 1

oo csi m o t ' o o s oo' csi ' o p s o t si c ' o 5 - CM O C CD 0 0 CO CO o t o d o M" 00 o ) O o 1— 8 d a) CO 1 1

o o t o t o t o t CO = si c ■vO CM o t ' o S ' ' o ' o ' o 'S ' o ' o ■M- o o - c CO si c CM -CO '- 1 0 0 'M- . o ) o O o o i'- o CO O o CO O CD 3 _ CD O g CO c co CD N CO - • 1 1 d . CL CM Cs| CD o t ' o vO Moo o CM csi CD - c r— si c CM - c CM ■M" - c CO CO CO CO CO CO CO 1 O WCO < 5 x: m p N CM 15S15 ' o oo n i o t csi CO in si c CD ' o vO CM in o o d o o o o t - C co’ CD OCD CO o t o o d o oo T— co c o c co D D T3 CD a o o o o o o o o o o d o 1— ® I ® 1 ■ o o t CO CO oo ' o p ' 'p CM ' o 'S CM in ' o t " o o si c CM o t - c d o oo lO CD o CO 1 1 T3 : x m csi _CTJ 'P o t o t o t h-; ' o o o ' o 'P ' o Np CO o CM CD CM CO CO CD o l'> "•M" M" o o d o DC CD CD CD — t — r CO Q. >»• - <3 1 1 o t cm ~o 'P o t vO i s c ' o o CD csi CM o t ' o CD ' o 'S n t c- o t CO 0 0 o t o o d 0 0 CO o 00 3 CD E CL ■ 1 < oo o t m ■o m P s csi m CO ° N in ' o o si c si c si c DCD CD csi CM ' o ' o 'O CO o o o t CO o d omo o m to CO o M* CO — t CO E S_ CO CO CO CO 3 o C CD c CD 1 1 X 'o P v cm cm o t o t o t CD CD ' o o t 8 " 'O ' o o MCM CM ' o ' o "- l" 0 0 m CO CD o o d CD o ■M- OO T— a3 2 O) t_ E o c o 3 > 1 1 p in 8 " co od oo -1". 1 '- 1 ' o o o o t ' o T“ CO h- ■M- o o CM d csi CD o o M" CD O 3 co . a CL a r 1 1 p > CD S ' o d 'O o ' o o CD o o o o ' o ' o o o CM o U) d CM CM o c CO > 0 ■ / 3 C/5 2 | | 26 Q- Q_ Q_ i s o F 'F co — co CO * c c E >* r ,i= to . s •= CO O CO co

D IT) o tD o jQ (_ to CD O) O 3 190 Grove Creek Old Country Road 7/20/99 Transect 1 Plot # 3 slope SPECIES DENSITY R. DENSITY COVERG R CONVG IMPVAL ln(pi) shannon O M C CO Acerrubrum 8 10.32% 2.5 5.26% 15.59% -2.270836 -0.234409 Q CO CD ~ M C m M C CO CM OO r~- '- r ' o n c\i o' 'O 5 0 P N ^ ■*? 1^; ■M- co OC CO CO CM lO co O' CD rj u iO CM - CO c CO CO - h d ■M- CO w a § E — cd — E o o CO r c ro S> £ iS E • *° Q_ • E O o CO 3 P i i

to m nm in o' 'S MCM CM MCM CM CO o' s 0 OCO CO nLO in CM o' o' 'S CM OCO CO NP CO 5 0 5 0 CO CO OO o0O oo d T h- i o o - T -M" M- CO i_ — -- ■ 1 CL m m c "5 CO o' ; M CM CO 5 0 - r CD o o M; r-~ - r d ■»“ 2 1 1 d OC OO M C CM LO nin in m c\i M C co’ in ' o P v o' ^o CO O v CO MCM CM CO CO CO CD OO " r CD o' OO - c x— '- I d - M O CO Q. o o co i 1 1 Jd g CM CM in c\i 'p OCO CO oo’ CO CO o' o' 5 0 CM LO LO o' «P CO LO CD CO co Moo CD o CM CO ■M- d CO CO CO E Imm CD > o 3 ■ >P co’ d ni di id id id id in s CM csi o' 'P >P OC OC CO CO CO CO CO o' OO CO CO LO CM MCO CM CM h- CM 'o' CD o' O CO M- - M o CO CM CO h- O 5 0 i i u > c > O iu 5 c | -g | co .52 ° d x: a O ^ ra 5 LO n i m MC M C CM CM s csi csi vP o' vP M" O' MCM CM ■M;CO CO CD ' r ’'f d T— T— o h- OC CO CO CO 00 CD oo - T f= E - t — 5 e CO ® CT ’ S i ® 5 a 5 .5 . > 1 1 O co CO 1= = .1 P ' Oin LO CO M" o' p « csi o' CO ' O NP ; M CO CO 3 0 - h CD T— M" d o ■ ■ a m c\i CM CO o' '5 CM o' CO o o o' CO - h M" 3 0 J'- '- 1 -M- OCO CO d T 3 0 O — 1 1 m 5 0 m csi CM m c CO ; M o' 'S o' "P CO o' CO '- r M; o o CM CO 0 0 O 5 0 h- LO M" '- 1 d T— T- o co d o 1 ■

m M" 'O s O CM tO Is- in o d O o' 'P d O o o o CM O' o U5 LO o'

191 Grove Creek Old Country Road 7/20/99 Transect 2 Plot #1 ridge DENSITY R. DENSITY COVERG R CONVG IMPVAL ln(pi) shannon SPECIES 2.5 10.87% 2.5 14.29% 25.16% -2.219203 -0.241218 Fagusgrandifolia 8 34.78% 2.5 14.29% 49.07% -1.056053 -0.367323 o' m m co m m m m m cm \i c cm cm \i v>c iq m m if) m CO •p P v sP d d d d d M M M M CM CM CM CM CM T“ M" CM CM CM CM O s- 0 si c CM CM co CD CM CM CM n CM i CM d i CD o MC MC CM CM CM CM CM T- T- CM CO Q_ < CO o' ) c a) = » o E - : CD -Ch: o O id CD«_ = g « E 3 3 i 1 2 c u c ^ © .2 r^- £ oo "5 5 " t |- s O M T—T— ' O ' O Csi t CO CO CO DC DCD CD CD CD s 0 vP o CD o o MCM CM CO OC OCO CO CO CO =fc £ o o <_ a O) -s p c Q. 0) CD — — ■ i

vP o o O' O) CD ^ ^ T— vP O M T“ T~ CM CM T"— 3 CM CM CM T“ d 1 T” CD CM OC OO CO CO ' O ~ 0T DO- Q _ 2 i i 3 g -1 o o r^- o' ■M" t M vP CM ^— n i n i CD CM CM ' O O M o' csi MCM CM T“ — i ■

s h- _ p oo ▼— O' n o CM O •M" ' o CM CD CO ' I CD O COQ. P ■ i c O O o ' O CM O O O O vP CM d NP CM o O OO CX> ) O O O o' CD c CD e 1

< Vi CD l_ CO CL o 2 (£ T3 h«. o CM o O) O) o o o 13 o CD 1—o CD CDCD > cm CD a co ^ CD a _ CO Q_ cm yj To 0) CD o ID o . o Q. o o > ID cr o z > C o < (- >- o o $ Q ID z w £ a: Q LD 0 V) l -

P v m m m o' CM CO o o' •M" X) O CM CM ni ni nvo v in o c io in m in in O CM O d CM CO CO CO CO CO COCO >5 CM o CO CO csi c\i C MC MC MC MC M CM o o’ o CM CD CD o ■ I P m T- M" •M" ^—^ •p ' o £ o MCM CM o' d CM \ csi c\i O O o o' csi co’ CO CO ■P - r in in csi CO v> M a. o_ . a . o CD 3 ■= . J Q. £ ® O CO 2 g i f g ■ 1 c -c:--c CO E ' O ■vO in nin in CM Mc\i c CM CO h' CO 0s •p CM CM o x: 'o 2 O CO CO CO -M- o CM CO ■*— •P CM CO Ocd CO M" o' CO 0OO 00 o a) CO 2 - — ■ i

o' P O O CM CM O m m M d CM CO T T— ^— 'S CM CO I"- T o' >P T“ o' CO CM oo c - - • i

P > o' p m m m ■M* ■M" V" 1 CM O d CM T— O CO T— o' CM o O O d o' >P CM CM CM i < Li- CM CD O ) ) O i- co 3 05 i = CD o 13 i_ ■ i ^ M’ 'o' o' '5- O CM o' 'S CO CO ^— CM i'- CO d o d CO ou» co CM Oo CO CD a> co oo CD (D CO CO o' CO CM CD ■ 1

i^> Vp ' o >p O o T_ o O' d o o CM o d CM CM CO CM o ' ' o O CM d o o ■ X3 "O O CD l_ CD O) l_ o 3 c

192 Grove Creek Old Country Road 7/20/99 Transect 2 Plot # 3 slope SPECIES DENSITY R. DENSITY COVERG R CONVG IMP VAL ln(pi) shannon Mitella diphylla 2.5 12.20% 2.5 4.50% 16.70% -2.104134 -0.256602 sg n i n i CO I'- oo in in in ' CSJ o o ' o P s CO n i Csi csi OCO CO O OCO CO CM O MCM CM o lO l1'- 0s O ' o ' o CO ' o CM csi _ Q C/5 Q_ I < Q_ 'o ■g MCM CM < c/3 E Q- 03 o ^ o O) o 0 3 1 1 i > ■M- in in CM o Oin i CO m x o' ■M- CO —a> T— M" x CP P v o csi csi O CM O O cb 0 0 ^ . 0 _ _ — — 1 1 1 1 i O CM ' o o - 3 0 x CT> h- CM co CO CO d Tf o M- ' o n in M" x OO X M; O C CO O d Om CO M; CO T3 o 3 O p e E c -Q =3 — — — P i ■

n m in s CSI csi O ' o P ' csi OCO CO CO CO O n i n i MCM CM OCO x CO cm T— o ■M- ■M" o ' O •sP cb ' o O CM s csi csi CM C 03 o 03 — P O ' CM in h-- in o x o* T— x ' o P x in ' o P s co" m x x o ' o s d csi CM CM o "O 5= 03 03 O (13 O 03 3 X — — — — 1

T_ 'S CM CM w n ' o 'S o d o CM m m o in o O ' O m n i O CM CO O O ' o d o O d cm ° (XL Q ^ h Q- h O O T3 O ■O LUCM z o co 5J o> tl O o CO .c . Q ex. _l > z > o o o od o HI z w > HI < 0 O o _ c LL c o CO c. 10 n C ~ ' ~ 5 o o O co t f — n 03 P

M" X- d CO d CO CO in CO T* oo CM b c 00 o' 'O CO M; o CO CO x— ' o 'O o o in O ' o 'S O MCO CM s s csi csi csi _ T3 03 (D 1 1 7 .5 ■ ■ n i m m o in o M;•M; M; o 'S m CO o m r- CM cm r- ' o 'S MCM CM O' o CO OC CO CO CO t ' o 'e m CO CO CO b c GL LU HI CO - -

"- i" - " i M" o CO d r- n i n i -: x ■M; n OCO CO O p « in vP ' O 3 0 in 3 0 o' ID OCO CO ' o CO o co co o o E o •= co 3 O 3 E C 03 CO P 1 1 ■ ■ o CO M" M- 'S ' o 1'- h- ' o 'S m in’ o' 'P CO o o ' o X—| CM csi o oo CM CO csi a o o o a CO ^ C o 2 -r- q= co JDE O P o < ° co t: 03 m Y 'S CM in o d O O o' 'e CO CO ' o 'e o d o ' o CM o o d x_ o 3 0 "E CO X— l 3 _ 193 Grove Creek Old Country Road 7/20/99 Transect 3 Plot #2 slope SPECIES DENSITY R. DENSITY COVERG R CONVG IMP VAL ln(pi) shannon Mitella diphylla 2.5 13.89% 2.5 9.09% 22.98% -1.974081 -0.274178 i i T— i o \i c oo o t \i LO c o o LO QS Vp d i in CL ^>s 'o ' o s-5 LO LOLO COa> •M- oo CD ox vO csi cd ■M" CO O ’ o o ’ o Csj T— (■"- o OO oo CD o Q> in 1 ■ i i 1 i . OS •M- LL I LO O CD - ' o P s CD n i M" -p c\i TJ OS T— ’ o CO CO CO o T- o CD co CO 1_ 05 C <0 05 CD =3 in CD 1 OS vO CO T— CM Sp -r- nin i in n i CM CO CD vP dcd cd I £ £ I s 0 DC OO T“ CD CD f—1"- r^- c- I < -I o o OO T—T— Cs|Cs| M- oo 3 G "O C CD 05 9 05 «5=3 W <- N 3 05 — 05 O s 0 P ' sP O'* CO CD c- c- CD CM ’ o csi CD oo CD 0s* c\i oCD ■M- oo 00 T— -st s— (U — 1

®s "■S o o o o ©S' P N CM o ’ o T— o o o ©S' sP CM o o* )CM U) s o o> LO |s^ CM 1 _Q E CO O CD u. C 3 3 « -Q E s C/5 CD O 3 o T3 O cn ■a h- CM O CD CD 0 O O co P w a CO CD CD O c o co c c > 3 CD

. CO 0. OL O Q_ .2 O C - w O Q. CD h -

LLl >s M’ > > LL Z o LLl z f- - > > LLl on N CM CN ^ _c LLl a> —I s-^co sz < 0 q o co o o 0 Q LU z CO "5) O _ _ _ __ w co c c c : >p m p s c- T— m m CM s- 0 CD o o o o co in OS o OCO CO m CM CM ©S' P > csi C - 'o O " CM CD CD CM CO b o CO o CD

vO M1M- M1 vO vp o l IS CD OO LO s © o 1^ CM LO CM Csi I E CD CM LL co CO CO CM CDCD 00 o CM ©^ CM O o CO co 5 CO05 CD i- <2 X O) aj 3 1 o vP IS- o oo o CO ©^ vP cd OO I— - |S ^ 1 OO vP oo O XI o c~ h- CO T— T— T- in CD 0s OO o CO oo CO COCM m 1 1 I

Is"*; LO O O O LO LO LO LO § co 2 ■§ ©^ sP CD CD cd ’ o o LO ^ © o - CO csi m CM ©S' sP csi i s c\ c\i c \i c csi \i c CM v csi cvi COCO J < _J < COcd COCO CO CMCMCM CDCD 00 o o W o O o CL F D E .E c c CD .9 «_ E .« 3 1 i 1 s 0 CO c ' o COOO LO m sM- s 5 © " sM-’ h- in co cm ninin n i in CM ©^ sP CM CD OO O s cvi csi CM Q -Q O o CO CD 1 1 ^ © ''S r- LO csi '* o CD © ’ o s=fr CO Cs| OS' CM csi CO CO cd CO CM CO o o CD E

o o ©^ sP o ’ o ©* >p o N- ^ © cd o CM o o o ’ o -r_ o CM CO It) IO CD a> 1 194 195

x— t o LO X— CM CO OO o o oo CO oo CO CO CO CO CM CO OO 00 00 o o CO CO i'- i'~ CO o t= oo oo 00 00 OO 't f CO co co CO CM o T—* x— x— x— x— o> LO CO CO LO tz CM CM CM CM CM o 3 CM o ’ o CM CM CO CO CO CO CO t o ■ ■ vwrrx o' o ’ T— XI o ’ d P -p vP P p p p 'SS' o ' o ' o ' O''5 o ' o ' o ' o'S ' o ' o ' O CO CO h - O _ l CO CO 03 CO CO o CD h~- c- LO o < oo CO CM N p x— oo o ’ > c m co’ M" M" o' CD t o CO CM o A c o to CO CM CM o Q_ CM Li. CM

vP sP vO n P »P p vp p P p p 0s o ' o ' o ' o ' o ' o ' o ' o ' o ' o ' CD O h - r>- h - O CD CO CO 03 CO CO o > O CO CO cp o > 00 CO CM c-- c - p Z o cd cd cd C3 Z CM co’ M" M-M- o ’ LO X— T— X-- O O M- co X— o o x — o o T~ q: Cd to LO LO LO LO LO LO LO LO LO p CD 1^ csi CM c m T— o cvi p c m cvi cvi Cd Cd CM x— LO 111 LU > > o o o o sP -P p p p o ' o ' o ' o ' 'So ' > o ' o ' o ' o ' o ' o ' OOOOO V- CZ3 o O O o o CD x—• t-; 03 O CZ3 tZ3 O p p o (o /A z x-I OO 00 x— O O tzi CZ3 o ’ cd o ’ LU T_ CO co -r~ o LUCM CM CM CM CM o Q Q O' Cd LO oooo LO T- LO LO LO LO LO LO CM cvi cvi t CM cvi cvi cvi CM cvi o> £ 03 o> w 03 CO o z O z CM 111 04 LLl a 0 - CL Q_ Q_ Q_ CL I'- a CL 0. CL a. T3 T3 0 CO O co O a W c d <0 a) 03 ■g CD -g cz o E 3 E c 0to 'o 3 cr 3 3 g s z 0 o o -pi c C CO o 2 O C G c o E 0 O =3 CO O o £ co c r CO 0 _3 g ’c T3 ■*-> 0 -r- 0 CD .O to ‘c >».E 0 CZ o 3 ■p o > ; m E o O .!= — S i E £ 0 3 CO ’> 0 0 O Q- N §'■CO — 5 a) 03 a . to CL CO .co E to 03 ■rt- *a ■■5 8 0 = a) .a o i_ Q 0 w o - 3 to Z £ CO CO 13 3 > O co CO c. o O _ LU 0 D> £ ■“ CD — E I—0 E 3 CD 8 - y -O > * CD CD .E 3 ii 0 ■O tO > to % O CO .2 P :> to % O to 0 0 i_ 3 ^ 2 O — ^ LLl Z ' CD § a> tZ cT x o m LU >v to T3 0 03 o § s— CO O CL o o 2 § O CO o 5 cofr d 3 v_ CO O Q_ 11 O '3 O 0 (D OL GO CL < GO _l < CL CO Li_ O CL CD I- £L CO< < CL < < LL LLi O Hickory Fork Site, Gloucester Co., Desmodium glutinosum Ravine Transect# 1 Plot # 0 z = CM q: o - o r CMz > f T - -M- T S= n ad O LU o > LU ad CD CO a LU z CD o oo co d oo co o > < c o CM 3 O S - o) Q- ~ LU O LU = CO (O o c D C o _ c CO E N r c o O oo c o

< < ^

m c- ^ o co co 04 d CO oo T_ CM o' sP CD - M ' o ■vP i m - h n i O o oooo o o ) O cm O 'M- cm d c £ o c I « co Q- n CD = _■ 3

= 5 -S S 55 '= « - sP nin in CM - M n i ' o O CD COCO cm o o E - w CM 'o'* o' n i n i n i n i n i o o n co E

oo in oo oo in oo ' o vP •. cd J N N N N OJ N o I o o ' o d o c - T LO T— ) O CM CO CO CM O T— CO CM CO -M- O csi ) O -M- CD R Vi CD v) •!=E CO — —

T~ CD T3 ‘to .52 ' o n ■'T“ M" CM CM T- - V CM O' o' S ' o o OCD CO _C d c CM CD o CO C <0 CD c CD CD C D) 3 P •vO in LhOUJ U O h lL O ' o d i T CO cd CO CO CO o CM o CO o CO h- c- CO OO c- Tt o OO -M- •M"O ■M- -M- r'-OO CO -M" J O OO 'M" d ’ o CO - T— h CM CM CM -M- CMCMO OO 'M- -M- O■M"CM OO OCM OO O OOO O csi CD 'o CD CD CD cz V) O N CO E 3 - n T— O o'* -~o ' o ■p d c d c o c OO d O - T - T - T > 0 OO ; M ; M ; M ; M CM CM OOO OO o -o 2 ■o C O CO CO _ nj CO CO j n „ O) CO"O i_ c « ro -u c CO X o CD . o .9 3 >o o o o o oo oo o> —x x— x— x— •«p ■U m cd cd cd d c ^ o sP o CO o ^ o ^ o ^ CM CM^ CM CM CM ' o CO csi CO n o

o o o o oo oo oo CO in o' sP CD ' o NP n i n i d i si c n cvi i cm n i d i d i d i s v csi cvi csi CD CD CO o t

' o 'O cq m O' vP CD 1 M Q..S, co co - 9 'P T— ' o in o' n CD 'c " M CO Q. o o co P

'S o' o p > t o o o o d 00 O O in o d in - c ' o - O L C co .9 . CL Q. S E O I CO COCO CD 5= O co ZJ 3

T1 -E Q ad - f X CD O CO ■ti c E o ZJ O CO CO O o *fc " 3 - Q_ LU Dd Z > UJ —I o .c ad Q _c m c D C Dd o > U L < 0 Q LU z CO h; o O O CO Q_ LU o UJ co c sz o a CL CO CO cm 'P - r - r - h dc cd cd cd T“ - c M" X 00 o n i n i CO d ' o oo CD in o^ vP csi CO CO >M" o> ' O P s T~ o> o> ■M" o oo d d ’ o CM ■Q € CD £ 3 > t > 3 .t; .52 co 3 Q- c co - CO *- C O — 1 1 1 ■

p * M" ooo co ' o ' o 'S CO 0s vp oo X— o CO CO o oo CD o' - ^ 1 O O CM d d ro E ■

p > t r'- n i n i n i °9 CD MCMCM in r T“'r“ O' P v r»- - r o M o CO CO CMCM ■M- ni in in in —■ x - r C- 1'- o' csi o c d c m c d d d CO o> O LULL CD O E 3 E; ^ CO CL C O CO 3 CO — 1 ■ l i v c i \ c

M" - h X h» I^- CD d c ' o CO CD CD o' in DCD CD sO * — 1 1 1 d c CM T— X - ^ r CD ' O ° s OO o' "5 in ' o O) I'~ o oo CM "M" X—: oo csi d c 2 cz CO CD — 1

100.00% 37.5 100.00% 200.00% -1.457125 196 Hickory Fork Site, Gloucester Co., Desmodium g ‘ T 51 osum Ravine Transect# 1 Plot # 2 SPECIES DENSITY R. DENSITY COVERG R CONVG IMP VAL ln(pi) shannon M CM « CM Cvi CM 't CM « M 0 i"- h- t- r^- h- O C . ° ° n i ■<—; I'-- O N N si c i \ c OO OO CO 0 OO ’ ’ O o O o U) O O N S O (D S N ' o ° v n i o ■>p si c i s c in o c ) O ) O ' O s 8 : ‘F c x: CO iS = < Q ^ OO OO CO OO OO IO OO OO OO CO OO — —T- T T— T— - - V T— Tj- ^ 1— ~ ' T = T) CO E £ o o 0 O 3 IO _

^ o ^ p omin m oo m CO O C CO m CO ' o P ' O p i s c p OO ' O n CO 0 o' n O - T 0 jQ jo c 0 O 3 P P ) ) ) m

E - p ' o >p •M" p T— p ■M" si c P v si c 0)00 o 00 OO Cs| 'o' o' v° CO CO o' - t 00 O

>p p P ' I'd cvi co’ T ) O ) O ' o n i o' O 0 CM 3 ^ co Tj 55 > Q -a t D .•*=:CD 2 .5 c/> 2 E o E E {= 3 N S N S N - — m = ) - - 0 p ° N si c tj O' vP T— O C p T— CO CM O' ' o P v si c O "sf si c CO m ) -

-

l"» -CO O v p I'd o c> O O ’ o O O ' o O O' vO ’ o O' vO O _ T O C CM O 'CL o co 03 L> CO o C 3 cz ’> Q TD jl O X =tfc .9 CO 0 _o -t—» CO o CO E CO c o CO CO E E 05 3 a o ad O CD CO CD O 3 3 co O % w ^ co £ L CO CL * LU •*- CL O fZ> c . 2 _1 > < 2 CZ o LU o o > LLl CZ csi CD CZ Q. > CD CO o o £ Q LU 2 CO c Q. to CO c z t cz o

v iCicsi c Csi si c cvi MCM CM CO CO CO d c d c MCM CM 'v r - ' i 'o' ■M" o' 'P si c CO CO CO CO CM CM m ) O CM CM CO CO CO co icsi c si c m O' sP ' S O ' (O CO CO CO s <3 is O CO o 50 05 05 05 ic\i c si c “ § D .2 CD _ CL o CD co c= D 3 CD CO c co 1 1 1 1 05 ■'fr m c O O O O O O CO cO CO LO CO CO CO n i n i m o o T— T_ O' 'S ' o cvicvicNicsir^csicvi CO o c OO oo p p p ■a ‘co CO co CD c CO 1 1 1 i ■

o' n si c M; CM CM CM 05 05 d c CM CO 0 0 CM si c O' v° o ' O vP p ics si c si c si c P CO rj- o o CO M- o ' O -o oo d c o' vP o T— CM d c ^— 'O n i MC Csl CO CM CO CO CO CO 0 0 CM CO - h M" CM o' sz ■g E CO to o l_ o to a o CD co 3 m M" T— T— 05 CM I'- P v CM o' vO s ;r M; ; ■s-; r T“ CD o h- - M o' 'O - M M- ' O s o Is- C°. CO ’o CO ’i_ ’c / < Q < E V) . a 05 3 r-v- --P m o' 'O si c o o c CO CM CM CO 05 I'd d c MCM CM o o . ° ° 05 O' ' O vP oo in 05 ■o to E ) O o S CD E to 3 3 O 3 icsi c si c CM CM CO CO ) O m ’ o o CM - - r o' vO "M" M" v si c cvi OCO CO CO o c T— CO CO o' vO si c ' O P s o p p in d c "( cm C ! 9 CO CD CD CO 3 o 3 _ 1 1 \ CO s| C CM . " i - c o o n i o' vO 05 CM CM CO T_ CO o' -p si c ' O vP o d c in si c 'sz ) X H—• CO - I 2 O CD CO CO E . Q g CO l_ . Q Y N ) U ) O o' 'P p o c> 05 CM o p o O' vO o ’ o ' O vP o o p ’ n i ’ o CM o O CO CO CO . Q 197 Hickory Fork Site, Gloucester Co., Desmodium glutinosum Transect# 1 Plot # 4 SPECIES DENSITY R. DENSITY COVERG R CONVG IMP VAL ln(pi) shannon Lonicerajaponica 2.5 14.29% 2.5 11.11% 25.40% -1.94591 -0.277987 . o— csi in T ■M- vO n i n i n i n i ) w m T— T— in in in m o I-- O LLlQ p •a *E - o i o \i c \i c cvi \i c csi MC CM CM CM 3 0 CO o- n CM oo Is- >o> o> r-> CM II 11 CO to CO / o p in m m o m s 0 T-; 03 CD csi o T~ T“ T- T~ f T T“ 0s >p CM s - Is- - h r-- - r Is- - c - c CM d 00 2 2 1

-5 vP - T CM — T - h Is- Q CL GQ <= x: .2 3 .i= '5 .2 - o o- s 0 o- 03 03 ’ o CO o- sP CMCM O O Tf m oo 03 MCMCM € £ O - P P (1) O O) w C C E CO O 1/3> c: c cr 3 ■ o C- - r -5 T— CM M" T- n "M; oO oo OO oo 03 - o 03 CO O 3 0 3 0 CM 3 0 o- m S to P ■ ■ 7

N r-^ r-- T“ m -5 CO CD CM 03 CM CO CO 03 03 03 L Q CL ■a cvi cvi CM s 0 CO - o -S ■M" tj m d £ T3 j£* 2 3 e e E a. a. CD CO E CD o E o 1 1 - I in m -5 Is- CM Is- T_ T—■ 0s 0s T >p in o M; o m o 03 03 CM - o o' CM Tf v) — 1 1 d o n o m 03 o o O O s 0 CM o 0s CM o d 03 P 1 •a < co to CO CO c cu c: to a) E a 3 o a. o O o COto u 2 Q. O 3 CO O C Q. T § 198 199

OO CO CO CO CO COCO CO CO oo CO oo CO OO CO CO 02 CO 02 02 02 02 02 02 CO 02 N x— x— x— CV| x— x— x— CM c Is- X— x— X" x— x— x— Is- x— OO c CM CVJ CVI CO CVJ CM CM <0 o h- o o O o o o r- o CO o x— Is- 3 co CO CO CO CO CO CO co CO T* c M- -M- CO M- m - M" T- C CO X— x— x— X— X— x— CO x— CO c cvj CVI cvi co CVI CM CM OO P p .c o' o' o’o’o’o o d o ’ .c o o d d o ’ o ’ o' Tj* TO 1 1 1 1 1 1 1 1 1 TO 1 1 1 1 1 1 1 02 in m in in m m 02 in cvi CVI CVI m CVJ CM CM 02 r-- r- h- i— r- Is- 02 I-- 02 02 02 o 02 02 02 r- cvi CVI cvi cvi CM CV| Is- CVJ x— ■x— x— CO x — X— x — CVI o o o o o o CVI o CVI CM CM m CM CM CM o cvi CVI cvi CVI CVj CVJ o CVI o n cvi cvi cvi cvi cvi cvi LL X— co" CO co’ cd cd cd 1“ cd i ■ 1 x— I 1 1

s P x P s P »P x P vO x P x P vP -P vO 0 s- 0 s* 0 s* 0 s* 0^ 5 s 0 s* 0 s '•So - o — 0 s o"5 ' 0 s 6s o - 0 s 0 s o- -5 l<- CM OO CO OO CO h- 00 CO o o O x— Is- O co O O r-; LO 00 X— OOOO O P x— | O < o O in O O p O O in' 02 in' cd in m’ M- cb cd O* > cd cd Is- cd oo CO d m CM CO X— O CV| CO CO o CL CM Q. CM

X? xO 'O xP xO 0s-5 0s 0sxO xP o' oxP ' xPO' O''P O'-p O'xP O''P O'-P O' O'xP 0 o m CM02 CMCMO x— 02 O CD COCOM- 02 COCO COo > p M; CO O OO °°. O p o o > x— x— > ■> > CO o CO O a: o DC O 'P -p 'P ~p 'p 'P X? xP 'P -xP -xP 'P 'P xP E o ' o- 8 ' o ' o'S ' o ' o' o ' o ' O' o ' E O' O' O' O' O' O''S O' O''S 3 1—■Is- Is- h- Is- Is- Is- r - o 3 Is- Is- i^ CO Is- Is- r- o TO £ I-; O O p p O p r-; o o TO t o oo r-- c o p oo o o CO o CO _c in M-M- M" M- M- in M- d d d d M" d d d d z CO CO o z x—X— CO T” o _ 3 LU LU 02 □ O) o E QC E CL 3 3 CM in m in m m in CM in p in m m CO in p m CO T3 CM CM x-^ ‘■o CM O £ cvi cvi cvi cvi cvi cvi cvi o >- cvi cvi cvi cvj cvi cvi E (D E H TO CO TO CO cd z CD z a LU a LU a Q o’ o O Oi_ a) a> -*-1TO to ■*->TO cd a) (D o ■g TO O 3 o TO 3 E _o x: C JO 3 co o CD TO "to 0 0 O to 00 T3 TO C P £= cu o CO a> p to to .2 § ■*- > TO TO *—» " § 5 o "ti CO c .2 ^ CO O CO E ^ o c_ CO CO E ^ c a> a) CO CO Or a ) _Q 05 .!= O a> cd CD ^ £ 5 o Q- co ^ T- CL CO CL 0) g E E o co O CO CD o E 5 TO C . O 3 I & o L. U . 3 CO Q . 3 ■2, Li- — CO jo u_ CO CO a Q- ~ CO o a. s= O) co co LU — T3 CO P p >x ° m yy = c/> .E ^ CO 3 t3 TO O CO s_ c as a) E TO 3 > 3 02 C o co£ _o ~ cr to c f 8 — cc 1— .-t; co CO o o < 5 tO to O v csi >o p > 05 E S E w « £Z"Fzl c\i CM O O ' o Tf X cni o' 05 cn ' o O T d O o ■M- CNJ CO CO X— CO CO oo oOO oo CVJ CM CO CO CO OO oo co 505 05 M ^ C O

m p > ' o n ■*“ o T— - r CM T— X o ’ o o o' cd o o o o ' O CO o 05 CM cd o OCO CO CO — O 1 ■Q X L- L- X CD _o O o J3 : a ■> O w — =♦*=.9 CM-Jf W V> W O <33 O o 10 E ro CD to o >x ° d 33 0) _ i

% O CM iil 0 (O - Q h p O' CD Z — 1 !C> rn LU x X a LU £0 i— - £ s /A >- o o o O > LU UL .c V-/ u. > _1 ' Q LU s V < — to c c o r L C c o c _ l '

Is-; r- vP m m ' o 'P r- ' o ' o ' o dc dO cd cd cd CO CD > CD D> = LL 0 S TO ^ O CO o' CO CM CD cd O p O O CO cd x—■ x Is- -C 3 "O-C 3 ’ o CO CO oo co D o >x x > io «-CD - ro ° C CD o o -Qa3 £ s “> = — 1 1 >p in CO CO m 3 ^ CMCM CM 05 05 05 05 o' x—x— CM X— xP CM ■M- UO x— CMCMCMCMCMCM r- Is- r^ dc ddd d cd cd cd x oo O O 05 05 x 05 05 CMCMCM o' CMCMc\i CO p P p p ? CD J? 5 — — 1 1 1 1 o , .■M- tfX nm in xP m CM CM \ cxi c\i m m m " T — T x— x x- x co 0s co CD c c/5 — I 1

np in 2 d i o' g E eg CO -vO x x CM O o' xP ' o ' o o - M" (D U) ^ x— 00 O co Tf ™ o r ra E o ° o . o 2 o rot/) x — — —

in ' o CO CM CM x— CMIs- O O mi cd CM CO r- CM =3 X- X x CO O O c\i CO 'tt ro ° ro ° . a — — — 1 ■ - E xP ^ i in CO CM d CO CD Is- o' xP m co CD d Is—O o' X—■ — x Is- O' xP oo o d CO o CO oo CO O TO 2 1 ■ - T xP ■*“ in CM O o' xP ' o xO CM CD O O o' o T” O CO o O o d O CM CO CM CM — ‘ 200 Hickory Fork Site, Gloucester Co., Desmodium glutinosum Ravine Transect # 2 Plot # 3 SPECIES DENSITY R. DENSITY COVERG R CONVG IMPVAL ln(pi) shannon Desmodium nudiflorum 2.5 8.77% 7.5 14.29% 23.06% -2.43361 -0.213475 1^ O L O L r— ' o 'p o a_ o o > co M- CM s 0 o> ' o vP M1 CO CO M- CM CM CM oo 'i_ ■O 0 i^- o cd CO o co T— \ dcd cd c\i CO CO o' vP ' ' CD CD O CD CZ CD CD CZ CO CO CD CD g £, a>^ ^ C c co C C CO CO CD o c cO CO O 1 1 ^ ' C r^- -M- O L " M '- 1 oo' WO ' o 'P l'~- CM CO cvi ■t OC OoCO l'- o CO CO CO M" CO CO CO CO CO CO CM v C C C CO CM CM CM cvi CO CO co O CO L co 2.2 O ' C C CD CD COto - Q — i ■ • 1 nin in oo 1^- ' o 'P ' o n T— ’ o CM M- CM M" - h in —^— t— CO M’ CM iq o> vP D — CD „ CL P i i CO • d>

■vP CM c\i M- CM 1'- m oo ' o CO ' o >P LO CZ5 CM co M" - M CM T— CO ' o vP on) W D cz CD E CD 1 1 1^- CM 05 ' S p N m m T— CM OO ' o 'S O Mc cd cd CM CO CD ' o P s cd CM co CO CO CM CM CO «o E O CO (D - » CD CD CD > 1 1

C- '- r cvi M" T - h m m ' o 'P r^- CO ' o T~ ' o CO cd M" CO CO o o oo' in co 'S cvi _TO x: Cl 0 o — 1 1 )

N n m CM O ’ o CO © “ T in SP- o ' o «p CZ5 o o O ' o CM o o o ' o 5 > o t CO CM P ■ £ ■a Q 2 o CD Dd ’> TZ! O Q 2 £ 0 0 h- X XL •*—> E o (/> CD CZ CD c a) C/> E O E 5 0 o O CD CO CD Z3 o 3 CD O o & ^ cd 3 "

CM c= t i CO Q_ — o

ID Z - f > cd a: o o > 0 - > LU z Cd o o o co Q LU z U) CO 1 O U > O ~ CD Q_ ^ LU to _ ro £ O = to UJ CO in MCM CM M" M" 05 M M" ■vP M- CM 'S CO cd o c CO ' O in in OO T T- CM CM CM C5 in iq T— h-' 1^ LO If) 05 CO CO O ' o 05 O 05 ' o > a o i o c o o o c o i o c O L o o o c _ ° 3 CD . Q - Q_ i i 05 CO ’ o CM ' o -P ' o •P co 1^ M" CM cd x— 05 O ' o 'P 05 O 05 CD C- CD CD o c CO — ■ ■ ^ 'h- r'- h CD CD O t O '' I T— f''- - h cd - h SO CM vO M" csi —T—T— LO CO CO IO CO CO ) if IO cd CO vP CO CM ' o ' o M; - i CM - Is CMCM CD O' OCO*CO M M M MC CM CM CM CM CMCM CM ■g O I U 0 ( Q LU < IL O . Q JCL .cz CD CO E CD P w CD O o — E ■ ■ -

CO

. T— —T— T— 1'- 'O in LO ' o vP I''- CM CM CM cd csi M- M- M- iq O' vp T-U o CO ' o CM T— T— - -E 5 0 L- CZ CD CZ c co CD CD 3 CO a _ 3 CD — ■ ■

1"- vO T— CO ’ o o 'P 1^- 1^- - h n i t ’ in ' o T— 05 CZ5 05 ' o M; M; ' o csi dcd cd I I CD O CD ) O *= 2 — t 1

T— T— CO O ' h ffV - h cd ' o 'P CM in m 'O LO ' o vP \i c —T— T— CO CO CM CM - T S CMCM CZ t ■

vp CO n i O O O O j O M o M O Tj- I"- I"- OO LO CM o o o o e CD CO o M" o M- ' o ' O CM cd M O - r CM co co 05 o M; iom o oo W N N CM ^ T— T— O i r m ro'i_ - I c I .to g CZ CD o cz 2 I. CO CD 3 3

C- h- M; dcd cd T— T— cm h- c- ■M- CM CM t ro 2 a o _CDCD P CD co -E - _ cvi t vP ' o M; CD CD CZ 3 O -

vp n ' o o o o ’ o o O CM CO to cd o 201

Galium circaezans Hickory Fork Site, Gloucester Co., Desmodium glutinosum Ravine Transect# 3 Plot # 1 SPECIES DENSITY R. DENSITY COVERG R CONVG IMP VAL ln(pi) shannon Smilicina racemosa 8 30.19% 27.5 45.83% 76.02% -1.1977 -0.361571 n1'- in CD o s v > o cvi csi co‘ CM CO o O O' ■M; h- C- cd CM Mco CM CM CO CO in 03 O' ' o 'O CO CO 03 X— ' o ' o p - p p p CM CM CM o ^ •o CM LU O o o w O C i - Q D C - r C D ZJ c ~ CD -c E 3 C 13 i ■ -r- c- "5 OC CO o CO CO h- r- DC p CD CD T- 03 m 03 o' OC p CO CO o CO ’ o CO o" T-_ M" 03 O CMCM o m O —T— T— s I is e ■ ■ C- ’ o o CD T“ in 03 o' sP - p X-; O' vP -M- 03 m ' o p • 03 E i 1

N _l o o' Np 'O CM O CM cd ' o o T" o o O' p - cd CD o X— o CO 1. Q 73 c«—< Dd ’> _o O D C o D C E O D O aT J Z CO o z s < _c= . a ' Dd > o CL z o of a LU z CO o > LU i s c a: O o o LU Z Q CO o CO CO c c cr vP MC o o CM CM o o m m m m •xf nin in o CM CM oo 03 m 03 03 03 CO CO* O' oo CO in ' o 'O T~ O CO 03 03 OO ' o 'O nm00 m in CM csi v v Mcicvi CM cvi cvi cvi i ^ di I I Q_ Q .52E £ 3 § E I ^ I O 3 (O 3 O C D C t CO 1 ■ o* CM CM c- p CO p in in O' X— O' CO co O' sP x— T“ T“* I"- CM T— h- x— ' o CO is o c ■ ■

r- nppp p p in X“ 00 oo ■M" CO CM o CO ■M- ■M- C3 x— CM O ' o CO CM o ° csi csi 3h- 03 O' ' o -p OO 1 E .1 *5> £ E « «2 E O C . Q o O C E JS o ? T o c . a ®O c c D C O C ■ ■ m cd CM M" -mm CO m h- CM o CO CO X— o' >P in p X— O' ■P in' M" p CO CO ■ 1 C- CO CO CO in CO CO m vP T_ 30 30 03 03 o* 03 03 03 03 CO CM r- o' CO* O O 03 03 ' o -~o 03 ■xf cm OO O' 'S x— in csi « | .Q h- < -t—< CO 0 CD CO o t Q> o c -1 8 1 O C _ > i

in io n ’ o 03 03 03 03 M- CM h- CM xL o' °°. •P CO T_ ' o 'P 03 csi X- in ' o OO v v csi cvi cvi P I ■

m m m x* nm in m m in cd o OCO CO O CM CM CM MCM CM p oo o' 'P CO MC CM CM CM oo ' o 'O C'; nin in CO CM ' o -P x— O C O " O IL $ IL O § -S § 2 o> 3 2 o O C l— ^ o CL 3 O C o r 2 v ° J C O C C _ £Z co co 1 1 s £ = S D C ■ ■ ’ o o o p - oo o' -p cd OO o OO CO m m ' o m xtf- M" - h- r- h~ M; 'O CO ' o '-a s csi csi I ■ co m -p ’ o CO O' CO in’ O' 'S ^ O r^- m M; O' 'O oo CM 2 ■ ■ w> o o t CO O 03 p - o' n 'P O ' o o c CM o O O ' o cd o O O ’ o 03 o P 1 □L □L l CO _l O •i= E, "D ■*-* co >s co — .E 2 5 .S I- 3 "* E 3 i— .2 co O CD 2 o IO O ^ 5E S 2 O T CO CT CO - - Q L Q_ CL U O = CO 3 .co _

-Q c O)

202 Hickory Fork Site, Gloucester Co., Desmodium glutinosum Ravine Transect# 3 Plot # 2 SPECIES DENSITY R. DENSITY COVERG R CONVG IMPVAL ln(pi) shannon Sanguinaria canadensis 2.5 12.50% 2.5 4.17% 16.67% -2.07944 -0.25993 in s 0 - Is s 0 s 0 s 0 -5 esi eg L I LL Q ■O O M- T— Is- Is- Is- r- Is- CO Is- 0s T csi in d eg n m O cvi o Is- 5 0 CD CD >05 a> a) CO o o co in '■*= O) o to c n — cn CD =3 £ — ■ ■ in i^ jr 'o O «n o ■"ct CO s 0 vP -T- T- -g d eg 05 Is- 05 d 00 CD oo CO CO CO c\i CNJ >o> a> CO CO in E co o o o a> o ifi ■ ■

in - Is ^ 1 ■M- s 0 p •« vP s 0 cm —I •2, ’c csi cvi in in T— 'r“ 0s 0s 'c -*fr eg d O - M eg Is-Is- in 05 o a CD v_ CD Q. o O CD ■ ■ in s 0 -o eg cvi T—T— s 0 T— 1-1 JO O M" T— X3 d o o O O 05 M- esi dc dCD cd cd cd CD CD ni in in in 05 ge geg eg eg eg 05 a> CO C (_ CD a> o CD c N c ■ ■ in in in in - Is T— 0s sO s ? I o cvi esi esi in O m Is- s 0 ■sO esi □ CO □ < d 05 n c —T_ T— 0s o> CO I S - L 1 « 8 - I I ■ ■ - o m m 0s O s s- Is Is- cvi 5 E ■5 ~ m d Is- rsi "d M" T—T— s 0 5 > 0s -O -P c\i 05 05 CO 05 pCO cp r— 2 9- ° 9- ° i i sO f T s 0 s 0 •sO 0s 'O s 0 s 0 c\i o O in M" d Is- 05 cvi T— T- in CO eg 05 05 if) CD CD O CD ■ ■ h- o> © o o o CM O 0s -P CD o Tf Tt cvi o d O o CM O eg I I XI 2> Q. CD 203 Hickory Fork Site, Gloucester Co., Desmodium glutinosum Ravine Transect# 3 Plot # 4 SPECIES DENSITY R. DENSITY COVERG R CONVG IMPVAL ln(pi) shannon Desmodium glutinosum 8 17.78% 62.5 56.82% 74.60% -1.72722 -0.307062 0s n ' o ' o to to CO oo to CM r'- 00 cd oo oo "M; o' p > CM 3 0 "S csi O) in. oc- to o> co o' OO om’ m rt ao CO "S -Q CM CO CM CD oo C/5 < < o E o E * = a = *= a i o' 'S s csicsi CO csi csi o CO CO tn CO CO CO MCM CM 03 i ■ o o ' o ? s c- i'- N 1^ r- CO p id p ' o tO CO ' o sP m c to CO p S csi o o o tn c- lO h- o co CO CD T— CO csi o> i 1

' o p N 5 > .5 d i c- to m CO ' O n m c m m c- CO o o x— oC oo csi CO oo 03 03 ' o p > csi - > Q- Z O c> CO csi CM "3 E t o td ^ C o COL> g 2 E eg E P i 1 ' o in CO ' o >P cvi 'O l'- O v S ■p ■S— csi p v s csi Csi cvi csi CM CM to h- CO co o CO °°. > IO > 1 1 r'- - c-'c-’ OtO c- lO c- ' O ’ o m c o 03 p p CO CO NP cvi m c- o o CO CO CO co CO CO did id OO p p ' o ' o 'S \ csic\i CD- P is = 1 i

in ' o >P ' o r^- CO CO csi ' o n o cvi OO 03 Csl co o' T—|

o P 1 ■ 'P m 3Z N o' n O CO d o T— O o M" ' o 'P o o ' o sP o CO CM o O CM o o d o ■ . L L _ L L CL CL CL Q_ CL CL ’<= 'x -s c E? d i i- m_i c E « D O CD O T3 .C v- 0 , ^ 0 S.> s 2 is S O O O CD "O £= .2 c E CD 3

.E 3 £ ll fi­ J ■| I U O ;= 2 £ 2 £ ^ c: o D .!= CD co C O) 3 n V

QC .2 = t= ^ ^ 2 £ if CO CD O < H Q_ H X •*—> • ^ ^ 8 £• wO 3 O CD (/) CD t_ £ _c <^s 0 0 o > LU : a CD DC CD > _i Q_ z s Q LU z o o Z > < Q LU £ CO z CO U o ^ ^ LU cr to cdUJ §; CO _ CD Q_ CDO O) O L LU CL O CO . a V) CD c c o tz 1 ■P n o co oo p in CO 'P o' d —T— T— 3 0 CM ' o in to to m c\i OCD CO 00 M O CM CO CM o o o 03 CM CO co CO CO m c d CO T- c- d d p o o p CO o o 1 1 1 ■

o' 'S in T-L M" 00 ' o 'S C- 03 CM d p t— CO CO 03 CM CO 5= m c | o 3 o i

T_ in p o' 'S m c Tf d 'if oo m CO P ' o P • •*— O l'- CM r- CO 03 oo E CO >% CD E CD CD 3 CD O

100.00% 12.5 100.00% 200.00% -0.932874 -Q < i— i_ 3 3 E O CD 204 Hickory Fork Site, Gloucester Co., Aralia racemosa Ravine Transect# 4 Plot # 2 SPECIES DENSITY R. DENSITY COVERG R CONVG IMP VAL ln(pi) shannon Aralia racemosa 2.5 33.33% 42.5 89.47% 122.81% -1.09861 -0.366204 T3 £ m in m CO ,, ooo oo o CO o CM m in S ' 03 N CJ s— Is C\J CNJ CO CO CO CO L Q CL d CO CO u> ’ m CM CM CO ' o CO ' o CO CO ' o O CO oo oo CO OCO CO CO CM CO o CM o 8 I CZ t/> E c" CO cl E 8 _ I 1 i

i n s 0 sO cvi CO «E CO o o> CO CO d M CM ■M" o o 5 E P 1

d O O s S 0 ' ' o >5 Is -* m T“ o d o d o o O' S ' o O © o> CO CD CM o i L CL CL ■O -Q < O ■£ CB O 03 « O t/3 ■§ e ° § si o c CD c j z 03 O _ Q 03 CO O ■**- g yjco o o o > LU DC CL CL x: cd O LU z CO o o z > 0 £ Q LU z U S o CL 1 - LU CO CO O COCO to CO c cz o o T— f T - Is in m CO CO p ) O 03 O ' o ' o cvi in in in ' o o o CM 'S p O O p O p •M" nc oilfi oi ntflin in m m in io CM iflifiio io co in Q.-° 5 >* s 1 s q 1 ■ CO vO m Is s- Is ' o P s m" in d CM 03 m CM CO o o CO d CO 03 ' o o' 'S 03 P M rs M CO o o e i ■ m m s-I s- Is - Is - Is o - o h o o CM d . o v— o o s 0 n co" 03 nmmp m m in in T— CO p O O o o s 0 P s s s s v cvi cvi csi csi csi p ■M- o' O p CMCMCMCMCMCM

p > IO in T— f T CM d co o 03 s 0 co’ 03 d O s 0 'S o' P O o O p p p p ■ 1 P v o m m m T— ■M" CM CM CM d CO ' o o ^— 03 p p CO 303 03 ni in in in ' o OO O o s 0 'S 2 E •2 ■S w J= 0

in P —T—T— f T o OCO CO so' o o 0s p > O O CO ' o o o O O ' o P - ■Nt 8 • I

IO m T— O 0 0 m s-I - Is - Is M ■M""M" ' O o o o o o o o o d 03" O s 0 P O O O O CO _ i t_ Q. c <+= to ? £ CO O 3 o ■ 1 m m m m m CO O O O ' o p p o o 03 03 m P t CM CM d CO O O O m‘ ' o csi ' o p p p p p p o C to o _ — _ i 1 p m 03 d 0s CO 03 in nin’ in s- Is —T— ^— OCO CO csi O s 0 P o' P — o S c JS .2 O O M ■M" 'M- o t 3 3 3 3 . Q 03 CO O 03 CO • | C > 3 i ■ co $ p ' o m P nin in MC CM CM CM d x- 03 co’ 3 0 P s-I - Is - Is csi t N O O p O ' o o' c c i ■ f N ’> ‘c co t o o p ' o p co" 03 m m m O P nin in cvi ' o o o o o o o d ' o P T— > 1 - O o O CL U) ? E o 0 1 3 ZJ — ■ 1 m O o t p p 03 ■S— - Is m m d O ' o CO OCO CO cm P s3; O ' o o' O <0 to . Q g — ■ 1 in p P T— - Is ■M" "55 d x~~ o ' o CO 03 P in cvi CM _co XJ o O ' o o' O O C 3 0 CO 3 0 C o o c CL CO 1 ■ Luzula acuminata 8 15.69% 7.5 15.00% 30.69% -1.85238 -0.29057 Caryaspp. 2.5 4.90% 2.5 5.00% 9.90% -3.01553 -0.14782 Smilicina racemosa 2.5 4.90% 2.5 5.00% 9.90% -3.01553 -0.14782

51 100.00% 50 100.00% 200.00% -2.650625 205 Transect 1, Cheatham Naval Annex 7/29/99 Aralia racemosa Ravine Plot #1 ridge 350 SPECIES DENSITY R. DENSITY COVERG R CONVG IMPVAL ln(pi) shannon Mitchella repens 22 67.69% 7.5 42.86% 110.55% -0.3902 -0.2641 Asimina triloba 2.5 7.69% 2.5 14.29% 21.98% -2.5649 -0.1973 ', o I'', to in o t o oo o ' o oo CO r- r- n in in d c\i oo o to m o cm o CD o in oo cm o

o in o p o o CM o CO CM d < z j i_ E E O (D =3 a: ■> r^- 3 0 C "co CM 3 0 O) < -C C co -C o ■*-> L_ cg E o tn CO co c CD - k CO O CD s ! s CO c c CD CO E CO > x CO D M — tn — CM CD CO co

o _ O < CO D_ _ ■*-’ LLl — CD L 2 CL O

q o -J .c /"s O o d o d > P o > > lu OHr- OH O O OH Q T“ LLi ^ d 2 o o CO o o H o > . O O cvi cvi O D LU Z CO = O £= C/3 CO o i o o 5 - o o o o o o o o mm o o o o n m in aS v cvi cvi 'f­

L L . V Q. 0L CL L I D O LL - I s ! I I I .2 3 — i— CO CO M J— 03 z> •£ c o CO 2 a, a

| co 2 2 3 3

CO ® ir>

206 207

0 0 0 0 0 0 0 0 0 0 CO o > G>0>0)0)0>0)0)Tf m m m m m m m m m CO O) 0)0)010)0)0)0)0) 0 0 0 0 0 0 0 0 0 m c m inm m m inininfv. CMCM CM CMCMCMCM CMCM CO o CMCMCMCMCMCMCMCNCJ 0 0 O 0 0 0 0 0 0 0 N o o o o o o o c v i ■ 1 ■ ■ 1 1 1 ■ ■ ■ xI* z tn M"M- M"M" M" M 1 CO ■O’ M - M" M - M" M- M- M- T— T— X- T- T- x— 00 Q) 0)0)0)0)05 0)0) OO O O O O O O O CO r - N N N f** N Is- N in m m in m m m in m CO o O O O o o o o CM CM cvi cvi CM cvi CMCM CM X“ f^CMCsicMCMCMCMCMCM

n ? •vO * p v p V? v P v p V? v = \ 0 > P v ° s o s ? o ' o '* o'S ' 0 s O' o ' SS t f v o '* o ' 2 > o ' o ' 3 ? CO CO CO 0 CO CO CO CO CO CO 0 3 O O 0 O OO 0 O 0 < m t n i n CM i q i n i n t n i n i n 0 < ° . O 0 O O 0 0 O 0 > CO CO CD CO CO* CO CO CO c d Mr 0 > m m* i d m* i n i d i d i d 0 XT** CO ^ * r — CO 0 CM CM CM CM CM CM CM 0 O. ■*” T" T“ -T" CL *■ CM • c CM

vP vp vP vO >5 vp Vp ^ 0 vP vP vP vP vP vP vO vP O' o ' o ' o ' o'* o ' o ' O' "o 5 ' "SO' o ' 0 ^ o ' ffv o ' O' o ' o' o ' O' CO CO CO 0 CO CO CO CO CO CO 0 0 0 0 OO 0 0 OO CO CO CO p CO CO p p p 0 in m in in in in in in O o 00 CO 00 m CO 00 CO c d c d c d 0 0 cvi cvi cm cvi cvi CMcvi cvi O > CM 0 > X— X— X— X— O z T— Z o o a o CZ t z ininininininiotntnm o in in in in in m in in O CM 0) OcMCMCxir^CMCMCMCMCMCM00 LU ’> LU cn > co > CZ o CZ o CO o co o y) (A vP vP vP vP vO vP "5 vP vP vP v P vP vP "S 'P 'P *p o O' o ' o ' o ' o ' o'S ' o ' 0 ^ O' O' 0 ^ o "S<3^ O' o '- O' O' o ' o ' O' o ' e 0 0 0 O 0 0 0 0 O CO 0 e >- O O 0 OOO 0 O 0 CD CM p CM p p p CM p CM p 0 CD p in in IO in in in in 0 o CO CO CO CO 00 c d CO 0 0 0 0 c d 0 o cvi cm CM cvi cvi csi cvi csi 0 CO CO co I— CM 0 L- Z' "T— vp** x*~ T— T~ T~ T“ T— 0 c o LU CO LU Q G "col _ "to < c z < of 0 3 i n m i n m i n 10 m i n t n 00 i n 0 3 inm toiom ioinino 0 3 O) CM CM CM CM c v i c v i c v i c v i c v i 0 >- CMCMCMCMCMCMCMCM CM CT> c o 0 3 H CM iO CM CO z r- z X LU X LU 0) a Q_ Q_ a> G cz c c c: < < CO CO c o > > W) CO CO £ 3 CD V) 3 o E % cr U) CM co 0) -g ro c cz ro ro ro :* =tt x z — co ro (D cz x z c *3 _ ro > ro •*-> co "co ■— o - c o c o ro E ro 0 .2 co 5 CO 0 >»*i_ 0 'cz 0 CD CO 3 V) = jQ t/3 -** a> X— . o XZ Q. O *— roi— C ro er 1 § c it= CO ro CD tn O 0 ro O o CO CO CL CO CO co 5 3 3 La ro ro ro v_ CO5 ■— o c o o o CL c/> C/5 CL LL O CQ O LL C/5 LU O O > I- Q_ LL Q O O CL CL Transect 2, Cheatham Naval Annex 7/29/99 Aralia racemosa Ravine Plot #2 slope 340 SPECIES DENSITY R. DENSITY COVERG R CONVG IMPVAL ln(pi) shannon Polystichum acrostichoides 2.5 14.29% 12.5 45.45% 59.74% -1.9459 -0.2780 Dioscorea villosa 2.5 14.29% 2.5 9.09% 23.38% -1.9459 -0.2780 O IO . ' I CN CN nC m m CO in ' o vP nin i in 0 0 0 N" ' o CO CO T— T— 5 0 05 50 05 5 0 05 05 CO Vp s csicsi ■N" 50 05 05 05 cvi i o 05 505 05 ? V CN O O O ' o 1 1 *- r* n i 0 0 4 0 ■N- 0 CN 05 CO ' o ' f t •| •| •O’ ' o >P P v CN CO CO CO OO s o S ro ^ is 1 O I j > = > > E ° Ero .2 . ro .2 a ^ o 2 o ^ N -3 1 1

0 n i N CN —x— x— 5 0 0 0 CN vP m 0 5 0 o c 05 5 0 5 0 ff* vO ' o g v ' o csi CN CO s s cvi csi csi 5 s s c C CO a> 1 1 1 a - 1 ' o m m CN CN 5 0 •N" CN 04 05 O CO O 0 ^ CO g v ■N" 505 05 ' o vg 0 CO CN CO ' o 2 $ .2 ._ ._ - o ^ t S - o tn . a >* 1

P v m m N CO "N" m CN ' o '8 cvi 0 05 0 CO 0 r— 05 05 ' o CO ' o T“ N- CN co CO o 1

C\J m in 0 ' o vP T— T— in 05 CN 0 ' o 0 ' o P v 0 0 0 0 d 0 05 0 0 0 P v 1 . CL Q. ■o L -Q > LL O) Q. a Q. O) ro o 2 coro .2 — O) n - l ro to c -a ro c => ro o . . CO o c: O) 3

■> O' Z 15 .s .e < 04 05 o> cn < CN O c o a) to ro ro 5 9 05 a> E ro ro c c a> X W ro E o O ro ro > ro c LU z O O ■E > ' CL C/3 t£» co O . o O tn > O < CL O O LU n t tn tn o c c 0 ro ro c cl c O CN ; r CN 05 O - O CN x— d x-t 05 ? 3 1 in T“ nin in O O O ' O vP CN O 00 < 'ro £ £ S j ^ ro o u 3 ra a) .2 a) X * 1 = n m in 'N' in X“ O 0 m CO X— ■N- ' o - T CO O O ? 3 05 00 csi i o oi j ■g cl w ro o o g o o E 3 = 1 1 05 - f T in 0 O T— CO CN d O O ' O p v CO O 0 Vp ' o 0 d 1

L . 0 CL I CL ro ro E cu cu ro u ■0 0 . U_ ro 05 05 2 c ro 3 tn 208 Transect 3, Cheatham Naval Annex 7/29/99 Aralia racemosa Ravine Plot # 1 ridge 90 SPECIES DENSITY R. DENSITY COVERG R CONVG IMPVAL ln(pi) shannon Carpinus caroliniana 2.5 20.00% 7.5 23.08% 43.08% -1.6094 -0.3219 Parthenocissus quinquefolia 2.5 20.00% 2.5 7.69% 27.69% -1.6094 -0.3219 5 0 “ T IO Tt O05 0 CO ' o sO OCO CO p T— p O * r 5 0 ’ o ’ o ’ o CM CO CM 5 0 q i m n i n i p o p o p o p o CM in in o c CO ■N; ' o vO CO " M 1 C MCM CM CM o ’ o o CM ’ CN o CM " o CO T3 > o . a> =» CO CD _ 1 1 1 r— P 5 0 CM in O OO O' O CO tf' CM CO a 1

' o N° O ’ o p O in O O O vO CM CO cm V O O' L L CL CL CL -Q —I I — — < CD c .2 .2 c CD <- "S .2 E o .h: o O 3 CD CD _ 3 ’*= 5 ca . c a. o §- s CD O ~ CD

CL ’> 05 at CM 05 < xz Z < O xz d i o c •«-* o a> E O CO C cd c C CD ca 1/5 CD CD CD CD CD x ca CD E > g CO 2 o _ O L X CL < CO Q_ / CO c/5 o a. CD

< . ’o XZ . Q _1 c _ > a: > CL z > 0 2 o o co co co r o o CO CO CO CO CO 2 CO CO CO ' O I ' O — ' C O OV C OC O LU LU LU LU Z o o QC Q Q C/> Q. CO o c c e CA CD

o o co co co MC CM CM CM vO OCO CO CO p N T— O o o 05 CO d T- ' o IO CO i d CO n i in CM 05 ■M; vO - cm i- cvi n i n i n i q i cm a» « 5 > E 5 .CO 3 = i 0 > (0 o E w -EE v) 1 ’ 1

M CO CO p 05 ' o 5 0 d c T- CO CO T“ vO ' o 5 0 p ' o CO ■g cm X ^ CD_ W E 2 o CD CO 2 w o o 1 ■

CO o o p CO CM p 05 vp ' o S ' CO CM T— o CO °°. o OO n i n i O' cvi cm cd 1

CO o o O O n c o o ' o 'S CM vO T“* o o cvi d ' o m v h J2 X E £ 2 g o CO 5? in CM T3 = O O b=, T3 O D O CD CD 3 C C L CL CL c £ i § CD c CO .£2 2 g

UL CD O) CO 05 3 CD 209 Transect 3, Cheatham Naval Annex 7/29/99 Aralia racemosa Ravine Plot # 3 flood/bottom slope 340 SPECIES DENSITY R. DENSITY COVERG R CONVG IMPVAL ln(pi) shannon Asimina triloba 2.5 11.90% 12.5 41.67% 53.57% -2.1282 -0.2534 Solidago flexicaulis 8 38.10% 7.5 25.00% 63.10% -0.9651 -0.3676 o o m ' o ' o 'S ; r n inin * cvi o* r- cn CNJ CO CNJ - T ' o ' o co O co O CO ' o S? o ' o CO o in’ CO CN oo* o — t o o co v CO > N >> 5 O 05

m CN CN CN co CO CO cvj CO t cvi CO CO ro “ o* T- CN O ’ o O O Tt o N05 CN CN o o CO o o cvj

Q. V V 1 . Q . Q * c .2 o £ o 2 . co •*= O> E O > O *5) ro s o ts — ro o o c « S? « co a ro I 2 r n ro cn hr o 3 5 C 3 05 co _ _

cn cn co c CO n i_ cn . g Q. n in in ■o E c cl N C 05 05 05 sz O Z < I X co E CL o e o o CO i_ O. o cz > c cu 3 >* 05 05 co c C X 05 CB CO E CO > TD o c m o O) 05 b cvi o fiO OO OO OO CO OO OO O 9b O CO < 0 I O ( > O ( O I O ( O ( r J Nr-r,T"r*T“T-T-0 - T - T “ T * r " 0 T 0 , 0 r 0 - 0 r 0 0 N 0 n 0 < £ < Z > z CL 0 I— >- o o > LLl 0 CL o o CL Q LLl CO Q LLl CO a. LLl LLl CO co O CO c c c o m 505 05 ’ o o CN CN 05 N" ff' *>5 CN T“ 1’ * ' N C N C N C N C N C N c i v c ^ ' r m in m m in in in inm cn m cvi O ' o O v m cvi XI ■g CL I X E CO o cn o cn g 3 t_ o tn o o 05 >» nin in I"- 50 05 05 05 05 N" C5 o o o ff* cvi sP CO m in’ cvi O O O ' o n in T~ in CN I I <15 C o E ro ro 3 E o « E ° E ro £ co 'C O ■N- ' o r'- CN cvi 05 05 0s 'S CO CO in in nin in cn ' o “ T m cvi E 3 m ’ o ' o ' o o ' o r- CN cvi 0s sO 505 05 in 50 05 05 05 in ' o 'p cvi in v cvicvi £ s I CL O .E o n s cr 3 -N- o CN in 05 05 in 05 CN ' o CO in m ' o O v CN cn & TO X> _l o l_ c 3 CL 05 r— i CO O _ cn o 05 ' o vO O o' O o 'p O ' o O o o CN o m v 210 Transect 1, Transect 1, Cheatham Naval Annex 7/29/99 Athyrium pycnocarpon Ravine Plot # 2 slope 340 SPECIES DENSITY R. DENSITY COVERG R CONVG IMPVAL ln(pi) shannon Polystichum acrostichoides 2.5 25.00% 17.5 58.33% 83.33% -1.3863 -0.3466 Luzula acuminata 2.5 25.00% 7.5 25.00% 50.00% -1.3863 -0.3466 n i o’ o in' in mm O O o CO CO o o o co co m c o m in m c p o o o o o cvi cvi o' co co o co co o eo co co" CO o" o CO CO CO CO oo oo co co ^ d d co co co tj CO CD CO CO CD CD o co co < (0 03 t— C/5d. I I -

f eo Tf m c m c 'c "cr. _l o o fc_ CO CO CL o o CO cu

^ o CM o

_ _ Q_ Q_ Q_ > 3 Jo <3 I > < « <0 O « a) COv2 = C 3 CO tz d p. 1/5 3

■O' o at CO 03 S in CM TD O C 3 5 ■> i"- oz CM o5 o> a> < O XT cz a 1_ 01 CO CO cz cu E . Q o o CO 0 cz CO cz CU X zi v > a> CO > r- L CO CL o o % co LU — o CL CL o CO 1/5 03 O . Q Z > > < LU a: o o CD (0 CD tz >• ^ o > LU z cd a LU o Q co y

- t CO° 3 _ CO — Q. — - >* >v >v 3 i ■ -

CM 05 M" Tf OO CM CM CM T— m T” d vP m m d m CO *o' o s* 0 O' vP cd T- T—^ CO CM O = CM m CO CO ' o CO 03 2 03 c . E q IT co o a. ■ I i 1 h •— m m CM 05 05 CO CO O O M" d m ' o l 1^. o r-- 05 in T“ cd ' o vg CO t cvi cvi CM .CO E o - P ■

CM M- CO p v nO in ' o vp T“ in © ' o m T— >p CO t d O) cd CO ' o CM m - ■

vP ' o CM vP O CM Tf © ' o m T~ O o d in o CM CM o O' vO o o o o O i CL CL S £ L LL CL CO 05O S v co CO *- c co "o Itr O o

211 Transect 1, Transect 1, Cheatham Naval Annex 7/29/99 Athyrium pycnocarpon Ravine Plot # 4 ridge 200 SPECIES DENSITY R. DENSITY COVERG R CONVG IMP VAL ln(pi) shannon Polystichum acrostichoides 8 28.57% 27.5 52.38% 80.95% -1.2528 -0.3579 Acerrubrum 2.5 8.93% 2.5 4.76% 13.69% -2.4159 -0.2157 xP X— rs- CO o' X X IX) IX) IX) ” ^ S ^ 2 •” X I) X I) O X L OO LD IX) LO IX) IX) IX) IX) -e- IX) e- T— IX) csi T”“ T— ) O ) O ' o s° CO CO m c 2 " i "o a .2 J IQ. _J U CM M CM CM CM CM CM 'o’ o o' d ’ o O CM ’ o CM CM )o> O) o i i- ,i= ro 53 o ro z c " to ? ) a a 2 ~ . Q •- c 3 o t=M- £ ^ S a> a> " C 0 CZ "O xP CO ex- CD 'Ct IX) IX) ' o ' o -M- OCO CO o' cvi T“ cvi xP M; T“ s |S- fs. .2 IX) X IX)IX) OC CO CO CO o' ' o x^ CO CO CO 3 0 CO |x-’ csi cvi cvi cvi CO CO 3 0 CM T“ 3 0

s° O' xP xO 3 0 IX) IX) IX) -E r- X IX)IX) ) O ) O ■M; DX OCO CO “ T ' o CO MCM CM O) MCM CM „ 3

“ T |s- x -r- r- |x- X IX)IX) O) T- ■M; "5 o' xP x5 'sf l l a. i - r Z J ' o 03 CO CO o 8 E | co x: o a) 3) Q_Q.ro w o o co C O >* (D X? IX) “ T CM CO CM 03 o' xP x— -M- CM CM 3 0 T— csi ■M; s0s 0s ' o vP 03 CO u l o xz CO 'CZ ca O to

< IX) T” CO O' xP IX) O e- o CM IX) O) T~ 3 0 csi M" CO CO ' O xP cn oo CO a> CL a) cz ro

1 O' d Csl O o' xO io IX) o CD CM o CO CO O CD x° o ' o xP csi d O O CM o O on ■> x CO z c CD a ro O cz cn o CD > X cn CD . ■a m c O)

xz 1 - ?z> < >. . a on on o z > o O > HI 0 o £ O LU z tz on Q LU z O Q_ LU UJ CO > c CO O CO N M C M C M C I V C M C M C M C M C O ’ d o o o o o o ) o - M ' O - M ' - M - O M - M - c t s ' - M ' - M - t s o r tn CO „ „ n en e'­ x? “ T IX) xP xP t MCM CM 0s cvi CO CO X X IX) IX) IX) CM CO O' T” ' O IX) IX) if) IX) U) IX) IX) IX) IX) U) s csicsi m c m c m c 0 I 0O o o ro ro >> — I I I I I I I I I I I

M e'­ to e-5 e- x° en CO 0s xP CM csi xr— - T CO CO CM M- o' _ T xO N — T - r - T - T - r - T - T - r O' XT TO Tn — n t o E ro o i— o cn o CD >. >. o r-. xP X U) IX) xP MC MC CM CM CM CM CM O) cT- ^ 1 CO T” co' MC CM CM CM o' cvi CO xP “ r O' 3 rs ’ xP |x- is. O) ' o xP csicvi «r- OC OCO CO CO CO CM IX) CO CO CO CO CO T” CO CO o' ' O xP m c m c m c m c m c m c m c .'S xz ro CD 3 a. CD c cn o u. ai e- xP o ' o T— |x- IX) T” X X IX) IX) IX) o' xP cvi T— O' X? LU xz •*-> •+-> ■**> O CL C cn o E cz o cn ro CD (D C l 1^- T" xP 3 0 csi T— X X X )IX) U) IX) IX) IX) csi CM O' T~ ' o xO ’E O O o CO cn >_o ro cz ro CO i_ Q. CZ 3 —X— T— xP o r» o' OCO CO “ T o' cvi CM ' o x5 csi T“ T3 E C CO ID C cn in a CO 0 0 cn x° e'­ CD r-^ xP IX) CM en o' CM N o 3 0 e-5 o' CM T— t“ t“ ' ' o T) 5 T3 Q C cn O 3 E o E E E 3 x° ' o x— CO O' xP T" IX) CM 3 0 csi CO CO CSI CM T" ' o x£ O CD CO c c o CD 3 £ iz t O' >5 o o d O O o' x§ CM o o o O' xP O O O CM o CM - IX) V 0 E co o cn = cn E • a. 'o 'o u. o co CD ro c cn 3 N

212 Transect 2, Transect 1, Cheatham Naval Annex 7/29/99 Athyrium pycnocarpon Ravine Plot # 2 slope 330 SPECIES DENSITY R. DENSITY COVERG R CONVG IMP VAL ln(pi) shannon Carya cordiformis 2.5 25.00% 2.5 7.14% 32.14% -1.3863 -0.3466 Arisaema triphyllum 2.5 25.00% 2.5 7.14% 32.14% -1.3863 -0.3466 JZ ■g in O in o 8 1 oo CN O' O O o o' sP CNJ 00 in c»i m in CN CO ’N- N’ Q. _l P cvi CO o> a> s 8 s? CO CO CO CO CO CO CN cn sP vt (O CO CN O CO 1 § « 0 o » 3 1 i =3 m in O' 'o' o' >P CN CO CN ■N; >$ T" CO cd CO o'* sP T“ ’ o CO CO CO 10 N 1 ■ o o o o o' o ' o o ’ o ’ o o o ' o 'S CN T** o 00 CO CO CO 1 n i in in v v tn E tn o) cu T3 -Q c l_ o 3 r'- O I X £ Z CNJ 05 o> cn a: — C CO CL I— a. ^ z f < CN -2 -2 CN co 01 c cu CO E c cu . a o i_ 0 co c d) 2 O CL CL O 2 cu n O C » in co yj 8 m c tn CO CO CO X 3 E s > o c o > a n- ca o > a

o

cu ^ n CO cn

uj Z > a: LU H JC o > LLla o a: o O o > a LU CO Q Z >- v ci s oj N CN CN j o csi c\i Z cvi ^ C/3 o <

' o in oo m 05 ' o o o oooo o o o o o o co* cd o in cd oo* o cd oo in o o co t m in oo tn cvicvi cn co o co h- CO n i m o o m m o i n i o o ’ o CO CO CO N" N N O CN CN < < CO 5. CO § ^ f p - E . tn a o cn o ^ ro S- 3 c >2 r J _3a. ^ ? ° C cn 2 E ~ w > O C O ( D ( D ( - 1 ■ o 3 - -r m r- r''- h- r-» ' o >P m cvi m cvi T“ ' O o o o c» o CN CN CN CN o CO CO CO CO o* IO o O s a: O N* ■O’ o o ■ ■ o ooOm O o -o h- ' o •vP O s cd T- CN 'e cd eo o' © in o w in ' o cvi cvi ■ i

■ " r--1"- Np ’ o CN m m ' o o ^— sP in cvi ■N- ' O ▼- cvi 1 ■ O -n CO * 2 o ’ o o cvi CN o' "F- x— m N" O' N" 'S ' o 'S CN 2 oo .2 L OQ D D .C LL C C ’CT ) U r (U d) > i o o « •= ® 8 5 -co % c CO o c c 2 a) JC o S L X O I c I 8 CU o S.Q. W o C CD > TJ C t ■ N in cd t CO t cvi ' o ° s CN ' o sP CO N- 05 Ncvi CN m ■N’ N CN CO — 1 ■ O O ( 0 - n T— in i'- r- m nin in CN ■O’ ' o NP ' O o T— cd o CO cvi O o o CN O ■ 1 n i'- r- n T" cvi in — x CO CN ' o ’ o O in ' O St o CN cd o CN o N- N* E cu P O i ■

▼- ST— o ' o ' o sP CN O 05 ’ o m o' cvi O 1

e > o o ^ CO cn CL CL n o in cn Q Q_ < -Q 05 ! 2 2 ! 5 0 If ro o CU L 0- CL o E cu 213 Transect 2, Transect 1, Cheatham Naval Annex 7/29/99 Athyrium pycnocarpon Ravine Plot #4 ridge 120 SPECIES DENSITY R. DENSITY COVERG R CONVG IMP VAL ln(pi) shannon

Carya cordiformis 2.5 6 . 9 4 % 2.5 3 . 1 3 % 10.07% - 2 . 6 6 7 2 - 0 . 1 8 5 2

Lonicera japonica 2.5 6 . 9 4 % 2.5 3 . 1 3 % 10.07% - 2 . 6 6 7 2 - 0 . 1 8 5 2 n m m i n in m m in m m in m l'- CO r»- I'- oo m CM 'O CM CO d T— ' o CM O d O co’ T~ co c\i c\i ' o vO ' o ■M" CM CO 03 in .ii■a «- n o <5to J2 E CO L C 03 k. CT^ co O 3 ■ i m N ' o CM CO CO oo CM vO co co CM CM nin in "M" d 03 03 o' T- CO CO ' o CM j t/5 CD C 1 ■ \ ci c\i c\i c\i

T—▼— m ' i'- t'- CM d CM CM oo CM OO CM CM CM ' o P s T“ to CO ■vP S ' 3 0 CO CO ' o ' o CM CD CD U l < Ql LU P o o to . a *«— 3 O CM O v CO ™ D 3 Q CD o E co 03 03 O 3 p o . n o co v)c: o to O c CO O a 3 ■ 1 in co T— d p ' o ' o ■M- O to CO — r 'O CO 3 0 OO ' o O' c\i CM CM CO 1 1 = T“ CO CM ' o 1'- r- T" CO CO CM d p T— CO O CO 'S d ' o ' o «P m o> to CM CM c c £ ■ i CM m ' o O d O o CO O CM o d ' o P ' co o p > ' o o d o o CO CO ■ Q. > TO CO Q. □ O l " — QL r'- 05 05 05 z x o xz JZ cm - CD I- CO "O "co c 03 o a o CO zz o CO Q. >x . k OJ CO CD CO E 03 > c 9>to CD — o x ^ . . L CO CL =tfc o LU ~ CO c 05 O CL CL O —I —S ^ z x . a > Z < > LLJ c\i co DC O : a > CD z >- o O o O LLl z > Q ULt CO O cn od o c . Q t co a cz n OM1 M CO - h CO d 'S o CO m CO -r- 3 0 ' o P ' p T— CM 3 0 o t m m m i n m in m in in m m m m 3 0 ' o CO O "tT oo o' " r o c CO T~ s ® s x:

cm ' o ▼— T“ T— OCO CO CO O C CM 'O o t o t o t d nin in ' o s- Is - h ■x—o . ° ° ' o 'P MCM CM m E «- cvi •M" T— CM ' o CM MCM CM T“ 03 d " T 'O 'M" P > ' o d . ° ° m ' o 'c _o S L L II ^ to to ^ = CL k- l c CD 03 <= CO 03 >< c co CO si CO CO 1 cm NP ' o ' o ▼— CM CM MC CM 03 03 CM 03 CM d d d " T nin in p > OCOCO O C CO CM CM CM ' o P ' T“ 'tr OC CO CO CO CM in d d x d CO ' o — 1 1 i

cm MCM CM - T CM T“ CM MCM CM X r- ' o P ' p p p « CM in oo ' o l f CO J _ X— — a X ca . k co 2 ro v2 J CO E S -2 3 i i \ c\i c\i o M- ' o in ' o 'O OO - h ' o S ' m CM 1 r“ < ' o 'O o t o e O O O ' o P > CM o d O o o o O ' O o 'P CO o CM ‘ CL •o ■a T3 03 c CO o CO cz 10 o o o x 214 Transect 3, Transect 1, Cheatham Naval Annex 7/29/99 Athyrium pycnocarpon Ravine Plot #2 slope 350 SPECIES DENSITY R. DENSITY COVERG R CONVG IMP VAL ln(pi) shannon Athyrium pycnocarpon 8 51.61% 85 91.89% 143.50% -0.6614 -0.3414 Comus florida 2.5 16.13% 2.5 2.70% 18.83% -1.8245 -0.2943 - - O T- T- d o d co cd p t-- i'- VO o t d o o co od T O t T— — t n i cvi c\i n i m o cm Csi o o o s ci to cvi csi u) in io O OO CM OO CM O O CM CN CM T* CM 03 03 ■O’ o q o cq co o co co O O O CO CO = ■ ■ c ■ O O CM CO CO m O a Q ca I E ^ E 3 - i I i i ~ o T~

z s ■a o 0 c co 0

CM O) cm o

■> CM on 03 o> Z < 03 < co i- o JZ z s ■*-> ts . Q o CL o cz CO c CO c a o cc o CO t_ 0 c tO 2 C 1/3 03 CO CO E CO > 03 X >s CO 03 03 o 4fc o IO co O / CO 1/3 o a. 03 a. > . 'a LU a. hi < z s H > LU > on on O Z > yj a LU z CO on a £ o o 0 co o c c o CO C/3 T- c i"- d d CM CO m o c m o i o L O i o L O L o c m o c V? CM M" T™ csi to to T“ 0 ( 3O 3O 03 OO 03 OO 03 M MCM CM CM CM CM CM CM CM CO p ' o co CM 03 'o' o' 'S d c o' >5 P UC CL CL LU o 0 c c c c c (/3 c c E E 2 o c c » > 3 i 1 c . CM to 't ° N to i s c "CO ▼" 03 MCM CM CO CO CO m c O 03 CO vO 1^ cd O OOO CO o' "■*—> z s 'o ■D -*rf to — C o i— o o c a 03 o o C/3 3 E CO >* i ■ 1 i 1 03 to to d CO CM 1'- T— CM m cd CM CM p p p ' o ' o ' o O03 CO 'S csi o' 'S P o' CO _ l CO s— C 0 o c 3 (O zs 1 d h- oto to ■M- o' CM v csi cvi T“ IO T” 'S p CM O Ot to to IO CO o co’ CO o' "P z s UCL LU E 0 <0 ® 1/3 "o o C CO o CO C 0 C 3 3 ' l l

T— o ot oto to to to r- o CM CM 03 03 03 03 03 "5 cd cd r-^ P CO O' OCO CO csi 'P CO o' .52 z s e ■ c r c a (O T C 0 c c (O CO 3 • c o 3 1

i"- to MCM CM T d ? V cvi T- ■M- v o'* CM o' sP 30 303 03 03 03 dCO ad p p sP csi p o' OO 3 — o c a c 5 1 i i r'- otO to ^ o m c T—* dc cd cd 5 p p CO o' vO c\i *L_ SZ < — E >s 3 L C 1/3 CO 0 E c c 1 CM T— d d -c- h- T ? 5 csi MCM CM -p -p to m to c p p o' ooo' oo 03 OC O CO CO o' sz < — i_ a 3 E 0 i_ 3 . u 1 i ■ to vO csi to p O' T” CM T s 0 n I"-' CO 'S p o' csi ■ ’c I — — c a TO 2 L C o O 0 v_ TO o O 1 1 ■ . ' o CO to d o' CM o co o cm T“ o p O CO csi d o >p o o o O O' "5 CM ' . a. a. 1 CO .1= 3 — ■S !c : E o: o CC O 3 C CO 03 o CO C/3 03 C/3 c co ^ 3 ■g Q_ C/3 3

m o co ~ 52 2 10 s? TJ E L_ o 3 c 215 Transect 3, Transect 1, Cheatham Naval Annex 7/29/99 Athyrium pycnocarpon Ravine Plot #4 ridge 120 SPECIES DENSITY R. DENSITY COVERG RCONVG IMPVAL ln(pi) shannon Arisaema triphyllum 8 28.07% 7.5 27.27% 55.34% -1.2705 -0.3566 Acerrubrum 8 28.07% 7.5 27.27% 55.34% -1.2705 -0.3566 = s OI m fr x CO CO CO 1 - c - - o o- c- c- r-~ u)iq u) in io m d oi co CO T— T“ CO CO CO CO CO J O O' vP — T OO OO CO oN wi i i in io io in w w Cvi c-' oj oi oi oi o o dc d o o oo cd od cd co oi CD ~ i 04oi O 2 o i2 ^ Q--a c c D o to CD ‘*2 to i i t x cn — T 4CMCM 04 m CO CO ' o CO CO CO oi o d d to ■ ■ vP nmCO m in f x CO o J O ' o T‘” 5? oi - r o- o o- r- CO CO CO ’c o ioi oi — O ‘ Cvi co v_ c cl o c CU co co u» o CO 3 ■ ■ j- x CO i O e '■ CD — r CO ' o oi o o o o % cn ■a 04 00 oi c o (O c c CD CJ> CD ■ ■ xfr CO CO cn ' o oi T“ ' o "5 r- CO CO o N OI CO 'u cn *3 T3 'cn £ CO CO CO CD c cn c O) c CO CO o c 0 i i O 'e d O ' o ° v CO CO ' o CM o O O 04 o o d OI i 216 217

OJ OJ OO CO CO OJ OJ CM CDCOCO COCM CO CM T—T— O o CO 1— T— CM CO COCO CO Is- CO O 3 Is- r - OJ M" CO |- - 1 "- CO in in in in co m in O o o CM CM T— o o OJ CMCM CM CM CO CM C £> 3 d o d d d d o d d d d d d 3 O ■ ■ ■ ■ 1 ■ ■ TO 1 1 1 1 1 1 1 1 SZ to M- CO in CM T— o in in o CO CM in in Tf M- T— CMCM in CO COCMCM o o o O M" o p o CO CO CO o p T— *1—T— t— p T— M- T“■ d CM ■M" csi csi csi csi d CM 1 ■ ■ ■ ■ i

s= v= Vp s ° v P s ° s ° »p ff" o' 0 s -2o' 0 s 0-s s o'* o ' o ' 0 s o ' -o 2 ' o- 2 - o ' in w t0 'P“ m in O m m m in r-. in O M; S N I-. Tt O a> M; CM 't O § CO cd in id CO co d 5 cd o cd oo in CO d CM o CO OJ o a. COO Q. ■*" CM CM

oP »p nP vP -o >p vP sp v O ' p 'P O'* o' 0 s O' 0s o- o'•'S 0s o' o' o ' o ' O' o ' o ' Is- Is- o CO o Is- Is- o in in m in in m o cd p p p CO p p p p CM r- CM CM CM CM p > cd d d CO d CD cd d CD co CD CD CD d d z CM COCM o in o o o o o a: QC m in m p m m in p m in in p p n o o CM CM Is-’ cvi CM cvi Is-’ csi c\i cvi c\i ^ QtL T— CO QC$5 oi CM LU LU o> o> 0 o vO *P n P nP -O -O >p - o -O -O n P •«p •*p cc O' 0 s 0 s o' o'- 0 s O' o' cc o ' o ' o ' o ' o ' o ' o ' CL OJOJ T— CO T— OJ OJ o CL OO o O CM o O £ Is- h- 1^ ■M; h- Is- Is-; o CM CM CM CM O CM o • T—i CO T— in T - i in d Csi Csi csi c si CT> csi d tO t— h- o t o CO o 3 z d _o LU g LU a Q ro •*—>co 3 0 1 d DC _cc i S m in CM o oo p p o in m m m CO in p Q_ CM cvi CM o c\i csi •M- CL csi cvi csi cvi csi d t/j t/J CM CD CD j*: t o JxZ CO o z O Z a . LU Q. LU a . Q 0. CL Q. Q 's z 's z a O

g g ■> > CO co co a : co DC E d cc 3 CO -*—* o r CD C o .CO o cc a . 3 Q. Q. t_ E c co .2 i_ u. Q CO CC co TO 33 o o = I ~ o o _Q CD O o m 3 3 O CO CO d CD ■= -> £ E io CD Ll o E | > " o Q. O cc >% 02 cc % 0.-° m r; to a . T3 o tQ -O d. 3 b Q. T- O .CO TO ^ o. o a> _ CO CO 'o) co 3 .2 to CO to ■p T3 CO TO CO E O _ LU 3 E -S_ E | cc e n c m y _ w o 3 CD — CD 3 CD Q. - £ ^ 2 _ O g cij E "5 cc ~ to « ft O (O 2 C m ‘C CO o o 3 .9 CD b CL > C ^ LU p- _ 5^ 3 LU to ? CD CC (O o O •— m CO .3 cc 3 O tz SZ ■#—I I— Q_ cc = ■d ~ ^ ~ £ O CD *-> s_ O CL O CD TO c £ x O < I— CO O O LU > S CD O < I- Q_ CO I O CO < < o 218

COCO ■o- ■M- - s t 0 0 i"- 1"- h- c- h~ h- c- in COCO CO 0 0 OO 6 0 co 1^ r- r- c- h' COCO COCOCO T t CO CMCM CM CM CM Csl CM IO CO CO CM CMCMT± CO CMCMCMCMCMCMCM Oi d d d d d T“ d d d d d d d d r— 1 ■ * ■ 1 1 ■ 1 ■ ■ 1 1 ■ 1 ■

CO CO I"- CM ■M" ■M- ■M" ■M" ■st 1 '- 1^ o o o o> CM CMCM CM CMCM CM i'- r^- ■ s t ■m- ■st m CM CM CM CM CM CM CM p p CM CMCM T- p CO CO CO CO CO CO c\i cvi csi csi c\i csi csi csi c m cvi i ■ 1 ■ 1 1 1 1 ■ 1 i 1 ■

s ® s ° sP sp sP sP sp sP s® 'P 'O 0s 0 s 0s o ' o '" o ' O' o' o' o'" o' o' o' o' V CM CM CMCM O o CO CO CO CO CO CO CO O P O) u> p p o < p o> p O) o> o> Oi 0> O 5 © o ’ CO CD c d d > oi CM CM CM csi csi csi csi d T“ CO T“ o o o Q. T— CM CL T— CM

V p v P sP vP vO 'p 'O O' o ' o ' O' o' O' O' o' O' o' o' o' o' CO 0 0 0 0 0 0 o CO CO COCOCOCOCOCO O o ■st CO p o o CO o o T | T— T— T— t— ■t— T— •S— O > c d in m in id d > oo cd cd cd cd CO cd cd d z t ' - o z o o o o o CL Od m in m m m m pinm pm inpioo csi CM cvi cvi cvi cvi O csiosicMCMCsiosiosiosj00 CO ■M" £ L co LU LU > > o o o o -5 'S s p s P vp 'S sP 'O 'O s° sP >P sP CO o' o' o' O' o' co O' O' o ' o ' o ' O' o ' o ' o ' CL '5t ■M- ■M" "Ct O CL r^- O OO O OOO O OO P CD CD O t COCO CO CO CO CO CO oo O CO -M- "M" o o o d CO T— oi oi oi oi oi oi oi d CO COCO T— T— T— o CO CO o c z z o LU LU "l—> Q Q ro -f—*co c od C CL _ ro ro COCO in in in p ooLoinioininmmin CL cvi cvi cvi cd 0. cvicsicNicsicvicvicNiid ro £ CM ro £ CM CD CD .X CO CO O z o z Q. LU m Q. LU Q. □ CL CL CL CL CL v Q. o !c !ro O O

CD CD ro ro ro . 2 > 2 > ro co CD co CD -4—' a ■g Is Od Q. CD Od CO CD ro o g ro o o ro c C T Q. O g .S’ 3 Q. c ro t_ O) := t— CD _ 'ro CO o CO CO _ X ro 3 a CO 5 CO r-r- o CO X O <5 ro E °- o :> I f > % O U o CM cd r- .E ro ~ ro ro o 0) »? ro .E c =j -ro ro CDE ow c o CD co CD = ro o Q. ^ 2 = o ro o 8 I C L M c N >s E g .22 w ^ -o >% o> E ~ CD c S- w CO Q. O 3 Q. T- Q . CD O cCD .2, > > E Q. ° o 3 o c ro -E 2 S .£2, o C/5 CO Q. t_ ro o ■TO CO x: o ^ co ro ro XI 3 5= 3 ro ^ ro E o LU U. I— —T —5 ro ro ro O ,« O E T5 <«■ y g o is 'E 2 § ro ro cd =3 ro _ ro cd c 0 ^ 0 0 X c CD oi ® i 2 CD CD •C ro ft o O) O i— i— l— •ro ro =tt o ro ® O -TO >s ro LU CD c S? wro >% c LU 1 ® ' q . .c co OJ CD CD CD B -t E P Z' ^ C t «— Q_ roroco orococoOftjOCO CO co o £ 5 a . c l o co I 2 2 C o to CO < \~ CO o o o < o o_ a: o .a E < H Q- CO CL O S m _ ! Q _ O Athyrium pycnocarpon Ravine ( Chippokes Plantation St. Park) Transect 2 Plot#1 ridge level SPECIES DENSITY R. DENSITY COVERG R CONVG IMPVAL ln(pi) shannon ■j= s =3 ° - MCM CM O' -vO ' o vP o d If) csi CT) co m CO - T T— 505 05 CO CO vP CO O' CO CM = o )= 2 o 3 CO 'x ' o sP s° If) ■= CO If) CO o d CO csi CO CO ' o CO ) O CO cvi ' o CO CO If) o T— T— CO CO E n o ' o 'p o' O) If) o o OC MCM CM CM IO o If) ' o o CO o d co ' o sP CM o d o CO d o P CL 01 d CL o r _ O (0 Q-CM o t_ CL o >s c o o CO ro c ro Q. ro W) c ro CO Q. o > ^ o ^ S j>S tj"> CL C0 LU 8 CO o ro O CL > LU a: O LU £ Q LU h- £ o o 01 Q. > z CO 01 0 O < c CO 3 o c if) h- r'- sP o r . MCM CM oo d d p > T— cvi T— ' o If) s csicsi ' ox o'' < 1 OCO CO oo oo o o CO o CO CO v v s 1'-’ csi cvi cvi CM cd CO CO CO CO ' o OO) O) CO CM d i ' O P ' tr 0 ro co ro CL CO ■S ' o sP CO If) O' S ' s csicsi If) OCO CO ' O P ' 5 0 5 0 d c — i'- ' o vP CM CO d —05 T— if) csi If) If) -o1 CO O) oo CO ' o ' o S ' d c ^ ^ < o -> c c c ro j-ro >, o i— L ^ __ •- O 03 ^ O Q. ) O CL CO T— d d d d OC CO CO CO d O' sP CM CO cd CO T LO o g •i =i s CL o .E 2 ' o vP CO P ' CM cd oo CO oo o o CM ' o o a E (5 2 “ r To - =*--p c iS ro ro "o E ro o — £ c = c £ cl csi T—•S r' ' o 'O if) If) csi 'o T3 MC CM CM CM o0 00 00 oo oo CO o oo (DO o CO CO CO CM CO ' o •P T ' o S ' CM d i csi CM cd 5 0 ro ro -- oi m oi o .g> ro h*. O' sP Tt p * If) ■M- -d - h OCO CO CM ooo oo csi CO CO csi o CO If) csi ' o ' o ■>p 5 0 d c — 3 o 'O T— csi O' f If)If) If) CM csi vP s csicsi o oo ' o ' o S ' o> d c o T- o o' 'O o CO CM ' o "5 CM o o d If) o d o If) o 05 ' o 'S o o d X2 o r 2 D) i_ O 3 219 Athyrium pycnocarpon Ravine ( Chippokes Plantation St. Park) Transect 2 Plot# 3 slope 220 SPECIES DENSITY R. DENSITY COVERG R CONVG IMPVAL ln(pi) shannon s§ lf3 ■= £ CO T- 0 CN CO CO CO CO - h CO CN N O O ■N" d O C O' - T O C 0 >p c\icvi - h d 00 03 O CN CO CO ) O d 0 0> CO (0 ' o b 5 f S CO 0 3 o o 1_ Q. o 3 - 1 . Q >x ■ 1 s

■>P m n i ni m in in ■N" n i m CO n i CO CO T— d i'> s 0 P s ' o » s o' Csi CN O csi c\i OC Oi-CO i'- CO CO <0 CO CO C0 (0 CN CD ■ 1

>p CL CO — s 8 n s= Q .(O l'> o' vO —T— T— o' csi " N s s s csi Csi Csi Csi CN 0 csi " N d CS| T— csi o CO co E 1s ? g 03 0 P ■ ■ ta o s Li. un 0 ° v O - h ' o “ T to o' "5 csi -N" 0 CN 0 csi d "■O' N" CN CN x OCO CO csi 05 — ■ ■ s vP n i Q O o' m d X— n i O s 0 sP Cs| 0 n c o' 'S v N" cvi NCN CN cvi m CO CO 0 0 3 2 Q. O tD CO <0 x ^ ■ ■ 2 P v d >p ■e 0 1 o' T— XI T~ O l'- csi csi m o' 'S O in m c\i CN CO s 0 CO CO 2 co 1 ■

n T“ 0 o' sP CN 0 O o' n CO 0 0 d o' d 0 0 CN d m 0 CO 0 d 0 P P ■ . CL o. < E < O o o 55 o co cd l— «— Q. XI 1 E 3 — LO V J5

>s ,> QC O d X CL CO o o co 3 03 Q. Q. O CD CO i_ Q. o 3 > 1/3 CO E Q. o 3 3 I- CL CL CO I- 5 LU w ■5 o ^ LU i 5 2 o = * u w o 4 O - to ^4. O CD T}- — CN o Q. CD 2 > IL Q LU 2 co - f >- £ Q LU >- O O UJ CL O CL O O 2 > A S > -1 x: C (!) < 3 q 3 0 ro 3 0 3 to 0 _ . 03 in "r* 'P d d d r-! in CO ' o 'p cvi in d O O O' 'P tj in CO ' o - h O CN O O CN x— 0 0 "N"h- -J -J d o o *0o o to CO 55 CO T3 Q.S ■ 1 - '

'p o d CN 0 0 ' o x— x— •N" - ' i 0 d 1 V - 0 LU 'E .2 S’ 8 03 c CO ro jo (0 LO E roo r : a XL ‘■3 - CL h- < O CL CO CL -t-i H—' 3 3 to TO c CO o CO S o (D o 3 CO CL C O .COL. 4J, >* ro _ i Q. > 1 r- - r <1) 3 T5E '= l — _ i ® __ 0 5 SPECIES DENSITY R. DENSITY COVERG R CONVG IMPVAL ln(pi) shannon Liquidambar styraciflua 2.5 100.00% 2.5 100.00% 200.00% 0.0000 0.0000 220 Athyrium pycnocarpon Ravine ( Chippokes Plantation St. Park) Transect 3 Plot# 2 slope 80 SPECIES DENSITY R. DENSITY COVERG RCONVG IMPVAL ln(pi) shannon S ' ° v - c M ■M- - h O ■M" CM O \ csi csi c\i ' o LO ■M;LO vO ' o ) O LO o o OO d c o o 5 0 N M CM csi csi csi cvi csi csi co" O' o _ o Q.H I QQ o = U s_ o i i o' ' o P s 0 P s X ■M" LO .3 CO ■st CO CO iq o co cd CM t ' o P s d CO o ) O OO T_ CO LO "o ■g © a i s s g U) o 10 ro w ro o — — 1 1 s - ' i CM d P s LO LO ' o P s o>o> - h 1 CO TtTt MCM CM ■M; ' o ' o P v ■st LO 5 0 ' o LO cd d c ro - - ro .2 E 3 3 CO _ ^ 1 ■ P s r- '- r ■M" CM CM iq ■M; ■Sj" d OLOLO d d c d c Oi ' o sP N N CO ' o dcdcd if CO ro c > CO N co ro = X 1 1 ) O - h o’ ' o sP ST­ ' o P s - ' f ■M" CM csi LO sfr io S ' CO Oi O CO ' o o ■ i sO p s LO r<- _ x r- O o O O O' o O ' o LO d O ' o o o CM d ■ c " O t— o ro c ro ro t o Q. c Ui ro 3 CL To Q_ O !c ’ a: ■> *u -C < H—' CO Q. Q. < (/) co co 3 CD o ro i_ . Q o o c. m 3 o c o "5 E coo. s > 3 d - I 3 W . u ro CD "ro $ ■o CL CO 0) c o o LU z > LU o: Q_ > < of Q CO E o o o a: o o Z > o o LU Z CO LU C/3 LU O C CL CO 0

h- i"- d o> h- CO CM sP ' o ioir)ir)inu)iniom CM CM CM Csi O ? E E ? io csi csi c\j csi csi c\i c\i c\i c\i csi csi c\j csi csi l oi 00 ■st T— COid o' - O I- CD .9 ID i s c i \ c ^ h i \ c i \ c ^ i i \ c i \ f O 2 x 8 £= TJ*" ro ro co g co c CO CO o CD OCOUO S=X i 1 -Q h- d o' sP T— LO ' O i'- LOCO CO co CO o> CM CO ' O sP h- ' o p CO CO LO st T—| co 2 ■ ■ h- -h ' ' r^- h' 1'- i'» h- h- d o o' >P csi COCOCOCOCOCOCMCM ' o 'e CMCM CM CMCM csi ' o 'S ioi oi o oo o o csi LO csi O □ ■o o Q 'C .Q ro 2 _Q N .Q c CD 3 ro E 2 J COOJ CO _ i 1 s° h' d r^ o' ' o P sP CM o>o> csi l oo T“ h- CO o' CO 5 3 O 1 1

i'~ d " O o i". o' sP CM sp Csl CM ■M" csi CM ' o sp l oi oo ■M"T— h- COcsi O' DLOLOLOLO 1 1 ' 1'-1'- d sp "O CMCMCMLO CM ■M"-sj- CO csi CMCM ^s CMCM CM ' o o o io oi oi oi CO LO o o' 'S "o T3 csi CL JZ o E ro p Ui Ui o ro ro o >s g 3 i 1 d O) csi o' sP sr* r» CM CO o' sP ' o sP ■St GO CO T— _g LU ro 3 ro 3 ro ro E a> O >s E O 13 3 i 1 sP d Oi csi o' CM ' o o T— r^ CM CM COd o' 'O ■d d ID O ro 3 O t_ 3 ro o l i 1 -P LO 1^ o o' o O''S o o Oi CM CM o' 'S lo o d o O O

T3 CQ LU D E ro) "co ro■E p E p co w o 3 CD 3 w o o co o 3 ro ro ro o. E -i E CO CD O o CO E _ 3 O) 3 LO o ■o co 3 O 3 221 Athyrium pycnocarpon Ravine ( Chippokes Plantation St. Park) Transect 3 Plot#4 slope 210 SPECIES DENSITY R. DENSITY COVERG R CONVG IMPVAL ln(pi) shannon Mitchella repens 2.5 23.81% 2.5 50.00% 73.81% -1.4351 -0.3417 'c - o r- in in O O I CM T- r>- o’ o' •55, 'c oo in o CD O - T O 05 d o' o o o o O CM o cd 05 o o' CM 05 m cm TJ- O CO |s- CM 05 cvi o O CD 05 co . a o o o' o

m '> 'E> 'c —> i o CD c E o E 5C sz !E Q_ Q_ < oc ■> o •4 CO O 05 co CO CD o c CD c 05 . Q . Q c CO o c O O CD >, -S E . Q e- O c —' H CO D Q_ u O i CD | c 05 in o E TD = CO CM - T O) 05 z Q LU > C . : x m 1 — * d c . Q > L C O o c ’ o O c Z ^ o Q LU CO od o O L C LU L C CO f < o c CO ) ! ( n , i s c O COCO ' o o c c o t c ' . a CM O - r c CO o c m m m m P v ' o T— m OCO CO T m o d P s d d i s c o o S c n i dc cd cd cd in ^— .S > cvi — ' o d d d P v Is. M o "M" O v "M- OCO CO OCO CM CO CM OCO n i CO s 0 CO CO CO CO CO s © p N d c OC O CO CO CO m o CO d c o c d c CM i s c C CD _CD OO <1) . Q 05 . c i U 05 1 1 ■ 9 s 9 s - |s CM ' O O v oin oo ■M- O n i CO d d c CO m m i s c CD a. O ■ n i O v CM ▼“ ' o 5 0 5 0 o O ' O ' o ' o o d o P s o 0 o o ! s r oo 1 QL - 0 05 O X . Q CD O CD TJ c to o £Z 5 O CD CL CL _CD cl ‘c o CO cl ■4-J I- X CD _ l 5 £ 05 co c 05 O 05 CO c CD o o co X L C . D b 05 05 o i U i U m CD >

T3 o o ) O 05 a. ’a . a > OL o o Z O > LU o LU z CO od Q LU z < > (D O L O CL CO CL LU LU CO £ CO o CD cz . c Ui c o cz —T— T— CO O C P v m CO o d d OP 5 0 CO CO 5 0 CO o ' o o O d O d O m 5 0 i \ c CM sz 'o ■g o' p o m cm m m z o sz t f o i 05 ui CD O « w o o g ^ 3 1 1 1 1 si c 5 > ' o 9 s cn o CO. O o s 0 d o CO o o O n i m T— i s c d p d o o o

p 5 0 CO ' o O s CM ' o n T O o d d o o CM — P .eg d I C/5 O c: =3 222 Hexalectris spicata Ravine ( Chippokes Plantation St. Park) Transect 1 Plot# 2 slope 140 R. DENSITY SPECIES DENSITY 3.70% COVERG R CONVG IMPVAL ln(pi) shannon Circaea lutetiana 2.5 32.59% 2.5 5.26% 8.97% -3.2958 -0.1221 .Q c\ic\ic\ic\ic\icNjc\ic\ic\ic\ic\ic\irs'- ^csicsi CM cd cd cd cd f'- o - h O ' o sP in in m m id m id m id m id in in in in in - h d 'p CO CM CO m M" Csi T— vP " .o U O CO CO LU O Q 03 ' o cd CO CO o' E O c/>o q ■ i S *-* E .2 m sP d T— CM T— T— oin io o' CO O) CO CO I''- ' O cvi CM CM CM CM CM CM CM CM OC OCO CO CO CO ' o ■>p CM cd 03 c/3 o o c a?c: C CO §- o -c § O o 2 co coco .2 m ro c 1 = — — i— CO— ■ ■ 0m 00 m T— co m ' o sP c\i d ' o "2 CM CM CM CM CM CM CM CM cd CO 03 303 CO 03 O t/3 t/3 =3 ■ ■ ' ' - c i'- 1'- sP d CM m CO T— i"> o ' O c\i ' o >P T“ N CM CM CM '0 'o' o' 0s O' vP O CO CO ' >> c

■ ■

5 CO .52 d MC MC MC MCM CM CM CM CM CM CM CM nmIO m in T— OC OC OC OCO CO CO CO CO CO CO CO CM CO CO CO CO h- TO O o o O ' o csi cvi csi csi csi csi c\i cvi cvi csi ' o 03 cd c CO CD O tfl CO o CO c c ■ ■ —T —t— T— T— T— t MC CM CM CM in cd cd cd cd cd ' O sP OC OC OC OC OCO CO CO CO CO CO CO CO CO CO o ' o 'p 303 03 " s 1". cd 03 L CO LL i-g o g CO to ~ CO . Q CD d co 2 co O >< CO 5 co E m 3 — ■ ■

in ' O sP d ' o 'O T— cd 03 03 03 to ^ *“ o CO p cd QQ n 'E TJ to o CO c tD d to d CD CD £2 CD CO > ■ ■ sP 'P o T- cd 03 in 'i— l 'c O ' o id id id id id id id CM ' o 'p o' 1 H—> 3 0 C3 to to 0 CO CO CD X CO ■ ■ m O O ' o 'P ' o 'P d T” nmmmmin m m 03 CM 03 m CM 03 03 m in cd o' vP cd CM L U <0 j f > LU CL O 9 3 9- 2 ■ ■ ■*— vP C p JC in in in in in ' o s» CM ' o 'P o T“ cd 4-i -3 — dcd cd O' u w vu .2 .2 co 2 CO D =. ■ O CD L . Q CL = S > s g i ■ ■ MC MCM d CM T— CM 1— CM T— T~ O O O h» ' o sP CM CM CM CM ' o 'P cd CM o' sp cd CO CO d CO CD ■ ■ I'- sP sP t d CM Sp cd cd ' o ' o OC CO CO OO O' ^ ^ — i ■ sP d ooo oo s csi csi cd h-; ' o ' o sP MCM CM 03 03 O' sp cd . Q O d CO CO O X CD to CO CL CO ^— — ■ ■ cd o O d O ' o sP CO ' o sP d o' sP Q . . Q ■ ■ Tf 03 CM ■ r-^ ' o sp CM cvi o O' sP CO o o o o o d O m ■ - 1 JO CO l_ co O CD E o to CO 0 c CO 223 Hexalectris spicata Ravine ( Chippokes Plantation St. Park) T ransect 1 Plot# 3 floodplain level R. DENSITY <2- .c _J(0 < h: < > o > » * . 0 o > LU cc oig O LU Z o' "O o o )O 0) CT) t □ CO UJ U £ LU X O co g co coCL o c o c c 0 0 T— Is- r-- O OIs-CO CM o o O) CT) CO CM ? s ? v s CO Is- O O V I I I I O IO IO IO IO V) IO o' Vp cq ■M- CM 0O0 00 00 O 00 q Is- o' 'P cd co n TJ E o a) CO 1 1

CM T— CM o Is- CO o © in ' O CO 00 O' sp o> o q o' 'P CM CM eg CM I"- cvi st CD L O CL t-i E co co I S o o c co-O coo CO cu o

CM 1 o *— o T“ (0 in CO . - f o s1 0 -O O' s " T cd q o' 'S 0) in CT) CM — co - 5 1 j

T- o 00 CM o h» n )ooIs- CD 0) o o 0) CO cvi s 0 CM s 0 ° v t s o' s? OC CO CO CO cd q o' 'p st CM OO Q - • M ® 1 S a 0 o E E CO T Cl) c 2 o 1 ! t ID o o CM 1— d s. |s T— nin in OC /^s CO CO O' sP q 000 00 o' 'P in cvi v v 00 cvi cvi 3 ja — 1 3

. s I CM T— T- o T— ' o s® T“ T“ CD o' -2 m oo m q o' 'S O O o o 1 1 CM f-« o 0> s 0 sP O d o' 'P O o O CM o o CO T- o L CL CL < i < O J3 o E * 8 2 u ° ? > E r f - *r 'o ■g 2 C O 0 c =3 cu (0 n -> 2* ‘■{3 LL CO IE _0 .£ CC - \ T O T>T> 1-1 l_ 0 o c CO C CL o CO a a) cu 2 X ra co {2 cu cu co a o CO CO CO C CD cm

a z >- V- cc LU (D L O L < O CL CO CL CU I s -I s -I sI - s - .c < CM > 0. 0 > CC cc > o m o o Lil 0 0 Z. o' 'O MC MCM CM CM CM D z £ LU LU (0 o c c T— o c 0 0 CM CM O O C C © CM CM IO )0> 0) o ■M- OC DCD CD CD CO v v cvi cvi cvi q S s CM CO MCM CM o' 'S O — T-CO T—Is-' oi oi oi io in io iooi oiioN ioo in o' in o 'P m ■g cvi co ” o J= o co o g E ~ E~ E & 8.a 0 co o □"E S 1 O ’M- Is- Is- CM T— o £ CO Od O O Is- O' 'S q dcd cd o' •>p m m CM 1

CM 0) O —T- T— o o CM ' o S s CO o' "2 -(D h- in o' -p nIs-in cvi m 1 CM O t s h- )CO 0) CM CM CM O ' o h- CM o' vO 00 T“ I-; o' in (D cd CM '5 s .5 L > CL £ .a ^ t a t c ~ c (0^ 0 O o £ 0 CT c cr 0 0 W.t; 1 2 0> (0 CM O 0) 0) M- t S o s 0 ° v CM T“ o O' 'P ■M; CD CO St o' -5 m N CM CM CM 1

CM r-. O cn T— m |s- o cvi CM s 0 ? S CO o CM CD o' 'P Is- O q do cd o' -2 O O T” o m d cvi 'E o o 0 0 a 1 - o> T“ s 0 ? v CO CM o o o O' 'O CM o O T— o 1 ■g b CO £ w W 0 0 0 CO 0 E 224 225

CM CMCMCMCMCMCMCMCM CM r- CM i'- CMCMCMCMCM CO O o o o o o o o o T~ O c - o h- o o o o o LO 03 o> 03 03 03 03 03 03 03 T~ ro CO co CO co COCOCOCOCO ▼“ T— — 'c— T— I- T—T— ^— CO — CO t- T- T- ■s— ■*— to T— s roo d d d d d d d d d T— c d d d d d d o d d CD -TO to i " - h - h - h - h s- h - h- o h- o h- c- c- c- c- M-M" 'Lt" M" M- M" MT M" CMCO CM oo CMCMCMCMCM CM CM CM CM CM CM CM CM CM O CM O CM o o O O o CO CD CD CO CO CD CD c o CO CM o CMO CM CM CM CM CM CM cvi cvi CM cvi cvi cvi CM CM CO CO cd cd cd cd cd ■ 1 1 i ■ i ■ ■ ■ ■ I 1 ■ ■ ■ i 1 ■

sp sP s» sP sp sP sP s° sP sP sP sP sP 'P 0 s sPo ' o ' o ' 'So ' 'S o ' O' o ' o' o' o' o' o ' o' o ' r f - T t "O T f CM T“ CM O o < 0 3 N 0 3 0 3 0 3 0 3 0 3 0 3 0 3 CM < CM CO M; St M; CO o > U> ' t 'O t J- T t CO > 00 <0 CO CO cd cd cd N in d T j- CO CM o CL T” T_ T“ T_ CL T“ CM

sP sP s° ■«PsO sP sP sP sP sP sP sP 'p sP sP 'O o ' C>s o' o' o' o ' o ' o ' o ' O' o' o' O' O' O' o' O' o' 0 3 CD 0 3 0 3 0 3 0 3 0 3 0 3 0 3 O LOCO in M" m to m M o 0 CO CO CO 0 CO CO CO CO O 0 CO ■M;COO COCOCOO 1^; o > 1^-’ OO h - ’ h - ‘ C-’ h - ’ C-’ h -‘ d > d CO •M" cd tU d T- 'M- Zo co o oZ CO CM o o o DC m lomioinioiommioio in in m in in in m m m 0 CMCMCMCMCMCMCMCMCMCM 0 CMh-’ cvi h- c\i cvi cvi c\i q : T - CO x LO LU LU > > o o o o sP sP sP 'S >p sp 'P sP 'P 'S 'S 'P sP sp »p Sp sp o ' o ' o ' o ' o ' o ' o ' o ' o ' o ' O' o ' o ' o ' o ' o ' o ' o ' O' O' m m m LOm io m m LO CM *c> > - 1^- r^ C- r^ C«- N- O CM CM CMCM CMCMCMCMCM CM O !'-; o 1'"; o p O O O O CD 1^ in ro in ■M" in ■M" d Q_ 0 CL 0 Z 0 Z co CO o 4-* 0 LU LU Q 0 c a 2 a: o2 a: LO LO LO LO CO ID to LO LO LO CD lOCMLOCMLOlOlOlOLOiO CMCMCMCMCMCMCMCMCMCM CMCM eg CM CM CM CM CM CM _CD CM CO CL 0 0 CO z t o z CU LU CU LU LO O a o O V Q. c l Q. Q. !ro ! c O O to cu to cu cu c ZJ c "O ’> Ui .to > CD o to CD 'o c cu DC c QC > __ ro cu CD E £ CD to ■D CD ^ CO CD o E CD "to o O o O f , E L_ e -t-' CD TO u o ■q . CM Q. 'q . .ro ro 'o CL Ui CL o N to tu U) CD ro _• CDco « CO TD cL .9 - ro ro Q. Q. Q. ’C 2 O E CM O •g CM O =3 cu CD E -*—< 4—1 -Q O 0 D> ■*-> o CO *0 CO ^ 0= ro « 5 JC o ■B to LU ro E CD to o o cu | E « O E Q. a) cu vE ro cu cu CO •+•»2 ro *— CO to CD CD. .2 to to Q . X ca a o O x: tu cu o> = CD O 03 ■— CD ' co cu to ctj X ^ LU ‘> Q. X C to Z "o O -W -z: CD ca O CL ’i CD CU ro X tu CD _ _o & TO CD O o .E 3 o o X CL 0 O O 0 IU 0 0 O X L— Q_ Q O 0 < CL O 0 i LU E > 226

T— CM T— CO CO CO CO CO CO CO h- CO CO l"- CO CO CO ■M" h- ■M" IO 1 "- I'- t" - 1"- 1 '- l"- CM I'- r " CM 1^- 1"- 1 "- w c UO lO LO CO c ▼—x— X— T— x- CO x^ xr— CO • r - T“ o CO — CO CO o X— X— x— x— x— x— CO x— x— CO x— x— x— o c c c O o' O o' C o ’ o ’ o' o ’ d o o' d o o' o ’ d o ’ CM m i 1 i ■ m 1 1 1 1 1 I 1 1 ■ 1 ■ 1 1 i to ■M- CM M" ■M- M"M" ■M" M" h- M" "M- ■M- ■o- ■M- co CO OO CO CO CO CO CO CO oo CO CO CO CO co CO •M" CM ■M" in m in in in in in in in in in h- o> 1^- CO CO p CO CO CO T-| COCO CO CO CO O CM O cd cd cd cd cd cd cd cd cd cd cd ■ ■ ■ ■ i i ■ i i 1 ■ ■ ■ ■ ■ ■

s= sP xO xP oN o ' o' oxP ' o ' xPo ' xPo ' >po ' xPo ' o«P ' o»P ' xPo ' xPo ' o«p ' xPo ' xPo ' O' in o o o o o o o h- o O 1". O o o O CO O « o < p p p p p in 1^ p p N m p m o % © CM d > in N in 1^ in CO d CM CO o CO in o Q. T— CM 0. CM

>P xP xP xO 'O xP xP xP 'p xP •xP xP 'O xP o ' O' o ' o' o' 'So' o' o' o' O' o' o' o' o' o ' O''S o ' CO 1"- O o o o O OO O o O O O OOO O o CO co O o CD o p o O O O o O OOOOO O > CO cd d d > c\i ■M" c\i ■M" c\i "M" CO ■st ■st ■st d z h- CM o z X— X— X— CM o o o o 0 CL 01 p m LO in m in in in in in in in m m in m p CD csi I'- CD cm c\i csi cvi csi cvi cvi csi cvi csi QC CM 00 01 co LU LU > o> o o o xO -xO 'O 'P 'P 'O x P 'P x P x P x P x P x ° -xO o ' o ' o ' o ' o ' o'S ' o ' o ' o ' o ' O' O' o ' o ' o ' o ' o> '5 00 X— o O OOOO O r' OO r' O o O O co CO CO o p p p p p p p p p p p O CO co CO id 1^ d cd cd cd cd cd cd d cd cd d cd cd cd d CL z ■M- ■M" o CL CO CO o -t-i LU W LU Q CO Q C O 2 CL .2*—> 01 co CM in CM ■*->co mininininincMinincNinininin CM csi CM CO e CM OJ CM CM CM CM CM CM CM CM CM CM CM JO £ ■M' co CL CO CO CO z «o z CD LU Q) LU O Q 0 . CL o O Q. Q. Q. Q.

O o TO cu cu E E is > ■> cu CO CO 3 TO CL co co QC CO c . 1 1 _co cu JO O S 3 00 CO g ■O TO o c CO co .2 TO JO CO = o IO $ o '! _ 03 O .2 Q. r~ co omE E Q. O ‘q . s o 8 'q . E 8 2 = CO to T3 ~ o CO 0) S W TO £ E 'o- • O o N CD o w Q. cu. to S— . ■— TO ® g - g 2 TO 7T c- Q. T3 C ■c « o 03 .2 ■c 00 —‘“ E w e TO ® w T O O .™2 13 TO s S -5 •4^ 4>< o a 03 l_ "5 "5 CO E o o •® § LU « 2 c 2 ro 3 r « W co co t— O) cu cu ■° CO © co cu cu LU X = O Q O Q Hexalectris spicata Ravine ( Chippokes Plantation St. Park) T ransect 3 Plot# 1 slope 160 R. DENSITY SPECIES DENSITY 50.00% COVERG RCONVG IMPVAL ln(pi) shannon Carya cordiformis 2.5 50.00% 2.5 50.00% 100.00% -0.6931 -0.3466 o d to co CO CO CO *- - CM T- o o o CO 05 o c o o d © o o cvi LO m d IT) O d p o o o m o o c\i d o •S. 'c o o o a> I CO CL CO — a> lo

227 Transect 1, Hickory Hollow/ Cabin Swamp Field Data 5 /1 1 /0 0 Plot # 1 slope, 110 degrees SPECIES DENSITY R. DENSITY COVERG R CONVG IMP VAL ln(pi) shannon ■8 7 cvi CD LO cvi IV LO CD CVJ00 CO O d o CO CO CVI CO ro ro CO 00 CVJ < < i r— IV. OS sp O' sp os VP - n

° M v cvjcvi CO CO CO cvi CD OL OL LO LO LO LO LO cvi LO LO LO LO LO ro COCO CO CO CO O O 00 00 CO00 CO CO CVJCVJ ro OC CO CO CO CO 00 CVJ U IV ©s sp O' sp LO LO I— I— sp co c cn >* o £ 1 1> 0 (0 .U ® CO u ra e c CO 1 ■ Cn cvi o o CO 00 CVJCVJ CD (VJ »— IV ro o o o CO CO CO CO CO Sp OS sp o' sp O' j X Jj OJ x 3 o !U 03 (0 1 1 cvi cvi CD cvi ro CO o CVJ CO 00 f” IV OS sp sp 1— LO o' sp o' o CO c E o V o 1 > I 3 S CVJCVJ CD CO CO cvi OL OLO LO LO LO CVJ00 CVJCD CD CO CD d sp < os sp - IV. O' sp LO IV <— OS 4-> 4-> d E . Q . L . Q u CO CO CO u cu (0 CO 1 - — To cvi o CO CO o CO o o d 00 oo 00 00 CVJ CVJ CVJ v cvicvi cvi LO LO LO ro ro CO LO o o CO CO CO ro CO ro CVJ CVJ CVJ CVJ ro OS Sp CO - Q r— IV OS sp OS sp « «— ■M CO 3 3 E c o CO cn 1 1 S = 5 co 5 = ^ JS cvi d CO 00 00 -2 cvi CO CO CO LO sp oc d d < W cocu I- O O > 2 . T— IV OS sp OS sp OS — 2 _ l ■§ E g *5° ‘5 - 8 —3 2 —2 3 3 o _ cu _ n co co § o. .9- o. § co m ■ 1 = w d cvi v cvicvi cvicvi ro LO d o O' CO IV OS sp OS sp I sp f — 1 ■ — .0 c cvi ro ro o o 00 ro OS CO 00 CVJCVJ LO IV sp LO LO sp r— OS OS sp — 1 1 cvi CO CO cvi cvi CO CO CO o 00 CO CVJ ro o LO o o O' CO 00 CD LO rv ©s sp LO O' Sp t— sp 3 u (0 1 1 -m o d o 00 CO o d o o d 00 o rv o rv OS — LO o LO o CVJ LO Tj- sp fv ©S sP OS Sp 1 O o 228 Transect 1, Hickory Hollow/ Cabin Swamp Field Data 5 /1 1 /0 0 Plot # 2 floodplain/bottom slope, 110 degrees SPECIES DENSITY R. DENSITY COVERG R CONVG IMP VAL ln(pi) shannon Desmodium glutinosum 2.5 3.91% 2.5 2.86% 6.76% -3.243 -0 .1 2 6 6 6 3 7 6 CO .2 .2 D J _ CD < ) _ ( < ■ v cvj cvi o p s LO OS v rv! rv! CVJ OL OLO LO LO LO 00 LO IV. p s o r^- s o cvi O (VJ CD CD CD CO DCD CD O CD CD o O OS LO T <— 1^. S I i § . S 3 3 =3 SS i Q. E _ / ■ i i n 00 o p s CVJ CO LO CO CO CO cv] CVJ OS d p OS Sp p ©s p s O CO CO CO CD LO CO CO CO CO ("s. c a> E JS E a> c l <2 -- .2 .12 = r i 1 £ CO % p OL LO cvi LO LO p s 0 0 (30 OS rv! o LO IV. cvj p s CO CVJ CO cvi CO CO CO OCO CO OS p s rv. p ' O — r t CO CO

U Q_ LU ‘ ° ■c 0 0 cvj LO o p s 00 OS rv! LO v r CVJ o rv. OL Op LO LO LO cvi O CVJ CD CD O OS Sp OS sp CD LO CO V vl- IV. o — r I ° I S j ro =j

cvi LO p p CO CO p X c .15 d .2 p s 0 0 cvi o t d c d c CO V V CVJ CVJ CVJ oto to CO s © p d OS Sp IV. OS p s I— — r to to OCO CO co rv- - 2 4-1 Vj- ro o _c Q) o " x ro V) V) c o> c 1 i O cvi LO CC p s cvi O C v cvj cvi ot ot oto to to to to to OS Op LO o t CO OC OC OC CO CO CO CO CO CO CO CVI to O OS p s IV. IV. rv. s o sp ot to to to OCO CO IV. 1 i

CO CVJ cvi CO CO v v v v v cvi cvj cvj cvi cvj cvi d > Hi > O 00 o t d c s o p s CO to to OC OC OCO CO CO CO CO CO IV. IV. IV. IV. OLO LO p s OS OS sp «— vj- CL ro 1 -o e - .15 ±! re ^ ro « w . . 1 ■ CD 0 0 o t cvi p s cvi d p s cd d c OS p s CO CVJ OS p OS V CVJCVJ CO CO I Vl- . Q -- 1 1 cvj 0 0 LO p p s 0 0 o t 0 0 o t CVJ S OS OS p p OS s OS p s CO V V V V CVJ CVJ CVJ CVJ CVJ to CO to CO o rv. p s OS OS p s Vf I— 1 1 Q. Q ro J T : ± £ ll cvi p CO p OL LO LO LO CVJ to OL LO p p LO LO CO (VJ CO co CO to to to to co OCO CO d IV. «— ) O O) 2 . o> = o o ™ ro •§s c i 1 1 > . OC d c CO CO v cvj cvi p s p o t v cvj cvj OS d d c p s OS sp CO V CVJCVJ V IV. IV. IV. OS V}- —I I— I— I— 1 1

S E -S j3 *(J o O ro 2 . p p p s CO O C OS d c d i o t CO oto to d IV. OS sp s o sp r ^ r v co - O 4-« § E ro (/> c 3 >v _ l ro 1 1 cvi LO co p s cvi co cvi O C o t CO CVJ CO d OS IV. OS p s CO CO ©s p s CO CO IV. ® (/) 1 1

o d o o o LO "3- - E h- o o p s o o o OS n OS p s ! LO '' O sp V 229 Transect 2, Hickory Hollow/ Cabin Swamp Field Data 5 /1 1 /0 0 Plot # 1 slope 23 SPECIES DENSITY R. DENSITY COVERG R CONVG IMP VAL ln(pi)a. shannon cv] I S CO 2 - . E S. 8- .2 cm 00 -00 N- cvi (M cvj j o 000 00 CO (VJ CM CO O OJ o p s o p s o p s p s p s LO CM CM p s - P M s O s p QS s ON O s LO 00 O C O LO — r O sO sP sp sp \ s Q p vf s P s Is- QS QS O s OS sO t d> & c> d> t i " /is St = - ) 1 ( 0 JS _§ o £ ■ ro“ I 2 O ro I I I I I I I I I ’ (TJ r- CM CM 00 f r n i LO CM d 00 JCO OJ 00 <— ID o CO LO r-- o LO 1^- = 00 cvi CM Is- q 00 OCO CO CVJ CM (TJ o o CTJ 00 o o CO CO n i LO OLO LO cvi M" CO o O Is- 0 t r— = — ON S o' s j ? -9 00 cvj 00 CO cn n c 00 o o LO M" CM Is- CM CO r-. LO T --- <\J CM o q o o o o d o o N 230 Transect 2, Hickory Hollow/ Cabin Swamp Field Data 5 /1 1 /0 0 Plot # 2 slope 60 SPECIES DENSITY R. DENSITY COVERG R CONVG IMP VAL ln(pi) shannon Veratrum viride 22 24.86% 42.5 25.37% 50.23% -1.392 -0 .34602398 M— S I ■ I o -I M" CO m c cd OO OJ 00 o o o OJ CVI 000 00 o d o O C OO o o <\i 1 1 ' o' p OLO LO s 0 p LO . Is- Is- LO p h- m o' - o , > x E « U ti I 2 i i * d CM DCD CD D C D C d J0 J0 JOJ OJ 0J OJ 0J OJ o o CM d o'- p LO O0- LO P c\i LO 0- < < ^ u o o < o < o o w h i— s- 0 V I) “ J IV) IV) w ™ a r u ■ ■

J0 J0 JO JOJ 0J OJ OJ 0J 0J 0J 0J j o CO OJ o o o o o o o- : c o u -Q — io o c = u _ _ o o d o o O' p LO ]M M; M" M] "M "M- M M" M" M" OL OL OL oro ro LO LO LO LO LO LO -I-r- Is- r- oo OL OL LO LO CM LO «— CO LO i— co LO 1— co «— «— »— «— »— .y Is- sP "M" M" p o' o' d. — 3 2 ±! — ±! 2 3 — d. 2 d i j L 5 - a i £ w rerorocxcorororo £ a r o ^ : i a r w ^ ^ w 'L£ E ■ clre .E i 2.5 1 oj CO MCM CM ro s r- Is- oo ro ro LO LO LO LO LO d r- o' p oL OLO LO LO ro o' p o' p 3 3 o 2 | | ■ 2.5 ■ CM ro OO OO d Is- O' p O' p "M" M" O' p E i 2.5 ■ d MCM CM o r c\i CD o r o r CD Is- o' p p r- p Is- OO O' o' Q_Q-aja):g ■ 2.5 i Moj CM s Is- Is- CD d or ro ro ro CD s o O o O O o o o o Is- o o o o r- OO o o o o o' p o' p M" o' p r— 1 i ^ y y y O fl) O y y y ^ O 2.5 MC CM CM CM DCD CD oC ro CM ro o r o o CD D C d p o r p —t— t— " M r- o' p oro ro -Is- r- o' o' i 2.5 ■ jrj oj ro P M" JI-r J0 JO JO JO OJ OJ OJ OJ 0J OJ OJ 0J OJ ro Is- OJ Is- Is- OJ Is- r- r- oo d o' p O' M- o' p i 2.5 i oo O OO CO oo d r— o' p r— o r o' p i— LO r— M- r- O' p o r 3 ■ 2.5 ■ d q joj oj DC DC DC DC DCD C CD CD CD CD CD CD CD CD CD "M1 M M" d o 00 d O M" o' p o r p T LO r— CM .— O' O' p M; M- -- i i j o j o j o j o 0J 0J o O O O O o O O o CD o o r oro ro o r r- Is- ro M" 2 ro .2 oo r— p O' O' p O' p oro ro ' o p O' p or ro ro ro s s -I-I-I-r- Is- Is- Is- r- Is- Is- .2 =3 ro ■ ■

re 2.5 ro Mcicicjcvi cvj cvi cvi CM o r oo CD ro ro ro ro ro ro ro LO o ' o' p o' p ' O' p O' p «— 2 i i

2.5 or 0ro CM 00 0J ro 0J ro CM o r DC DCD oo CD CD CD o o r o r -I-I-I-r s r- Is- Is- r- Is- Is- Is- r- —« —»— «— «— «— O ro E a> i ■

2.5 o r ro Is- Is- Is- Is- Is- Is- oo M- o o' p ro O' p ;M; M; "cF o' p o r o r i 2.5 1 CM ro o r oo M" - M M" M- M" o o' p o r o r o' p o' p ■ 2.5 ■ j o o r ro oo o O' p o' p M; o' p or oro ro ro ro o . c a ro E o = E S- re c a) i— o O' p oro ro o' p ;M o M; M; M1 o' p ro c 1 O H U Q j u 3 >v ro ■ ■

2.5 j o j o J0J OJ cvi o r oo CD o o' p i— r- p o' p o r _ . o' ) u> a) ■ 2.5 ■ cvj o r d Is- p o r p p oo CD »— o' O' o' 3 q o Jfl C tr tr ■ ■ .

o in ro 2.5 CO o d o O CO o d o OJ o d o 00 O o CO 00 00 cvi o' p rj ro o' p o' p ro r— o J3, J3, o i V) ro ro < d 231 Transect 2, Hickory Hollow/ Cabin Swamp Field Data 5 /1 1 /0 0 Plot # 3 floodplain- flat SPECIES DENSITY R. DENSITY COVERG R CONVG IMP VAL ln(pi) ‘ shannon CD 0 0 0 0 0 0 \j < CO 0 0 i t LO Is- CO LO o LO < cm CD \i c jCM \j c Os. 0 0 m — r T— s Is- Is- OS p s LO OS 0 0 d i LO > > O > > '' O o s se 2 y ro ro 3 a o c 3 V) q = ro S> ro cn ro d u j o o _ _ _ I ■ - - . = MC CM - r CM CM CM CO 0 0 CM CM O00 CM 0 CM OO 0 0 DCD CD Is- Ti­ T}- d O O 0 0 0 0 CM 0 0 0 0 OS p s OLO LO s o m t s o o s l CD Tl- o s 2 }- 1 1 -

2.5 M00 0 CM 5 ; CD CD o CO CO CO CD CO d e CO 0 0 CM OS o s d c t ­ r s a P s «— d i OS sO Is- ° 03 J- 1 i 1

2.5 CM CO o O00 0 CO CD 0 0 CM CM o CM Q C O -C -Q ■sm S LO o o O M- 0 0 f T OS sO LO OLO LO o o f T ©s IO *— h I < s o p s ° s u o cu e ro o — O c — TO i— = ro u x x c = c ro V) P- * -5 ro i CM 0 0 d o CO M00 0 CM CM CM CD l's- Ti­ o o 0 0 Is- s o o s 0 0 M" f T OS SO t OS CM Is- Is- o s g ro ■g 03 F ■ ■

~ 2.5 CM MCM CM MIs- CM OS DCD CD f T o o o CD T— d o o 0 0 0 0 0 0 P s CD LO d c MCM o CM o 0 0 Is- t s o SP OS d | SO 03 c

2.5 CM 0 0 0 0 0 0 CO C\J O - s l Ti­ d o O 0 0 OS SO OLO LO CM CM d c CM d c CM CM Is- U h f M" r ^ ’ra M“ OS p s t s o o s f ro .2 - c i- c °--ss u c a; cu E

2.5 o - r CD 0 0 o o o CO DLO CD Of— CO CM CM *— OLO LO JC 3 _ o o Is- CM CM o o o Is- OS P s d i OLO LO d i OS LO < s o P s ‘u p s 4-> > <0 ro E ro . Q E cu 1 22 1 0 0 0 0 0 0 CM o c 0 0 0 0 0 0 0 0 0 0 o o 0 0 CD \ MC MCJC CM CM C\J CM CM CM C\J CD s Is- Is- 0 0 t 0 0 o Is- 5 1 CO LO OS o s MCM CM s o Oco c LO M" - r OS P s o s d r C +-> 3 E 3 cn 3 E O D J- ■ i MCM CM DC DC DCD CD CD CD CD CD MC CM CM CM o OCO CO d c o o 0 0 0 0 CO CM ­ r ­ r Ti­ - c - i r P s s s Is- Is- Is- s o P s t OL LO LO LO ©s M" OS P s F ■ 2.5 1 d e Oco c CO o c o t o S s o SO OS P s CM CM CM n e f T « s 2 ^ M" OS NOOS SO Tl- c>s s o sO SO iS 2 . o | £ C C C l CJ CJ CO I Q£ | g £ = 3 1 y X i5 C ro . o -Q ro -s r o 0 r -M 3 cn 1 2.5 ■ CM 0 0 o CO d e O 0 0 J e t i­ T ■n- f T CM c\i o e _ _ Is- 3 1 ■ T

E 2.5 CM CM 0 0 0 0 OC CO CO CO 0 0 0 0 0 0 o i i i i i Ti­ Ti­ Ti­ ­ r Ti­ ­ Ti­ r Ti­ d e O o o Is- OS P s LO CM CM cvi o e M- Tf- t T OS SO f T s o o s s s Is- Is- Is- a 1 ■

2.5 MC MCM CM CM CM CM CM CM o d e CO MCvj CM CM o CM e o e f T Is- s a sO t OL LO LO LO OS OS P s o o .E ro ro C F 1 2.5 ■ O o o 0 0 0 0 d e OcoC o c CO o c CO CM t ­ r P s - r - r OS P s Tj- OS cvi OS M- p s gj x Q. cn T i 2.5 ■ OCO CO o CD CD CM ­ r d e o o 0 0 0 0 CNJ CM CM o e o CM e o e t SO T}- f T OS sO f T s o s Is- Is- 3 £ OS SP LO ’o c a) c N ro T 1 i CM d e o ­ r ­ r 0 0 Ti- ' O SO C\J - r p s LO CM CM CM s o f T s a p s O ’c 4 (3 ) D E ro ro ro 5 o -> ■ 2.5 ■ CM CM 0 0 CO o CD 3 £ d e o 0 0 0 0 CM CM CM CM t -C "o OS o s Tl" Is- OS SO f T LO OS Is- P s CO 4-J *-> 3 . Q cu cn ro ro . Q cn O c O ■ i 2.5 T 0 0 o o o Is- — r o CM - r LO o o SP CM o d o o o o o o 1— OS SP OS «“ OS 1 ■M - o ro cn 105.5 1 moss C ’cn 2 . c E . Q ro sz cn o ro . Q cu cn l . Q Cicuta maculata 232 Transect 3, Hickory Hollow/ Cabin Swamp Field Data 5 /1 1 /0 0 Plot #1 slope, 23 degrees SPECIES DENSITY R. DENSITY COVERG R CONVG IMP VAL ln(pi) shannon Gaylussacia frondosa 2.5 13.89% 22.5 60.00% 73.89% -1.974 -0 .2 7 4 1 7 7 9 2 ~ 3 T 0 LO00 LO LO 00 > 'o —« «— «— cd «— cd f cd T Tf CT) CT) CT) os f T o' VO o' SO o' so so LOivl cvj oJ LO cvi LO fs! LO LO o cvj O CVJ Csi CVJ O L oo o oo oo Tf cd cocd o o co soco o r^.o o t p s p s p ' s 0 QS p s ©S p s o OO Tf r— o O OS v sO s 0 vO os Os os Sp vO OS sO l f O O LO O LO LO IDTf (O toO ^ <— CO _ 3 re a £ 3 E E 3 ^ - Q re F ■ d d d d d d d \ c cvj *“<\i co 0 O 00 CO 00 LO CT) CT) CT) CSJ CSJ CT) ’ O rs. o CVJ *-1 N- N- fT Tf Tf Tf r— Tf fs. , 3 03 O 3 tf) . u - 3 5 2 J£> 52 J5 o ro ■ o ‘o lo ■B f- CT) —I— N- .— N- o OsJ i— Tf l"s. E ° « o o u ro cu 8 8 j re oj j§ ro ■ - s u

CSJ s q r™ o CT) OsJ fs. Tf s n >» +j >» o o ro i -

o o o o CO o ' O SO (\J CSJ , — t r». r— m _ i

lo o o Ti) O w - U) -J w fO co LO .y .y Q i " - j o x CJ +J ro v 5 re E Q. U ■" tf> St CU _ CVJ CO U re £ re re I o o 2 . o _2 - n L- On M- CO . Q q - UJ i-s ro o . /— JC o > LLl Ql cj c o Z > ■ CO £ DU CO □ > < —I co CJ CJ o CJ q CO re £ £ n u s

. 15 i ± J - o J CJ CJ co 1- CJ <\J OsJ od cvj co 00 0s s£> oo o 00 LO Tf LO i-^ OL LO LO LO cd CT) CT) fs. oo OS sp LO 00 LO oo ,^r LO - r CO r— «— 3 -523 Q_ ■M Z ro JZ . o o £ r re r re .£ ro tf) ro CO ro 1

CT) COCO d c od od oooo oCOCOCOco cvi dc dcd cd cd cd -=i 0s s-P r-s. d oooo in in rvl 00 OLO LO OS SP CO OLO LO —i —i— i— i— .— «— «— js c p s CDCO Tf «— ^ >» CL > co a> W tf) CO ■

cvi cvi s o sp sp O cvj 00 CO Os Tf LO i^. OS' sp —« “« —1 —t —«— «— t— »— 1— »— «— •“ «— »— «— 3 3 CJ CU c i

COCO dod od v v cvi cvi cvi oo LO OS sp cvj 00 00 oo cvj CO CO CO OLO LO OLO LO LO LO fs. O i— OS SP COCVJto LO o> sp fTf Tf I 1— — ■ _ 00 v v v cvi cvi cvi cvi cvi OS OS sp 0s sp o oo m sp OL OLO LO LO LO LO in - 0 «— ■ oo CO od cvj cvj CVJ o OS CO Tf Tf oo ,— o OS- sp co - P •- ‘to CO so o T— OS sp - = o i= £ . E § 52 c c ro i - £ S O -Q CO O Q j S c 3 o r _ Q 1 c 5 COCOCO sp oooo LO LO cvj 00 00 00 00 od od oooo OCO CO CO dc dcd cd cd cd T— V (V. |V- COCD X n i LO LO 0s o OS SP LO OS SP OLO LO 1— fT fTf Tf Tf Tf — a) E ■

JO s a COCO o sp v v cvi cvj cvj v cvi cvi n i OS (— X LO I s o Sp SP X — —1— f— — — n ro cu 1

OS SO LO LO LO LO oo LO LO LO LO do do do dod od od od od od od od oooo 2 = 12 3 ° ■ t cvi CO CO f— |V- COCD o 1— f— OL OL OL LO LO LO LO LO LO LO LO OS SP OL OL OL OLO LO LO LO LO LO LO LO n i OS sp LO o X e CJ L. O a c 2 ro a e re (0 1 5

C OC OC OC OC Oc oC O _ cvi sp oo cvj co I—»—« |V- o LO OS OLO LO OS SO LO s p SP q 1

OS 00 -X S cvi COCOCOCOCOCOCD o I sp oo oo oo oo oo oo v V IV. IV. rv. v cvj cvj OS 00 00 00 00 00 CD -a CO v v v cvi cvi cvi cvi dc dc dc dc cd cd cd cd cd cd cd cd cd OL OL OLO LO LO LO LO LO SO co 2 re ;= = I ■ *— OS sp OL LO LO LO Tf Tf Tf ,— — C f§ co CJ ro £ 03 CO ■ OS oo ooo oo oo oo v cvi cvi OS O sP CO OC OC CO CO CO CO CO OL OL LO LO LO LO LO SP s p SO —1 «— 1— J— — e co re . a 03 co o ■ . OS o sp cvi 1 «— t— I— SO CD 'sz «— OS SP OS 3 ft £ £ a re 1 Csi cvi d d s 0 sp OS » OS SP n i I T IV. p s CD fTf Tf . 1 . T — -- -- E-E v cvi cvi o QSs so t— rv. cvi COCDCDCDco v cvi cvi OS —I —« CO «— »— I— «— s p sp ) CJ Z) f— SO OL LO LO LO -- I £2 E CO CL 1 .

OO £ x n i o D_ CO -- O _ ° C Q. £ COi c Q. p ~ o o 1 .11 233 OS COco t—« T o sp cvj cvi OS sp OLO LO s — o s ■ — 'E Os sp OLO LO OL LO LO LO Tf -- -- e — re P m 3 E ■ CT) 00 p SP sp CO d c cvi d S QS OS |V- .— rs! t— S OS OS SO SO s OS Os SP Tf — 3 =3 _ 1

re

00 o CSJ LO CT) CVJ o o o cvi o o o o o cvi o o LO LO IV. fs. Csi SO o o 1

Transect 3, Hickory Hollow/ Cabin Swamp Field Data 5 /1 1 /0 0 Plot # 3 floodplain- flat SPECIES DENSITY R. DENSITY COVERG R CONVG IMP VAL ln(pi) shannon Toxicodendron radicans 2.5 2.13% 2.5 1.75% 3.88% -3.85 -0.08191803 c vj vj c _3 _3 O - r ^ ^ ^ ^ - i - t - r 0 0 - f N - r S 0 C N 0 C J C O C 0 _ Q Q_ Q 1 II O CO CVJ - j o r o c OO d \J c ( j i- c v *— O C r v ^ O C O L O L O L O L 0 0 S * * S^s 0' S S S ^ O O' S S S OS OS ©S OS OS' OS O^s OS OS OS 's 0 s ^ OS s* 0 p s* s 0 OS p s s o p S ©S - « O C CVJ o o o o o o o o o NO O O L t— O L 1^- I— I— c a) o (fl 0) J O - r Jo V CVJ CVJ CVJ co cvi O C 00 O C CVJ 0 0 d c 0 0 O C CTJ vT rr i— ©S NP - h vj- 4—< j o xo aj CJ ro J O := O c o Q. a> I— ro 9

is is _ 13 0 0 C CVJ O C 0 0 O L O L OS SP r— — r £ q ) v n !

1c J C r— J C J ^ C O T— C f— J J O C C C O «— C J C O «- O C Vt" CVJ D C J V C O C J C J C CO CVJ < CVJ O L CVJ O O C 00 *- ©S p n s © O s I"*. LO . N *“ - 00 T- E Q. u ro Q. ro 1 p s p s p s P s p s ro = 2 _2 v cvi cvj CO cvi - j V 0 0 0 0 CO 0 0 h D C D O w X U D W U Q o ro.£2 CVJ O C cvi 0 1 0 1 S © p s 0 1 — r n - o i s o r 0 E S 3 co V ro o > n -= tn ro 1

oiS ®= 5:51 5 : 5 = ® S i o ™ , 7 5 % CVJ 0 0 J V C 0 0 0 CO h*. O — V T— CVJ 1— CO o «— O O 00 co 00 00 »— ©S O S |Ss- LO c ro c ro 1

, 7 5 % Tf o O O vt- C 00 00 O C O C v cvi cvj O C 00 0 0 O C v v v v v v cvi cvi cvi cvi cvi cvi cvi cvi O L 0 CO 0 0 0 T— O L S O O S LO j• +-» Qj •— oj o > c >> w is ro ro ° | § ro ’5 'w g> 3 o> := .E w £ ro . 7 5 % 1 3- ^ 0 0 0 0 0 1 CO cvj CO 0 0 d c O L O L O L N O O N rs- <— 3 o i!= « ro 1

j e — j x a o a) x1 £ ■— vj 'e oj . 7 5 % cvi CO 0 0 0 0 0 0 0 0 CO 0 CO 0 0 0 O C O C O C O C O C O C O C O C cvi Cs. O L ON p s S © p s LO LO LO LO „— O L O L O L O L p S 1 1 1

3 CO CO CO C j O c C 00 00 00 00 O C O C 00 o o O oC o o CVJ O C CO J C 00 00 00 00 00 cvi NO 0 6 6 0 0 o o o o o r— ON ©S O N p s p s a) ro

£ cvj cvi 0 1 0 O 0 C 0 0 0 0 N © CO CO CO CO CO CO *— p n 0 0 3 j c

. 7 5 % v v v cvi cvi cvi cvi CO CO CO CO O L O L O L O L O L 0 0 v v cvi cvi cvi ©S O N «—

p S p S j c « o E .« u - 9 ■ ■ O * - £= *“ -Q O . l , 7 5 %

0 0 0 0 ©S 0 0 0 0 J u w c jn c w u J 0 1 0 1 O N LO LO LO LO I— F -£ 2 ‘F j c g ro O O x - _ ro k_ r- , 7 5 %

0 0 0 0 j c ©S O N — r p s j o 1 1 1 1 -

y> , 7 5 % o ^ ro 0 0 ro 2 J C O CJ L o 00 O CVJ 00 O C O O C v cvi cvi cvi 0 0 O N 0 0 i O O «— O L N O p S , 7 5 % v cvi cvi O C 0 0 0 0 o t 0 0 0 1 cvi «— N O p s p s p s

ro , 7 5 % d 0 d 0 0 VJ CV 0 cvj o 0 0 o o O L ©S NO S O p N

234 Non-calcareous Ravines Casey Tract 8/16/99 q D C 05 f— 05 - . co a. I- a) O 00 c CO 2 a CO > CD CL O LU O 2 ^ — = CO CD CO CD >% o ±: ±: o : 05 -

CO o CD 3 > LU Od cc; o z > a LU z £ o o cd o CO QC O LU z CO lu a § c 0 E m m r-. m <\i cvi m m in o o o o o o - h CO J _ CO CD ~ J T o o CD o q O s 0 2 " T“ ' O 05 O C ^— in o d <0 o 00 co CO CO m m o d m d m o 2 co ■2 -■vt M- CO CM O o E co 3 CO O <0 CO 5 w T CO CT ^ 2- co 2 E "O in N o' — a CO “ ▼ CO CM O O o' -5 -O 05 m c in' o CO o O

o CO o d q ' o CO CO o CO 05 r- vP CM o CO o o

: a oo CD 05 05 CL H O T-^ O D -5- CD C co 00 >* o *■’E CD CO > 05 o o co 0 CO

LU O z CO £ Od o co (O co d co LLI co co Z ^2 co ^ co ^ co o ^ ^ C > £ Q co coco o El o o > LU od d o O O U ~ co " CL $ LU LU CO 10 CO CO .= co O c a. OCO CO CO c o c

■g cvi c\i cvi in in m in m cvi q m co CO CO 00 ! o OCO CO d d Is- s 0 COCO co CO CO CO eg CO T—' Ooo 05 o CO ' o P - CO c q q E co CD 3 6

S5 T— q 05 05 vO I-- cm CO CO CO d > ' o CO q OCO CO 3 ' 'o ‘c q CM . Q co . Q to o E o' o 1-. CO CO ’c T"“ q CO CO CO cvi co Vp o co' q CM ’a. O ' O CO 2 CD C CD co CO a C CO 3

O' o - i m CO CO -2 ' o vO CM 05 o o O O o O t o - ■ Q. c CO CO 2 CD H CD O) Od ■> o 00 05 L CO > CL - I | CO W ] I t) C U o LU 2 E L. CD CO CO CO 0 CO >v 2. ■M-o - to Q- 0 . co Q. Q LU Z sz 01 r- r- 01 CD cvi cvi cvi Od 0 o Z > Od o O > u l a. CO .J Q LU > < C CO c o c L C c CO O' -2 M" Is- o' -2 m m m m m Is- m Is- eg T- 05 CM CO T— o q o c d d ■M; CO O' Vp q CO 05 in o Q. Q. 'P q m o' 05 CD 05 v- CO M" 2 ^ ■M- o o m eg -2 MCMCM 05 CO CO ' o Is- - c CO O o JO d o' CM 0 0 3 co t3 °- .c CO ^ p> CD ~ c ^ 0 vP Is- sP _ r o' CM - r q o o o' ■M" o O 05 CM in T— ' o vO eg o q d 00 T— o CO CO CO c CO o

CO ' o o o' 'O 'O o o O O ' o CM o © CO o f ­ 235 Transect 1, Casey Tract 8/16/99 Ravine 1 Plot #4 ridge level SPECIES DENSITY R. DENSITY COVERG R CONVG IMPVAL ln(pi) shannon Mitchella repens 2.5 13.89% 2.5 20.00% 33.89% -1.9741 -0.2742 T— Tf CD 1'- 1"- in h- O CM P < cvi CM d O Q ro .2 in O C co CO 0 0 > a i O O C ' o ' o ' O ' O ' O T~" CM O | f £ O ' o MC csi CM CM 5 0 . ca a. tA s >• o O ca a ca ^ E m T— 1 M h- Tf ’ o Cs| CM CM d nCO in O C P s O C i O CO f T CO 0 0 i O i O CM T~ p O p o ' O OO 5 0 (A —

m f T 5 0 Tf ■*— O d CO CM d CM d O £ Tf ' o o t CO ■M" Tf Tf ' o P « d CL Q H O £Z 3 § s CD 5 o o E E ro 3 C l'- Tf v csi cvi in CM m ' o P v d CM I'- CM O CO d O C CO ' o P v P T— O C i O ' o p • T— • Tf p » o o o h- o in in o d ' o P ' O O oo ' o n CM o t o o O ' o — P ^ in CM < ™ .a E c a m V O 3

h- o o CO .E o c CU — Q- I— o a CM" •§> 5 ■= ■5 T5 t ro o o ro E CD t- n -M" cn CD O ca ro co > L_ CD A CD

Q_ 5 Z > LU 1 0 0 Q_ LU O : a o O > o LU f o Q LU z C0 ■ > o O CO jU co Q

v cvi cvi o in m o o o o o o CM o o o o o o in o o o' o ' O 'S o o d 5 " o > ° °. °. ° o o S " ' o T— ' o O O d csi ro o o E (A c/> a. a. p O " MQ. ' o CM © ' o 'S uo ' o •>P o ' o cm O —

CD O 00 - L O CO > > CO CL O h- T_ cm j ^ tj CO H*. CO 2 CD CM (A o ^ o CO E ro co - a. a. - o CM

z s 2 1 _ < 0 z o > LU 1 0 0 1 0 o z Q_ LU o h Q LU Q LU 0 g O o c - > o - f LU CO c c o (A ca c: i

CM 5 0 Tf

'P Tf r s O CO i O oo ' o CM in ' o e ' 5 " T“" T— ' o O C csi m — -

t O CM f T CM o CM ' o 'P CM o «P ' o in —

236 Transect 2, Casey Tract 8/16/99 Ravine 1 Plot# 3 slope 180 SPECIES DENSITY R. DENSITY COVERG R CONVG IMPVAL ln(pi) shannon Euphorbia sp. 2.5 16.13% 2.5 6.25% 22.38% -1.8245 -0.2943 Vaccinium spp. 8 51.61% 32.5 81.25% 132.86% -0.6614 -0.3414 5 * MCM CM 03 •M" CO if> O I s 0 P v O 8 " n i m s 0 s 0 T**J CO CO cvicvi D C O C T— OO CO CM m T— M C M C O C O C 3 2 T3 CD cvi 2 E .2 M C = ° *= (/) > .ti fc M C M C | 2 0> o CD § ' o n LO C3 IO ""M- 03 M" CO - T CM T— CD in O C T— d c cvi ' O O v M C to 00 o O

= s s 0 MCO TJ* CM CM CM ' o O ' o NP ■M- o O p O O O 8 " o o o O id o cd © M C cc: L CO CL - I CM O CO CO cr> o> "5 "G c (O 0 CL O 2 cd in to CD CD 0 C > *- LU O $ 2 _ LU w C/3 ° Q. 0

C.C .C > o o o o z 0 > a: o LU z o o > o 0 < o LU CO CO t LU M C _ Q z t c o C OCO CD CO CD — : :

CM 03 ° s IT3 CO O MCO CM “ T O C T*“ in CO f T v v cvi cvi cvi in M C M C M C n i M C n i p o ' O "8 1 cvi cd T— _ LUQ_ ■c 0 O CO 05 05 CO c C CD ^ O CD ' O ^ W 0 <0 c - CT ^ S- CD CD = 3 CO ■M" 03 T“ ° s ' o ' O ^8 Tf C3 ■M" CD T“ O O O O O v CO m n i n i ' o p d c —

OCO CO MCM CM Tf ' o 3C3 C3 T— IO O C CO t in T— CO f T m CMCM Tf ' O O v n cvi cd =p £ o *♦=Q. & CO ; - P 3CM 03 Tf ' O n i 1 ' o IO O O C CO O t ' 8 o ^ OOCO O CO ^8 cvi m T— in cd T— f T cvi o CD O O E CO CD ; -

CM TJ* ' O o' n CM ° s o nin in in o cd O o O P s o © o T— o o cd P TJ TJ £ 0 O C O £ CL I- "> 00 03 03 C£ I- co T- T- CO ■s i_ CD C3 C 0 CO 0 CD CO CO co O 0 >. CD L- CO c to r

LU 5 ° at CO 2 _ COQ_ - LU *- < O d

j 0 o O z > 0 < >- d o Q LU z I . 0 > >- o o > LU : a Q_ Q LU z co C o c t c C Q. — 0 :

CM OCO CO CO CO CO ’ o in O C O - T 03 CO CO CO * ' o O o o O C O O ' o p > ' O >P O C cd OCO CO CO cd cd ) O cvi o 0 c * * E 2 ==■2w to CM o c CO o' o T— * 8 a * O C in cd CO n i 03 CO OO O O ' O O v vO cvi M C M C ' o O C cvi 0 Q. c 0 O 0 co Oo CO CO CM CO o 03 8 * o O O ' o ' O v cvicvi O I ’ o T— CO O C O C n m CO o' ^8 cd to £ cvi cd CO CO CD O CO Oi CO 5 > o' o O ' o O O O 1^ o’ LO T— o O © “ T p cd M C o 1 237 Transect 3, Casey Tract 8/16/99 Ravine 1 Plot# 2 slope 20 SPECIES DENSITY R. DENSITY COVERG R CONVG IMPVAL ln(pi) shannon Vaccinium spp. 2.5 20.00% 2.5 20.00% 40.00% -1.6094 -0.3219 Mitchella repens 2.5 20.00% 2.5 20.00% 40.00% -1.6094 -0.3219 CO CM i O d t ■'0- Tt © X* 0 0 0 M M M O o CM CM CM o o o 0 0 0 0 a < o € E - CM CM CM CM 10 O CM CM CM 0 0 0 0 CM CM in CM in CM m m 0 0 0 0 p o o o 0 0 0 0 — CO *— o 3 w 3 co 3

T- <0 0 o> M C

Q_ © ■e CD 3 o w co CO o Ui cr 3 cc "> CO CO 03 o> co' O XS CO CD— CO 3

10 10 Q_ Q_ LU 35 Ui O CL CD Q_ ° . a 3 > UJ § q a LU z o : a o a: O O Z > 0 Q LU 2 (/) £ o co £ CO LU CO 3 :

M- CO <0 O s 0 d CO CO CO in p Is- 0 in o> in O - V p 00 CO CO CM CM CM 0 0 m d d d O "•5 CM O O CL > O > 0 0 0 3 v 3 = v . Q > c > E o . : Q. 0 3 10 3 O 3 CO 0 s s c co co . - — d d CO COCO m V 0 0 0 —T— T— CO CO CO in 0 CM m O c?- P x O C O C CM CO p cc O 3 D CO CD 41 s s CO O O 0 in m — T 0 in p CD CO 0 cm 0 P v p cvi 0 CO m ,0 O — = it i i it 2 s s s

•“ P v d COCO M" CO in 0 0 0 CO T— p o c m T- O C CO CO iri CM CM s 0 P - p 0 CM m 0 0 p 0 0 d d CO CD 1 — s s

T- CO CD CO 0 m 0 s 0 M C 0 d 0 0 ° s d 0 0 CM T“ 0 0 P - T_ O s s T_ cc .E CO L C - i CO a, O 00 co a> ts cn CD CO _ L CD 3 CO o CD CO o CO CD CO CO >N > ■a Oi > LU Q. 5 3 CO O DC t 2 0 DC O U 0 2 DC LU >- > O h sz O LU O Q CO ^ 0 0 0 0 Is- 0 W N £ N CO N O CD CM CMc CM CM 3 t/> 3 CO ''t CM CM CM CM CM CM ''t CM CM 3 " " 'M' N" Is- N" C3 10 Is- M C O i O s 0 ® V d 00 T 0 i O ; M O C v CM cvi M" IO cb 0 n N; 0 p - M C 1 CO O > 8 .2 - s 1 E g j - S .1 d O CO CO — ® 1 s s

s- Is s-I s- Is - Is - Is T— m T” 0 a> 0 -0 i O i O - Is " M T— -P °°. CO vO O C p i O 0s in v c\i cvi to — 1 s s

s- Is s 0 —r— T— - Is — f nuo in T“ o> 0 p co" p CM cvi — t 3 0 iri in 0 n p CO •-P in . LL Q Q. S P .E ® 2 £ > ' CO COCD 2 =5 .E co 3 5? o 3 P 1 s s

! £ a! Is p - Is ■M" - T p p co CO T— O - i o s 0 0 0 - cvi O C x i O s 0 m m 2 co .2 — CO •— CO 3 — 1 s

m “ T - h s- Is T— i O - r t cn in T— P > o> s 0 0 c\i co" p i O 0 P - 3 — 1 s s *

P « t m M C O O O 0 d 0 0 O 0 d n CM t O O 0 0 00 T~ — - s s -

238 239

COCOCOCM COCO■M" MT o — T— T— T— — m t—■M- ■M"M" Tt i'- CO CO CM 03 CM CM CM CM CM CM Tf 03 03 03 CM C CO co m uo Tf o CO CO CO 00 CO CO o COCMCMCMCM o CO COCMCMCM CO T— T— T— T— T— T— t J; O cz o d d d o o o o ’ C3 p Y c d d C3 C> r 1 I ■ ■ ■ ■ ■ ■ ■ CO CO .c to ■M" i n m m T— T— CMCM 03 CO CO CO CO CO CO M" -M- "M" in in CO 00 03 M" ■M" ■M" ■M" •M- CD CMCMCM COCOCMCM t— 03 03 03 03 03 03 CO COCO °°. 03 03 ▼“ T— p CO p p p P CO T—■ t—■ d cvi c\i CZ) c\i CM CM CM CM cvi O* o' 1 1 i i i i i o . c s? s? sP s= S® sP s P 'P o' o' 'So' o' o' o' 0s o' o' o'S ' o'S ' 'So ' O' o ' 'So ' o'S ' o ' CO CO CO O_J OOO O O CO CM CMCMCMCMCM O <£> O < CO t o O Tt T f T t o o o 0 3 CO COCOCO CO CO d CO CM CM CM o o in CM CM o o CM 0. CM CM

'P - o •^o •vO 'O O''S o ' o'S ' O ' o ' o'S ' o ' o ' o ' o ' o ' o ' o ' o o o o o o o OO 0 O 1^ h - f^- h - h - h~ O o g p o o p 0 m m m m O O CO CO CO CO CO CO O > > d Z ^ id id m d Z CM CM CM CM cz> Z o ’ CO d CO CO d d o CO o CO o o 00 o T- o T- o o o ox OX ex in in in in o m in in in o i n m o o m o o p m CM O cNi CNi CNI CNi cvi CNj CM CM 0 cm cnI CNi c\i c\i cvi cni h-' OX ** e x CX cm CO LU UJ UJ > > > o o O o o o

'S " 5 v ° s P 'O ' p »P sP 'P 'S vP vP n P 'S 'O o ' o ' O' o ' o ' o ' o ' o ' o'S ' o ' O' o ' o ' o ' o ' o ' o ' o ' i — CO COCO O O O o O O CO CO CO CO CO CO CO O CO T— r —' T—_ o T—| i —_ p p O ■M; h - t '- h - h - h - h - O w CO CO CO o U) 0 0 CO X— o ’ CO 03 d d d d d d d z m o z CO CO o z m o LU LU UJ □ □ o ox of cd CO m m in p COCO m in T- CM m m m in in in i '- CO CM CM CM i d CM CM CM CM CM CM CM CM CM CM

CO CO CO

LU LU UJ CM 8 ! O Q a o ( b CD CD c c C ■ > ■ > > co co CO ex O' CX CO co r s o " 5 _ o CO CO co co 2 S> ' c CO C CO <5 £ L— 0 3 •*-> *— E - l CO >% >% .§ S o _C0 CO 3 2 CO ^ CD CO CD CO JZ2 C D C o 'tZ o > * :> CO CO .E 03 > » ^ CO Q. 03 — E £ co _(D CO CD fli — co c o CO * r ° Q. a ® F E ° c o Q. g..s ro I— « £ D - J - CD CO -Q O CD CO > <■> £ C0 2 CU "a Q. . 2 O o CO o 03 i_ CO ! c ■D CO E c _ 2 CO ^ o CO CO ZJ o CO jg £ s C O C O LU _=3 CO I C O LU i s O IP UJ | E z j c C C D P C= o CL CO > I Q LU < I - CL CO CO O Transect 2 Casey Tract Ravine #2 Plot#1 ridge level SPECIES DENSITY R. DENSITY COVERG R CONVG IMP VAL ln(pi) shannon Acerrubrum 2.5 9.26% 2.5 5.26% 14.52% -2.3795 -0.2203 Vaccinium spp. 22 81.48% 42.5 89.47% 170.96% -0.2048 -0.1669 r**- lO O O O \l C I"* O i s c co O) 0 < CM CO o f O Tt O 10 m‘ o’ O CM M O CM m cm in m O CD csi ' o 5 0 O CM O CD o o CO CD s_ 3 CO CO 3 i'-*’ to CM I'- O o CM

- CL 0- 2 > ■a € H—» Q) 3 £ O COCO 05 O CO 2 CL CO

CL ’> ft CM O ■ CO c CO L CO CL — CO CO co co >N q O 2 LU CO O 5 W 5 £ . o CO Q_ > 2 CD - > o O > LU CL 0 LL o o LU z £ CL a LU Z C/5 a o> 2 Q _ _ Q - c CO CO n 3 < n i m ■r- co V® eT1 o O O O O o O n i i'*- p O d ’ o ’ o 5 0 CO 05 CO ' o 00 T“ o OCO CO T— ' o ' O vP oo 00 O O o 1 8 5 2 2 0 > > o ' c co ^ _. o o c £ -6 -D 2 o t CO its£ co S c c P ■ . r**- P v d CO CO T— CD 00 m d ; r ' o csi T— ' o CO oo o P co ■ n i CO 'S d o’ MCM CM CO CM si c T— CM CM 'S ' o o ' o T“ o 05 csi m CM CM m ^— ^-1 °5. ' o csi CO 1

m ■M" CO d s| C ' o 'S oM" oo si c T— 05 CO 1

o rj- CM CM o s 8 CM o © CM CM O O • l c ft co H CM CM 5 T5 _ _ c CO > CO o g> ro 3 5 0 CO £ 3 « TO TJ O O Q. TO

I S 0L > £ P < LU CO CO — _ f ^ >- o > LU CM CL CL ^ o O CO ^ o ^ 0 O Q LU z CO E l c O 3 TO CO 3 o 3 CO o’ CO CM 5 0 s P s o'* t T 05 M" -’ T n i D C 05 in co co CM •a E *-> CO £ O TO CO o $ CO o TO i

t ’ o CO 5 0 CO CM m O C o c CO si c d O C O C ' o ° s id co n n i in in m in in I—I''- I— I'-- o c- c- c- c- Is*- c- o c- cm CCO O C CCD D DC OCO D C OO o m c O m CD CD CD 00 o CD CD CD CD csi csi cvi ^ U < O m LU — O 3 - CO 8 | co _ro 0 1 I ”1 & * *- E " 8 ) CO 0 .9 o - 1 3 1 ^ 0 = a w 1 csi n m in m m m m m T— ° N ' O s 0 ’ o 0 0 o o o o - ' i ■*“ CO O C O C O C co 1

- * t •*— ’ o oo CO si c O C ) p O C cm 1 cvi CO o ’ o o - c o'* T“ o o \i c O C S " O C E 3 ■

; r T” CO Tt* o o'* o o © CM co O co 1

240 241

05 CO CO CO i"- 1'- r - h - r - i*'- 1"- IO CM CM CM CO CM CM CO o o is- coI"-i'- 1'- i"- l'» h - i". T— T— X— T— T— CO CO CM CM o c CO CM CM CM Csl CM CM CM CO c z c o CO c o CM c o CM CM CM CO o CO CM CM CM CM CM CM CM o > o p o o T— p CO C5 c> o o 3 o ’ p " o ’ o ’ o p " o ’ p 3 p p i p p i p i o r “ 1 c 1 CO co s z s z CO C/5 CO CO CD CM M- *5j- ■M" ■M" ■M" ■M" CM CM CM T— CM ■M" 05 05 05 CM CM CM CM CM CM CM CO oo CO CO CO O 1^- c - CO CM CM CM CM CM CM CM CO CO CO o CO CM CO co T~^ CO CO CO CO CO CO CO ■M; •M; ■M; CO *p o ’ csi csi v p CM csi c\i csi csi csi csi ■M" ""It CO ■M- s .— v ^Q. a . a . 3 c 3

v P s ° s P n P >P s P s ° v ° s P s p s p s P 'P » p 'P s P 0 s O' o ' 3 ? o ' o ' o ' o ' o ' o ' o ' o ' o ' O' o ' o ' CO 05 CO o j CM co CO CO c o CO CO CO o c o CO CM IO CO CO 05 © o o o o o o o o o p CO p CM < 00 < ( 0 o < O rsl o " N cd cd c d c d c d cd cd o > I 'l cvi T t N 00 > r^. © OO T” T“ © o CL CM Q. CM Q. S s

v P v P S p -P n P v P « p n P n ° v P ' p n P 'S 'S •vP s P 'S o ' o ' o ' o'S ' o ' O'* o'S ' O' o ' o ' O' o ' O' o ' O' o ' o ' O' o ' !'- CO 05 O CD CO CO c o CO CO CO CO CO o CO oo CO CO oo o cd w CD CO CO o ■M; CO 0 0 p > CM CM CM CM CM CM CM CM o > p > T- 05 cvi 1 ^ O 2 CO cd cd c d c d c d cd cd o 2 i d c d T— i d o z 00 O CO o ■M" o o O o o O o DC DC DC co c o CO CO CO CO CO CO CO CO lO CO o CO CO p CO. CO i p oo 05 CM c-i CD csi cm csi c\i csi cvi csi csi CD csi csi csi cm DC ▼- T - LU LU LU > > > o o O o o O vP Vp 'O sO >p vO vO 'O sP ■>P 'P 'P •P ■vP o' O' O' O''P o' o''S o' o' o' O' O' o' O' >- O' o' o' O' o' •O' t 00 CO CD o f'- o o o o o o o o co co co co CO -M; CM CM p CO CO CO oo oo oo °°. oo o •V— T—_ iO r— CJ C/5 C/5 05 05 o co 05 05 05 05 05 05 05 o" T— cd cd z CO o z CO o z T_ T_ T— LU LU LU O O DC oc DC CM lO CO 1^- ooioinioininiqiniq in in in oo 10 oo CM cvi CM CM cMc\icMesicMCMCMid csi CM cvi CM T_ cm CO co CO

LU LU LU Q CM O 5! Q > .52 ■> CO CO CO DC DC CD "S •5 3 "8 _ co co co C CO CD CO 3 3 (OfS ow H S CD CO CO >s CO a) > cd o o CO (O .5 5 r - c/) 3> • ■— E «/) -3- E CO c CO _co c ^ w ~ co — O) *= co d . 1 CD _ 3 CD CO O a> O ® g - g O g co uQ. O a. &f £ CO "O ill i CO C l CO O • o CO 2 f w E “> 1 2 ■§ w EO l CO CO o O *“ LU "8 ep= ®£ 13 « go „i CO .E 2 o o w iu 3 = — — /— CD CD — CD CM — ° E CD CD § o ^ a> ■ g o . r o CO "o O CD CD CO CO co 17 O C/) Hi, i z S Z S Z . c 2 cd cd CD c S lu a. 3 $ O E C "O o § ^ s I lu - r O ® (D t O &_ CO 2 o Q_ co .2 co 2 o q_ co co 3 3 o 3 C O •— CO _o ■■S (O CD c "co h- CL CO > Q O I- a . co > O CO LU < a o - i O Q_ 5 O ( 0 j Transect 4 Casey Tract Ravine #2 Plot#1 ridge 360 SPECIES DENSITY R. DENSITY COVERG R CONVG IMPVAL ln(pi) shannon Vacciniumspp. 8 61.54% 22.5 60.00% 121.54% -0.4855 -0.2988 Ilex opaca 2.5 19.23% 12.5 33.33% 52.56% -1.6487 -0.3170 — — t CM h- o> o 5 0 Cvi cvi c- to lO CNI io © 05 h- p co -o L < S CL csi T_ co to CO CO o CO o h- o o co 00 o d t 3 CO CT D O ~ CD CD o CO O) 3 3 r c © CD 3 3 - i ■ co co CM

L Q_ CL -Q © E 2 £ S. 3 CO q

© 2

- L CO CL I- CO £ 2 © o CZ Cvi "8 Q. O LLI 2 £ £ o 2 w to LU O CO © co CO o © © © 3 © >

> LU Z C JSZ. cz o z > > < o o LU O LU z CO o D C 0. cvi O CO Q Z C £ o CD 3 3 w

CM CO t x 5 0 to ’ o CM T-; ' o V® to to U ^ LU © •C X— co CM OO CM ■M- O' 'S CO CO CO O O OCO CO T— T— o ' o cvi to x CO O O ' s 5 0 O > to _ © E © c o © © c © IS « 3 — ■

X— x— CM CO ■M" 5 0 to OO ’ o o' CM ' o 5 > d X—| ->§ ^ cvi cvi lO to lO lO cvi x cd 'S ' o tn I — i

■M" P d co. O O' 'S T" CO CO ■xfr d 'O' o' 'S O Zi > S ' CO m d ) f i CO x-L O :lf x ' O o o E. © o © W II ? s — 1 T“ CM CO t x M C 5 0 d t ■M" If) d ? s p X— o o CM ' o o CO ' o 'S o cvi to cd 2 O © 3 1

M C o M C o T- to o o S ' o O o n i o d O CM o' 'S O ' o O 1

1— CL CO —I LU L_ ^ CM O i- Z C n © to ™ © 2 c © © >

LLJ » O O CO CLo Q. © © © o LLJto CO O > > LU cz CO Q LU Z C Q LU z CO £ o o cz o z > o CD o 3 . Q 3 3 3

CO OO d CO d i o 'S m CM to O o' 'P JD cvi If) d to d o p 05 1^- OO •vO ■*" o o ' o If) d d d r» CM CM O o o ' o ® ® ° o © © © o © 1 i 1 ^ 1^- o 1^- X—_ ° v CO CO to CM U5 cvi cvi in d cd CM o m o' 'P CM in X CM CO ' o vP ' o — 1 CM x— O) CO o T“ p v v cvi cvi cvi tn T— d O p O) M- P v CO d o p ' o 'S to CM o' 'O ‘3 O o ' O 3 to a. © 3 3 V) 3 X 3 v > > © o © ■ 1 r^- x— "- 1 OCO CM CO d CO CO CO oto' to CM CM CM IO ' o 'S cvi cvi in in cd MCM CM m o' P v "o in n x— o ' O P v O) E> 3 © © 3 © > ■ ■

X—| r*»("- \i c CO CM XT­ I'- d \ cvic\i cd 2 3 ■ ) o =) X d O 'S ) U ' o 'S in O' 'S O ' O 3 © Q © = © © tz © © E 3 to — ■ ■ CO IO cvi i"- d CO CO O CM to no in cd CM m o' 'S cvi LO o X— O ' O 'S a. 3 3 3 © ■ ■

■xt oo o. ^ x CO CO d T— o o o o ' o ° s d o O O o' P s CM to o O ' o 'S CM i 242 243

o 0 3 0 3 0 3 0 3 0 3 CM CM CM CO Tj- CO CO c o CM o T“ T" T™ T™ o> CO CO CO CO T— ■M" ■M- «= O CM CM CM CM CM o CO CO CO 03 Tf 03 03 03 CM 0 o CO CO CO CO CO to CO CO CO © co CM CM CM CM d o ' O O O O o d d d d d 1 ° 1 1 i i ■ 1 1 1 1 1 1 1 1 1 CO co ■C co to o T i­ t J- t J- CO CO CO •M- to m in o 0 3 e n 0 3 0 3 0 3 CO oo CO ■M" ■M" 'M- o O o O OO 03 03 03 co CM CM CM o CO CO CD CO CO o o o CO CO oo CO T— T— T— T-- T— T— T— T— d d 1 1 1 1 Q. c s o s ° s o vP v P 'P >p s ° 'P « p > p 0 s o ' o '* o ' o ' o ' 0 s o ' o ' o ' o ' o ' o ' o'S ' o ' o ' O _ | CD T“ T“ T“ T" O CO CO CO o o o o o © U3 T“ T“ T" T“ o CO CO CO o CD CO CO CO o < < < © ■Z» IO T“ T"T" d CO CO CO o CM CM CM o > o 1 ". CO CO CO CO © > 03 IO to o o CO CO CO o Q. CM CL CM CL CM CM

sP vO sP n P 'P 'P ■p 'P 'P 'P O' o ' o ' o'S ' o ' o ' o ' o ' o ' o'S ' o'S ' o ' o ' o ' o ' 0 o CO T“ T“ T— T“ O o OO o o 0 o 1^ l'- o > o t o T“ T—| T—| T“ o > OO o o > o CD CO co o 2 d t o d 2 d o d d 2 d cd cd cd o o o t o o o CO CM CM o o to ■*” T_ 'r " o o O o o a: CL CL LL to to to to to to to t o t o t o t o to to to to to CM csi cm cm cvi cvi 0 csi cvicsi 0 cvi cvi cvi T_ IL cm il CM CL CL LU lu LU LU > > > > O o o o O o o o Np 'P s? ■P P •p >p 'O

- o ' o ' o ' o'S ' o ' o ' >- o ' o ' o ' o ' > - o" 5 ' o ' o ' o ' o ' o o o o o o o COCOCOO P T—COCOCOO o\— o o p p p o p CO CO o P T—T—T-| O C/3 d COo d d d d d w cd cdcd o (0 CDcd cd d 2 o 2 CMCMCMCMCMo 2 COCOCOo 2 m t—T— T— o LU LU UJ t— LU T— O Q Q O of CL of CL tn m m tn tn in in in in tn m COm m tn p CM c\i cvi CMcsi csi csi cvicsi cvi O i z cvi c\i csi in £ hi — to 1— T— C/3 c/3 co CO

LU cd LU CD LU CD LU CD c O CZ Q c O TO O > ■> ■> > CO TO CO CO CL CL CL CL TO TO CO *—»CO ro TO TO co TO o O CO O (D O CD CD CD CD CD o O O E O CO E « c 3 C J -2 CO E 01 ZJ co X X o X O to o TO TO Tf T f to .E -5 £ co CO C .E TO CO .E co c CO Q. TO T— = E> « o .E E p> E CO 9- ^ TO --E CL .E w. a. c O ® o •> E 0 CD Q. £ " i O tD to 0 CD o ^ co o E * '> § TO D) Q. T- _0 T3 CO E •4-rf _o C/3 co .55 CO *“ o CO 3 .sa 3 e « 8 ■S w c >, TO o UJ 3 O to UJ "E >* E = LU * f S . 2 . ^ 3 CD CD CM CD CO E to TO .E to LO o to O 3 m 00 Jz — to at O C TO 3 c O TO S LU IS ° LU o LU E 3 ■§ § n CO 3 X N m 5 LU 8 S? | | CO CL CO 2 O CL O CL «0 CD 3 2 O Q. CO CD CO 3 CO> h - CL 0 ) O X ° ^ .3 CL CO O I Jj I - £L CO> X 0 Q Transect 2 Galax urceolata Ravine Plot#1 ridge 90 SPECIES DENSITY R. DENSITY COVERG R CONVG IMPVAL ln(pi) shannon Vaccinium spp. 2.5 100.00% 7.5 100.00% 200.00% 0.0000 0.0000 CM o £0 £0 01 > ■ 13 O cc co c as cc d tn as L. o as cc 3 X _o OS o Q_ s CM Q. o tn as on LU z Q LU z (0 Q_ —I a CO o > LU n o a: O O Z > CD CL LU LU g o CD CO o CO> cc p s CO CO CO O CO CO CO ITS co cs o o OS T—T— o o O C co CO CM CM CM IO S IO 'o ’d ' o CM OC CO CO CO ' o P s CO CO os CO CO COCOCOCO E tn CL CO o Q. 3 ■ P s P > OCO CO CO CO OCO CO ' o O C s 0 CM CM ' o CM csi IO IO IO d o d CM o CM o O o o o o IO S O CO CO 1 COCOcs LL TD £0 as 2 d tn CO O) 3 1 p s ' o ' o P s IO T— CO OIO IO ' o o c cs S O CO CO ‘•4—* o CO tn as as CO > 3 2 3 1 P s o s o o © OS CO © 0 0 © M C o s 0 ' o CO ' o P s © o o Csi o ■ £0 _cc on CM CD o cc cc d as CO m CC £2 as > X 3 CL _o co Q. as tn o 3 Z . Q LU z on LU > LU on on o o > CD o CO £ Q z CO o o Q. o tn o l l o i d £ CO d o ■ s o -r- io |s» OO *± Tj- o f ■»— CM OS h- cvi n i ' o c o o T“ ' o P s io s m c io s c o o o o' cm ^ h- co CO os r- CO CM io > _3 CM CM <3 d E tn ql CO o o T— o' P s M C - ' i CD OS sO nm in o ' o ' o s u £0 . 2 o c cvi CD CO o as X 3

P s o P s P s ' o M C © T o' o o S— s c LO o o o o ' o o o —

± Q_ as O) c L_ cc o l_ o o > OS o — L CO CLI— co ^ ^ -S3 CM I « £0 on CD as d as O cc cc _ Q o lu 5 2 d tn m-as iu *- — o o as ^ X >

a. o o c £ o > LU on on > CD on a LU z CO 1— o CD o o O T T* T- I

CO CO T- ' \ o c\i o' ' o ' o ' o CO CM io IO io ® CO CO O P s o o co o co co o co co io co CO CM CO CM ' o nm in OCM CO o o = ) 3 O) .= CO CO CO 1 M ' o 1^ o LL CD > <0 « ■S o> « ° (n 3 O E o co iS ^ ~ a. X W - ^ CO ^ ■ in ' o ° v o m T“ T— csi ' o s c <2 CM 03 E 2 . 1 CC CM CO o o O m

18.5 100.00% 12.5 100.00% 200.00% -0.9955 244 Transect 3 Galax urceolata Ravine Plot# 1 ridge 90 SPECIES DENSITY R. DENSITY COVERG R CONVG IMP VAL ln(pi) shannon Vaccinium spp. 8 100.00% 12.5 100.00% 200.00% 0.0000 0.0000 Chimaphila maculata P J- o _o co g_ O JO CM JO cl •*-> CO CO D CM CD o CO T— u. O CD o co c a> o X =1 CO >

Q_ £ CO o

O O CO CO Q_ E 3 LU O UJ LU o o > HI o z > > sz CO O « CO Q cl o 0 CL < cd □ LU z c . P o o c ° CO § 10 n

o o o oN ° v o o o vO ’ o o o o O O -a CM cm LO o o co o o CM o o d E o E c co CD CO

m V CO 0 JO JO a: S 1/5 ■S CO CO CO CD CO t— O CD o CO C CD X 3 CO > _o o CO Q . . Q CD

LU Q > < 2 2 Q. > 0 > LU o O > LU DC 0 QC O O 2 co ad O LU z CO ' O ' o ) O (N N f'. T“ ■<— co - r d P v m 'p co’ oo ' O vO O O O O s CM'sf i'- co r- in t co cvi in CM in CO ' o T— ' o d d o CM CO O O CO . o i ■ 05 - CO- 0 JO is Tj- cm O CM ' o 5 0 "- i" d c o d co no in T—o 5 0 CD sO O cvi inin CO u. O CD X 3

iq o o O O o T” CM o ' O vO T- o O o ' o 'P d

5 0 in O IT) JO CL 0 L CO CL - CO 1 ^ LU Q_ O S CO O ^ Hi. co - LU — f *- T CD O O CO CO % O CD O TO CO CO C CD > O O) CD

xz LU > < i z i 2 > 0 o O CL O O > 1 Q 0. co ad Q LU Z 0 CL C/3 — o c cz . a CO 3 £Z CO P s m ' o CM o CM 'P o d co h- n t- d d o c - ' i CO csi in in in 5 0 o' CD oi t T CM 5 0 ' o ' o CD d CM oo CO 05 "T o O co co n -2 Q. - ■ ■ P v i^- w ' o CO 0 JO p COo t t T— ■o- O o o Md CM in CM c\i T— ' O vP CO CO X O CD 3 — -

' o p > O co o> O o o r ' o in O o ' O 'S CM O T o d CO O — — 245 Transect 4 Galax urceolata Ravine Plot# 1 ridge 160 SPECIES DENSITY R. DENSITY COVERG R CONVG IMPVAL ln(pi) shannon Vaccinium spp. 2.5 33.33% 2.5 33.33% 66.67% -1.0986 -0.3662 Chimaphila maculata 2.5 33.33% 2.5 33.33% 66.67% -1.0986 -0.3662 O O CO CD OO CO O 0> CD OO CD o t CM o t O csi co m m CO CO CO o t o t T3 .Q n in co co co cvi CO O X3 E i_ o E 0) 3 CO s 3 3 $ t CM —

O C C CO £ CO (0 l l ^re Q- CO H O 0 Ct re CD o CO CD co X 3 o re CO c Cl) O > re c UJ o > o o Z > > < O' UJ z c o a: O c o CO cc Q UJ z Q J "o UJ CO c o

d CM o - r CM t T P s N h- 4 05 P ' f T ' o d in oo 4-^ in CM m in CM ' o 05 ' o !'- cd 4— cvi CO SI c c re re S E o E CD co — 1 i'- m 4— ’ o o CO 4— n© in ' o Ty 4 l''| o' o' "M; CO M" to p s '■s CM OO ' o P ' CM 4— n m CM CO oo —

in 4— o t r oo 05 ' o O P s m o > o © o d O CM o ' o 4 o d O O — ;Q a a co re D CO coCD e CO O 3 3 2? e

iS O' ’> Q_ — W S o o CD re CO C CD ® o re £ CO CO CD _o Q. CD

z s a. ’a Ul l _ > ,,—V J C n CL - > o > < h Z C/3 a: 0 O 2 0 Q 111 O a LU : a z CO CO c c o CO c c - r m - r d 4— t'- o ot to in Ty CD co CO o' CO ' o p s CO CM n CO CO in ' o 'O CM in 4— CD CO in CM CM CD > CO v _ . . ! 2 £ O 2 (O I o_ re — o 3 cdCO ^ co CO a COO 3 P 3 a> 3 : ■M" m 00 o CM 05 oo oo S ' o o P v o CO 4— m co CO o' s? O' ' o 00 CD m M- CM co’ 05 cd 5= p > co d 4— r'- o tn 4y CD CO ' o CO CO O' ' o P « CM in 4 CO CM CD cvi in in CO vO in § CM CO LL re o —

’ o 05 CO CM 05 P ' O © O o o O CM o' vO o ' o ' o o O d o 4 d 4 CO — — i m oo 246 Transect 4 Galax urceolata Ravine Plot# 4 slope 20 SPECIES DENSITY R. DENSITY COVERG R CONVG IMPVAL ln(pi) shannon Vacciniumspp. 2.5 23.81% 7.5 75.00% 98.81% -1.4351 -0.3417 Galax urceolata 8 76.19% 2.5 25.00% 101.19% -0.2719 -0.2072 to Tt 00 i a © CNI o o o' o o o LO

V V V . Q _ Q I S ja E < O co o o 5 O .Q (O £ 8 © o E 3

(fl D1 D l f ( , LO LO

247 LITERATURE CITED

Adams, T. M. and S. N. Adams. 1983. The effects of liming and soil pH on carbon and nitrogen contained in the soil biomass. Journal of Agricultural Science, Cambridge. 101: 553-558.

Appier, P. K. 1974. The vascular flora of Fort Eustis, City of Newport News, Virginia. Unpublished M.A. Thesis, College of William and Mary, Williamsburg, Virginia, 147 p.

Bailey, J. S. 1995. Liming and nitrogen efficiency: some effects of increased calcium supply and increased soil pH on nitrogen recovery by perennial ryegrass. Communication of Soil Science and Plant Analysis. 26(7&8): 1233-1246.

Barans, A. C. 1969. Vascular Flora of the College Woods, College of William and Mary, James City Couty, Virginia, Unpublished M.A. Thesis, College of William and Mary, Williamsburg, Virginia, 196 p.

Bick, K.F. and N.K. Coch. 1969. Geology of the Williamsburg, Hog Island and Bacon's Castle Quadrangles, Virginia. Virginia Division of Mineral Resources Report of Investigations. 18:1-28.

Cain, S. A. and G.M. de Oliviera Castro. 1959. Manual of vegetation analysis. Harper, N ew York. 325 p.

Carlquist, S. 1965. Island life. The Natural History Press Garden City, N ew York. 451 p.

Crouch, V. E. 1990. Floristic and vegetational studies in the College Woods, the College of William and Mary, James City County, Virginia, Unpublished Senior Honors Thesis, College of William and Mary, Williamsburg, Virginia, 88 p.

Darlington, P.J. 1965.Zoogeography. John Wiley and Sons Inc. N ew York. 675 p.

Daubenmire, R. F. 1959. Plants and environment: a textbook of plant autecology. 2nd ed. John Wiley and Sons Inc., N ew York. 422 p.

DeLorme. 1995. Virginia Atlas and Gazetteer. 2nd ed., 2nd printing. Yarmouth. 80 p.

248 249

Dewitt, R. and S. A. Ware. 1979. Upland hardwood forests in the central Coastal Plain of Virginia. Castanea 44:163-174.

Downing, D. J., R. J. Bayer, and D.H. Vitt. 1991. Rare and disjunct plants from Whitemud Falls Ecological Reserve, northeastern Alberta. Canad. Field- Naturalist. 105(3): 376-381.

Dowsett, H. J. and L. B. Wiggs. 1992. Planktonic foraminiferal assemblages of the Yorktown Formation, Virginia, USA. Micropaleontology 38 (1): 75-86.

Erlanson, E. W. 1924. The flora of the peninsula of Virginia. The Michigan Academy of Science, Arts and Letters, 4:115-182.

ESRI, Environmental Systems Research Institute. 1999. ArcView 3.2, Redlands California.

Ewan, J. and Ewan N. 1970. John Banister and his natural history of Virginia 1678- 1692., University of Illinois Press, Urbana. 485 p.

Fernald, M. L. 1937b. Local plants of the inner Coastal Plain of southeastern Virginia. Rhodora. 39:465-491.

Fleming, G. P. 1999. Plant communities of limestone, dolomite and other calcareous substrates in the George Washington and Jefferson National Forests, Viriginia. Natural Heritage Tech. Rep. 99-4, Virginia Dept, of Conservation and Recreation, Division of Natural Heritage, Richmond. Unpublished Report submitted to the USDA Forest Service. 218 pp. plus appendices.

Gillespie, M. S. 1970. The Vascular Flora of New Kent Co., Virginia, Unpublished M.A. Thesis, College of William and Mary, Williamsburg, Virginia, 65 p.

Greaves, J. M. 1982. New records of vascular flora from Gloucester County, Virginia. Virginia Journal of Science 33 (2): 47-63.

Gronovius, J. F. 1739. Flora Virginica. Leiden. 2 parts., The Murray Printing Company, Cambridge, Massachusetts 176 p.

Harvill, A. M., Jr. 1965. The mountain element in the flora of the Peninsula of Virginia. Rhodora. 67:393-398.

Harvill, A. M. Jr., T.R. Bradley, C. E. Stevens, T.F. Wieboldt, D.M.E. Ware and D.W. Ogle. 1992. Atlas of the Virginia Flora. 3rd ed. Virginia Botanical Associates, Farmville. 144 p. 250

Hill, S. R. 1992. Calciphiles and calcareous habitats of South Carolina. Castanea 57: 25-33.

Jackson, S.T. and D. K. Singer. 1997. Climate change and the development of Coastal Plain disjunctions in the central Great Lakes region. Rhodora 99: 101-117.

Marquis, R. J. and E. G. Voss. 1981. Distributions of some western North American plants disjunct in the Great Lakes Region. The Michigan Botanist 20: 53-82.

Moore, P. D. and S. B. Chapman. 1986. Methods in Plant Ecology. 2nd ed., Blackwell Scientific Publications. 589 p.

Monette, R. and S. Ware. 1983. Early forest succession in the Virginia Coastal Plain. Bulletin of the Torrey Botanical Club 110: 80-86.

Mort, M. E. 1994. The vascular flora of the Tar Bay and Powell Creek watersheds, Prince George County, Virginia, Unpublished M.A. Thesis, College of William and Mary, Williamsburg, Virginia, 119 p.

North, G. B. 1983. Vascular flora of eastern Middlsex County, Virginia, Unpublished M.A. Thesis, College of William and Mary, Williamsburg, Virginia, 87 p.

Pielou, E. C. 1979. Biogeography. John Wiley & Sons Inc., N ew York. 351 p.

Plunkett, G.M. 1990. The vascular flora of western Isle of Wight County, Virginia, Unpublished M.A. Thesis, College of William and Mary, Williamsburg, Virginia, 114 p.

Quarterman, E. and C. Keever. 1962. Southern mixed hardwood forest, climax in the southeastern Coastal Plain, U.S.A. Ecological Monographs 32(2): 167- 185.

Salle, E. D. 1972. Vascular flora of the Yorktown Colonial Parkway between Brackens Pond and Kings Creek. Unpublished M.A. Thesis, College of William and Mary, Williamsburg, Virginia, 147 p.

Sokal, R.S. and F. J. Rohlf. 1994. Biometry: the principles of statistics in biological research. 3rd ed. Wit Freeman, San Francisco, 887 p. ter Braak, C. J. F. 1988. CANOCO, a fortran program for canonical community ordination by partial detreded canonical correspondence analysis, principle components analysis and redundency analysis (version 2.1), Agricultural Mathematics Group, The Netherlands. 251

Terwilliger, K. 1991. Virginia's endangered species. The McDonald and Woodward Publishing Co., Blacksburg, 672 p.

Thorne, R. F. 1972. Major disjunctions in the geographic ranges of seed plants. Quarterly Review of Biology 47(4): 365-411. van Montfrans, M. V. 1980. Vascular flora of Mathews County, Virginia, Unpublished M.A. Thesis, College of William and Mary, Williamsburg, Virginia, 63 p.

Vascott, A. L. 1985. Vascular flora of southeastern King and Queen County, Virginia, Unpublished M.A. Thesis, College of William and Mary, Williamsburg, Virginia, 64 p.

Ware, D.M.E. and S. Ware. 1992. An Acer barbatum -rich ravine forest community in the Virginia Coastal Plain. Castanea. 57(2):110-122.

Ware, S. 1978. Vegetational role of beech in the southern mixed hardwood forest in the Virginia Coastal Plain. Virginia Journal of Science 29: 231-235.

Weldy, T. W. 1995. The vascular flora of the Corrotoman River watershed, Lancaster County, Virginia, Unpublished M.A. Thesis, College of William and Mary, Williamsburg, Virginia, 139 p.

Whitmarsh, L. L. 1980. Vascular flora of the Burwell Bay Area Isle of Wight County, Virginia, Unpublished Senior Honors Thesis, College of William and Mary, Williamsburg, Virginia, 60 p. Vita

Born on October 28,1974 in Fairfax, Virginia. Graduated from St.

Stephen's and St. Agnes High School in Alexandria, Virginia in May, 1993 and

attended Rhodes College in Memphis, Tennessee. Received a Bachelor of Science in biology with a minor in philosophy in May 1997. Began graduate studies at the College of William and Maty in August 1998. Worked with Virginia's

Division of Natural Heritage in the summer of 2000 surveying calcareous ravine communities in the Coastal Plain. Accepted employment with the Nature

Conservancy and Association of Biodiversity Information, Arlington, VA in

August of 2000.