KAERI/RR-2392/2003

Korea-Japan Joint Research on Development of Seismic Capacity Evaluation and Enhancement Technology Considering Near-Fault Effect (Annual Report 2003)

Research Organizations Korea Atomic Energy Research Institute Central Research Institute of Electric Power Industry

Central Research Institute of Electric Power Industry SUMMARY

I . Project Title

Korea-Japan Joint Research on Development of Seismic Capacity Evaluation and Enhancement Technology Considering Near-Fault Effects

n. Objective and Importance of Project

Recently, the safety of nuclear power plants against near fault earthquakes has received great attention in Korea. The objectives of this collaboration are to develop a seismic capacity evaluation methodology and enhancement technology, such as isolation system. In the analysis, the effects of near-faults on seismic responses are focused on.

HI. Scope and Contents of Project

In the frame of the CRIEPI-KAERI collaboration following three research topics will done: (1) Generate scenario earthquakes Seismic sources affected to a specific site will be first identified based on the PSHA and then the parameters for scenario earthquakes will be assumed. The attenuation equations of response spectra are used for generating input ground motions. (2) Assess PSHA in Korea sites The PSHA will be carried out for Korean nuclear sites. The results evaluated in CRIEPI will then be compared with those in KAERI. In addition, the contribution factors at specific sites are evaluated. (3) Develop PSA methodology The PSA methodology for nuclear facility enhanced by seismic isolation system will be developed. Then, the probability of failure between conventional and isolated NPPs will be compared.

IV. Result of Project

From the research in this fiscal year, following results were drawn: In the research on seismic source model, the bases of earthquake source modeling are reviewed and discussed. The kinematic source model, which assumes the shape of slip function a priori, with finite extent of fault is very effective and useful model for evaluation of strong ground motions, especially near-fault region. Future works should investigate the characteristics of strong ground motions based on these kinds of source models. In the research on seismic hazard analysis, the concept of hazard -aggregation and the methodology of Probabilistic scenario Earthquakes (PSE) are first explained. Next, several cases in which PSHA have been practically used are introduced. Finally, seismic hazard curves and PSE for Wolsung NPP site are evaluated based on when Peak Ground Acceleration is adopted as an index of earthquake motions. In the research on seismic PSA, a prototype system for seismic PSA, in which TDAP III is adopted as the core solver, is developed. The system facilitates the evaluation of variation of earthquakes. Then, method for generating fragility curves are illustrated based on the review of the methods for piping systems and building structures for nuclear power plants. Moreover, a conversion methodology for ground motion index of fragility curves is introduced. The illustrated

method realizes that fragility curves are efficiently and accurately evaluated and the comparison between seismically isolated and conventional systems, those have different dynamic characteristics, can be done. In the analysis of ground motion and historical earthquakes in Korea, 4097 ground motion records observed at twelve stations and 1859 historical records were analyzed. From the analysis of ground motion records it was found that the dominant period was 0.1 [s] and the spectral intensities were weaker than that of design earthquake in Japan. From the analysis of the historical records, it was found that the earthquakes are more frequently occurred southern area up to north latitude of 37° .

CONTENTS

1. Summary of Collaboration ...... 1 1.1 Title of collaboration ...... 1 1.2 Research code at CRIEPI...... * ...... 1 1.3 Objectives...... * ...... 1 1.4 Researchers • • * ...... 1 1.5 Research term...... 1 1.6 Research plan for phase I * * * * ...... 2

2. Evaluation of input ground motion ...... 4 2.1 Introduction - Kinematic source model -...... - • ...... 4 2.2 Formulation of seismic wave radiation based on the dislocation model on finite fault plane ...... 4 2.3 Similarity law of seismic source - relationship between the magnitude of earthquake and source parameters -...... * ...... 10 2.4 Kinematic heterogeneous source model ...... 14

3. Research on seismic hazard analysis ...... 29 3.1 General...... *...... 29 3.2 Probabilistic seismic hazard analysis ...... * ...... 29 3.3 Hazard de-aggregation and probabilistic scenario earthquakes ...... * ♦...... 32 3.4 Practical applications of PSH A...... * ...... * ...... 34 3.5 PS HA examples for Korean site...... 39

4. Research on seismic PSA...... 69 4.1 Development of prototype system for seismic PSA...... 69 4.2 Method for evaluating fragility curve for seismic isolation system ...... *...... * * 72 4.3 Conversion methodology for ground motion index of fragility curves...... 73

5. Analysis of ground motion records and historical earthquakes in Korea ...... 110 5.1 Summary of analysis ...... 110 5.2 Analysis of ground motion records ...... 110 5.3 Analysis of historical earthquakes ...... Ill 5.4 Conclusions ...... 112

6. Conclusions of this year ...... * • 154 6.1 Research on input ground motion ...... 154 6.2 Research on seismic hazard analysis ...... * ...... 154 6.3 Research on seismic PSA...... 154 6.4 Analysis of ground motion records and historical earthquakes in Korea ...... 154

Appendix A Terminologies ...... 155 Appendix B Relationships between Mw and other magnitude ---- * ...... * * 156 Appendix C Information on computer programs for PSHA...... 157 C-l Procedures in CRIEPI's program ...... * ...... 157 C-2 Computer program for attenuation equations which are used in the PSHA...... 158

iii 8 #:

i. aimmEoag ...... i 1.1 l ...... 1 1.3 1 1.4 i 1.5 i 1.6 7^-Xl

2...... 4 2.1 ...... 4 2.2 #"Pg(D±# 4 2.3 mmofmm-^ 10 2.4 ...... 14

3...... 29 3.1 #C&tc...... 29 s. 2 - K##'...... 29 3.3 ...... 32 3.4 KM^mmey...... 34 3.5#gmf^r m#^j...... 39

4. mmpsAKMf 5#%...... 69 4.1 m#PSA##C/^TA(7)W#...... 69 4.2 ...... 72 4.3 ...... 73

110 5.1 ...... 110 5.2 ...... 110 5.3 ...... 111 5.4 ...... 112

6...... 154 6. i ...... 154 6.2 Kcm-a#%...... 154 6.3 mmpsACNfame ...... 154 6.4 154

##-A fflISS...... 155 #m-B ...... 156 #m-c ...... 157 c-i ...... 157 c-2 158

iv sis

1.1

Development of Seismic Capacity Evaluation and Enhancement Technology Considering Near-Fault Effects

1.2 BF%HBS0i=i- K U02041

1.3 aaBM

ftttiHi: 4oTV'5.

*fc, A^eiSEto-asSr^R^t-a r 5: KJ: *tStt*[S] U-t5:tiJ!SSS1ltV'5fcfc, S^tttoiRj^SrSKbf3±T*, **PSA»«^ffi roHSIM-Si: StvO'S. Wfei5

1.4

SS6E5EM Uti$IiS6$) =£B±1$9F%* (i*$efS81S) *A±69F5E« («!«»S0!) [Korean Atomic Energy Research Institute: I Dr. Young-Sun Choun (Integrated Safety Assessment Division) Dr. In-Kil Choi (Integrated Safety Assessment Division)

1.5 maim ffl : 2003 ~ 2006 %

1 1.6 y^—% i (a) Seismic Capacity Evaluation Technology

Subject 2005 2006

PSHA based scenario earthquake PSHA based on developing method Logic tree

Incorporating KAERItfii Maximum credible methods of near- earthquake caused by field effects to Evaluation active faults design spectra of structural ara-cam-rMs response for near-field ground Modification of motions Evaluation of near-field earthquakes seismic analysis model

Structural Experimental Analytical behavior evaluation of evaluation of under near­ structures and structures and Seismic field ground components for components for capacity motion near-field motion near-field motion evaluation of nuclear structures Requirements for Seismic capacity Seismic Seismic and seismic evaluation evaluation capacity components capacity of structures and procedure for evaluation evaluation components under structures and system for NPP system near-field motion components

2 (b) Seismic Isolation Technology

| Subject | 2002 | | 2003 | | 2004 2005 | | 2006

Evaluation methodology of isolation system

Effectiveness evaluation method Evaluation Seismic PSA Trial evaluation of method for Cost/benefit method for reduction in seismic evaluation method seismic isolated seismic risk of isolation structure NPP system Seismic Evaluation isolation of procedure of Development of nuclear seismic isolation seismic risk analysis program structures system components Evaluation of Evaluation reduction in guidelines seismic risk of NPP Effectiveness Parametric study evaluation of for optimal Verification test isolation system isolation system Evaluation of isolation of seismic systi earthquakes isolation Cost/benefit Conceptual design system analysis of isolation system of isolation system Functional limit test for scenario earthquakes

Technical Development guidelines for of technical equipment base guidelines isolation in NPP

3 12m

2.1 *K«rtg|?}c#tt1-5»fSBS!r, SS#ir^P-flr©ME j: h/V [4f,r)]&4jLfc£ t, J*Krt©Wr*a>e>*;ftfc£#©j£* t?, #g!l t icHSJSiiS'lti^ 9 h /V u(.v./) <0 / fix (i, 3( *§, @t (representation theorem) }£ 5 "' 2)

(* ’0 = Jjfr JJ[«/ (#• r)]cyw v*G^ (x,t\#,r)dz (2.1) s ^ r r- 0,2,., tt^ V -yMS g„©SM(ESt(6G„/d#,), c>ipg vrtt»r®ffi©£ K/i/y© . santi, *am±©*ymv'E@^y h>

&SLtV'5. j: XySSExKSiiSifcRS u(x,f)©#@#eic-©T#mrf 6 t b tic, - ©J: 5 **»¥« *®^T^^fe»^fL5S!g©tt®liJKovxTxE-^5. *»T*|g*Sh.5rtStt, -e©i$ i980 #

2.2 *E©A^$S%oRl©6t'3L'lcJ:4«®*©#E4 Cl) mK • #* • SESKIc*5lt5is«Ett«©»tti r r-eii.ii: LT#*5CB a 2,K$-d#il®^toES^y>4rfBxfi-t5.ffi»©7t©, • mid • i®tfe5t«it5. c©£ #, 5£<2.l) 5 Bf £ij(£r) (C *5 V' X p Slp s(x-4)5(t-T)tf1mz-bivtz £ # ©, SS(x,<)K*iit5 / .t-iSitoEeiSSi: LT$*6iv, HTOi 5> l:*lt5. G,p (x,t;f,r)= — (Syjp -S,p )-j- jjVS(t-t-t')dt’

1 1 + -—Tr,rP - (2.2) 4 7ipa r 1 4^9" ZZVS¥(t9 n ^ y-h - , s(x-£) £ S(r-r)lti (3 ikB) £ #M (1

4 &7c) itc rii*2S 4 frt>WLMM.x fciSi;&>5 %■ e-47 hyv, rttm*

+—4 Ttpp ITT r W»v»”>

1 pft, 6 s 6. * bsi'[u]kfcfeL, [«]£

X 0 \Z.jj\bfr n t v — MAu IZ&M LX V'5. \u]-n- Au $ yt it \uj ] = n} Au (2.4)

Z © i: # © Am liRSSMSXsource function), (slip function) t sfcAiit, A«,©eis)»^, f IwfiSiattfi, teJ:U=6V'iiV'$f6©x»7—fblcj: 9, S(2.l)tS v'$e-<7 f

(2) iSi6E$y&$tcK@isn5SS®e

iC(2.3)(cjoit6i-^0*&M#©mm^g&, HTOi 5 tzQte.rti is < .

(2.5)

zz-ecit#tii6ii$ (aitzitp) **-r. nOc.riS: 7-y L, o ■55 (t 5 £ , Aii(f,ffl)= jAu(g,t)exp(icot)dt , 23 Ji V Aii(£, i» -> 0) = JAii(£.t)dt = Am(£,/ -> co) ^ b

fi£ 0 aZo.

n(0) = JJa«(^,t->°°)dZ = UA = — (2.6) I Z Z "C (/(±©Vi6t"^y #,W ItWrSBfi.Mo litBSe-7 y h , ^(4SJttVSr*f . 5t(2.6)j: D , h7VS#e©ffi«S*ffiffiii, #.SSS® j: IH#iziiii*^-7 > bx-mmz hZZk hi frh>Z>. fV'»A5i:, 7-:^ P/P«IIi)i¥tli^<{f 5SJ( + »fzffijiig§c (ftSzft) *fcr-<9 ME(t7Ty7' ME (1-^9i$SMSas

5 oM- (2.7) tztzL, BrJI©t-fXit m, U'Jft*«©ift*;t©IWT, «T©A#Sr«fc1-*B^S a>5. L2«>„/2 (2.8 ) mmmim^s+iH^^tttuf, s(2.8)©^#ii^*«is©©fc»ro*#a«A)icjt-

M»Au) Sr*» J: 5 i Lfc##, b#6,i%61tlEI±, tij5h-5**$to»SBKS^6nfc6E^, 1" & t) *> Eft U xr=Zlcosd (6ttl8rSB± ©^7 h/t^Mto^ h/VxS {iffii$gic LT c’=c/cos0©«6Hfcl®£ StiS. tt»B-h©&tli$»)6S c J: 9 t/J'SV'Ett, »**»&©£*(;: LfcaH'JBftMft MKSX-tS^dSKSGnhomogeneous wave)T'fc 9 , -£ ©#tt Sr K b fr\Z-f 5 fc * (i, *6*5.

(3) »r»B±©a*e*iJSa»«i*il,K#A«**-Hasken ^©/V- SfSwjfiiSOSrigeLfc^x/WT-li, Wr 1 $©«»»$*Pl©$$T*e#"f-5rjrKJ:$B#4-

#i*i-5£-s^fc5. #%i:0-2.2ic$i-z)%, asz, *s wnmmszmmtf-'ism&vT- T/k&#%5 3>. (gr.lB©ffi9§*S:

A4f, <)=/(<-ft/v), 0

«M = »- [r - r, /c - ft (1/v - cos T/c)]dft (2.10) fcfc'L, m«8©e#*fa ft«8L#,*ft©*-f-AT-;fc-5. *(2 .h»t-i*, K«B±?m# SJKESSivS.'SroS-S- (M7o y h i^tfftd) ttitSi: &d. $7t£rffl©8#i*tt, i-^1 MSM»/(/-/-0/c)©o«<£(i/v-cosi>/c)Kj=it5li»WSto¥iSb * (2.10)©7 — !) SvW:t9;*T-*x.£>;h,.5. 0(x, f)/c]

*(2.ll)© ) h^mxvx ©Hit, #m^#m©*A L i»o:i KZft ¥»ft (SUES*) $*£*+. mnx)/x\.#r-1Ea5tL5S#i6Slitt, i*

6 JSE/iK#*J; 9#<*tr. iWMSBSc/to^iSMfiEX^X F/H:4i5|;fCoi,'T%«t5./(r)A^f ??&&-?5-z_r

:;f t liAfeia* 9 «p|«, d S(2.i2)*e#r«m^9 si Si*!), *:©x-4X Hyw/(«a)it, S;(2.ll)©(sin jr)/JT ©« t IWStf' i*5«« (ctb«LTS*1-5. *£«, »ftV'®®E16--*[R){5#i-5*®^T/vSr#x. fcs-e-, * sjsn5s#$f4s®©x^^ h/nt, -> V K:tt«L, -*-eiSJW«$cflm*ifSft L tiLh±ifi 9 fWi® r © fEttiSH fc 5>t j; 9 , *j8, *#©# pr©±$$ds#m-c#» V'S-S-Kti, 5 6, le: r©WBttlc &9, x^Xh/Hifti* i©i: #©x-<^ 0, $6)SrfflV' tHTCt 5 sinX II sin y sinZ smX siny sinZ \n(x,a) = LWD (2.13) % || y Z X y Z

A" = (i»£/2)[l/v - (sin 9 cos «# )/c] iti£L, Y = (mW/2c)sm0 sin 0 Z = 0)Tj2

a±©Z 5 /Hi *»§#©£ 4IoT Haskell ^7=vV, **>±as 9 n#IW r, i imse#Sig v i ©5 sasro/^y-^TEiiiSh-S.

(4) E#©Bfltej:ff±^#SLten®Wie^T/f- Haskellf T/HCli, ©E»ttESES ©S3 *[6) K #i$T—* |iil€# L, t©#« x n > s i4ESfi® ' z-e;a##©m%B#-*P#ikB#©f T/Hki=-3©T c©#A, 9 , X&ZZkfrb, ifrS®tttt¥Sp=p<,©R»i L, ««lt 6> |S],bn v T'€ #urnja±T*ffii:i1\ z

7 9 i»Pfl r=0) H fcit, i-^9 5 It * x. fe j% 5. Au(#, l) = &U(p,p')H(l - p/vj 1 -//(/=> —jt?o)3 (2.14) © © T* 7/ it Heaviside *(2.14)&*(2.7)lt(tAf 3© t(t4

Zf-r„/c ' A V 9c/v (2.15) qM= t-±W; t-± -dip' C

::t«, li*S|j6©g«(ro,ft0* JS l't $« = 1 - (v/c)sin K5. t©Sfc»SB±-?-;S £<££-!-$ £, *$!l$®0(x,<)lt»©SlJ ««, r©-&W*£ ?i%. #)**«»(9 , 4^ ®‘ ItitMLTSxL, b/V^T tat * 3. -*, *^tto©*yov f,i>©It±(0=O)T'f«8J t=r0lc+p„/v -enfe.O^IH C< Rnni: 0 t*9, x 7 H/H4 ziUcttL0*o*fc/ l'J(-tfc« t,

;W;i t,7kv'x^^ h /kd «x it®3'2it tfcfilf 3. ft It, ^ h^SJiStt®, f^<9 ami%©@m£ £ t(tf#± L mif6#e*#x:6. -Wilt,

Ai/(p,r)=/fjvr)2 -/3iJ/2//((-p/vjl-//(/O-p0)] for V/ < p„ (2.16) = k(p„2 -p 2J~[l-H(p-p 0)] for vt> p„

-W fcfc't, /t = 7* A A J ttf, Ao-itlEABTlSer. *(2.16)14, #, tfT y yj* 0.25 ©#,# • s* • 5WT@$f4to»69« 9) ^, *##meL -Cl'5l'-f4t©B#aic#iV'T fcf&il LTV'5 iff Itia £4xfc b. #rJS-fc© #Sli»»7ny h©ii®£ £ fclt-f^9 «!©, ##7 o v K LfcSMItlSr ■ tMot, WS =P-C,'itiSV'tSLS!•$£', f^9 8#W19 Sc©5k*>±^ 9 nra#fi< , * *rk*#l'.*( 2.16)£ *(2.7)4 9 ft*. = 2jKvpQ (l - k2 )2 Jjc2 for 0 < x < 1 - k (2.17) = 2Kvp 0lipl^lk-{p 2Ik^ + k)'^ for !-£

t = (v/c)sin^x=Xf-''o/c)//?D^^6. ^:(2.17)tCj:^M!,

j:6##J^^#W(DmT^#ih^fB(stoppingphase)^^ff^5 T ^(2.17)(Cjo^T^, #

5"\

(5) #%%#### ^(2.3), ^)6V^j:^(2.5)&m^A6L"C^^:ike v'$, #^^(2.2)

«,(!.*) = }Ja *Kpr*

r r r \ r F\t--\~F / fT /) |Az/| £,/- — 4 npa'r (2.18) 12y^y, V, -3M,x,y, Am ft,-7 4 npp 2 r 2

'PIP* 1 $ Aw g,t---- Anpa^r a 2YinPrPrqvq~vinp YP -njqvq mt't—jj) <&§) ^nop j r ::t, F<,t)= J'0di'j',;Au(f,i')Jt’vh5. S;(2.i8)Kii, r!Eii;t*»It5ll®Ii):i| (near-field term, intermediate term)/5S #tti" <5 . SittHSSIWj kl j8 V'T II, i tl 5> dJJjliJig tS*V'#:J Jg ttlitflB) B#*IJ /SKSHSL, L&5 X kfrb, #*<%###*«%'!l=#«i-6 Kit *i*#«Koi,'ttSt5r ild»U'. Z5 *. i/-y a y*joZ*5®)4$ -*WT-fc5.

®SKl$filT*EiJStifcfl5*ie»lctfLT'>5 =L y-y 3 y(c j: 5#M***KWt LTIt, 1966 ^/^-^7^-/UKffli*(Ms6.5)tDW5E^®W©ft#W*»t)©T-fc5 n>. C

©#*t?It, *B-$**|6ilcSV5l$lSrdE«-fti-®l*#Sre^^, ^80mK^K«s,fe

9 T?»rJi!:z&£tiit. u—->a ymisu, seai5>aicy vrit s;(2.n)K^ sinA-^ #aa Siufc. fcfc’t, IW9tta;(2.8)roSJ*5S®KS-d#Siti5ii5^ 3S#i5®®&# 5 fc »Izir*tttt^ro/hWfS ic^Sl S ft, ##©%??# I:#/]'*##'6 M"* 3 b t&#&, «#€#©K#S:ihtVrafaS-i3*5Zf:KJ: 9, TVS. Z©& #, ISr6©E<61:DI4$£ Z©M$f:Lr«T©J:9ic4-x.fc. D = D0& — ) for 0»(4tl6*Eti:, h i4ifrJeT«©S$£ (Wifi) ?&&. w-*©*f*, ^m##©m*@iz#L-ci4#mmme uese-y y k -tfcbbsrsn- ^ XSrSert-5) 6^V'TSSJ,'SES-eSi-o$^ffl«©|ffgi$«i©^^S;BBto-efc 9 , # iz»r* ¥??$£-? I4te©ffi#;!»e>©$-¥i4is t bt'Stir-t sz iisb^o/t. * ft toe -S-^Sfv/c»r*ESri6^©E(4i$$f:, HSUS:® t ©it«^0-2.6 (zfjt-f. R# l4^Stz SV'-S^zTt-f-r i:fisb^5. £-<$«$ ©$*s 14 0.52xz>„ i: v 5 iBJiUS# Bii, «,««» i ©fcttfcbfcilSStKSEfi: d„ (4#d 60 c m £ «)£ $bfc. $ fctt*©E»€#it*^ 2.2krn/s ©£ #tz, oiiJ;< Efib5 Z £ fcblz Lfc.

2.3 (1) RE^.^4 Wv©=>-b-.S«ifc£iSjJSi®ift®-<»3^7vV£©-23r-7-Vi'-

5.1.2 4 5tc, wb©*# &&to*aa'6*tf ai%*E@m©;^f h/v h» |n(®)| 14, mjm&mm?t4a:(2.6)i:#f 4 ; y Hck ta|LfcVtlP>3-b-Mi6#:i:i»HiL5 ,2,l4>. B-2.7 bS h/iz©«S;|ilSrrF-f-. 3-b-JliS»fflol-M-r5St£©W?EI4©< obfctf fcfx 6^ 8>'l2H5\ #< ©S-S-«)ol4HT©4 5 b5. a>0 = const, x c/ L (2.20) zz-econsuls#:!*, ci45ftt«a*, zi48ra©A§icfflai-5* (mr^m%?>%£■*? ffi, P3SWra©¥S*if) &#b. »fS©EEe«a®l4#ttiSaaiziitfit«i-5,Zi: i>e>, %i®(2i4=i-4--iasssci4E#e®©gii8#rBi©®E-efc5 v/i izitwts'b©^ 6b6. *&»/■*, Elf®, £bb^9f$Mtzbbb'b*i-JSLfc1**5c©=>-b- M 6,,2>. f/iz©^T/izf: LTI4, ftm$.Mmtfco''X'WiM-tZ>*r7!Ak s>-2t«*t5e 6b6. =-4--JS®*tt>oAs-o©i #, fbfb©mEx^^ S/izn(0)l4K T©4 5 lz«$b-5 l6).

10 #) n(a)= (2.21) [l+(a>/o) 0ff7

0(0) n(ty) = (2.22) [l+ («>„)] 2 *( 2.21), (2.22) fi, AaiiS S jescftr-s ^ i t j: y t ©-e, tr* (ti>-cube model), m 2 f T/P(m-square modeI)£ FFlijl 5 . / y h A/o (2*t L n(0)«Mo»$fi8 9 ±o. SI ® ro « au E ® to ib ft SRBx^ h/vx?tt, s>'3 i y ia' 2 f T/W2%) i WBrSftSfll n)as#b'. *fcSS«lft©£j&l2 J: < fflV'ibftag

^K)^y-yMSc$ l8> - ,9 ,t2jb-V'T t), RilSlc o "2 ^ t/Ht SSI" 5 r j: lc j; y , EfflEft < mm L5 6z kzmmAfu-riya. s b^misss®*^ nbojsissiiiti, y h0ac2r' (2.24) rtH'x.32: ##*12 fi(0)cc^, ^tr/wo-ehfft I2cv'-c%*-e4-t bft6. Const. x

Const. x*j:

(2) RS/45y-^©xy--yy^iii rii.*r-©*st 2j: y , = V'5 3 o®x*7^ -t-C-MtfcfeZtiZ.tteioh, mmx'i? b/H*#*E«i2Befce.TR®T*fcy , wfaiii^^ysro.

ii ^TMzLtztfjbcob-rZb, A(2.23)tA(2.24)ojtfil#»^ -Sicftiixif, RSx^h/wtfcfc-oro/tyy-MMrUftiro^-eEii'Bm.tod. ccf 5t(2.23)lt, Haskell mW.*7j —9 (ttJSft I, Wrlifg IT, ##^1)# D, r, «I6fa« v)tBEtc*5ij-5«TdMSS;j:lsl#T-*>.521).

WjL = c, = const. DjL — Ci — const (2.28) vf/i = c3 = const

a:(2.28)ia,#m/<7/-3tmz(DfB*%^±# SiJ»tt*a*cB8t>e>-f-)£Tfc5 tv'5, SE^y^ -r?©fl®llJSr*LTV5. S(2,28)<0 5 %, W!L {7 7, 9 Mt) -;6l4WrS . ztLdil a>-f^^T) sr*t, mm$ /ti:CSrfflV'T &a=Cfi{D/L)X O.^BTli^ffiiaSt Mfc£>-f-$-efc5 r fc Sr^i-.##tc vTVi if, v-,0 (yffifffift® s&&£),*> J:o' t~d/d J: 9 , SKro s iSiiSar-t^ 9 SSrotfc i/olc Jt#l U, 5 E-KD^KireroSI$#£*□•, i: D-(tr,//t)l<0 BS# tc fc 5 ^ i: *»£> ,3)' l4\ MM*5%US*CT e ;)$ — $"?£>S Z t Sr* ITV'5. *4J, )S*ftT*Aai:*af£:*<7 ett^^-eixft(DJ: 9 l;:;6#£ft5 221. Act = -o>

«±icj: mmiz£b-r-%-?h5ztAs&ttktis. mm, iM-©j®*£ftTtz-ttz mmmmtek’tzxzifcti&Tttnmktzz-btite^k-rzwft W«s#V'. Fix. if, V- Hrt suite ST*#) lOMPa, y y- Mg##

#*#?% 3MPa t73)S*ST*S-{Kei-5 r. i H± <0 , M 4$ 6 ei_h©tt6S|}coV'-C*E^ 5 2I>’”). 0-2.8 c-it uts^ v h Mo k iSBi A ©Mff Sr^-r. -*"C, h rt9i-e%4 (37^11) T-if, f 9 SV'fSA|MT*Sr»-f-«6f!l^fl.6»n5. Mx.lf, 1993 ^Wm?itij**(M7.8)CO)$*|MT*lfKl 40MPa 2: #$ 6 ilT V 5 2J>.

y Vr7*IiJ^*»5W5SiiSc#< 4sr 2I)-25)-26\ %##«&*-#-m#2r LTlt-y^-^cL- Kds*H_hJ; < ffl vfeii-5^, = f ^.- KiciiS^5**«®a S^#$toJiMM:tc:Zp#iLfcS»:to$#z)SfflV'6,ti-tj3 9 23>, fl £ in * ft* «) ft 1* tiSrif-o 2: VWc ftTV'S 2!)'27). Lfc ■ifioX, KSrX»K LTS®/s"7 7-7077- 'J y^lilSrlfl^SS-S-irif , ivt5?^ = f = - KWSMISH^, tfej$4r-y y h*ifto©!Bgto^RE^y 3i-r9 t

12 y K Mo 6*-^, Mo y h-7^'=f 3.- K Mw28) ^*»|c !) y ^IiJicoV'Tli, £(2.23) i:

L W D T (MoV''3 (2.30) / W J r IwOyf

log Mo oc 1.5Af^ 28) X 'O ,

fL' W log = - log Mo + const. = 0.5My + const. (2.31) D T

-r. tTtito.snrose&JXf*, a##K z d % r ®R»*Tlifi£Lfci^, A <7= (l%l\6)M(Dlr)>\ Mo=pDxr 2 i. <0 *o. log r = (1/3) log Afo - log(16/7)- log(Ar- y y^lijtt-Z(AS:$diu5. -*, mm=e-t y h £ t tr * *-y y UrBBfllSAjeroSM#** £^6,*#) ibti, A 6 s Iz-^es^feistsi £ VBTIgT'feS. mbit* *«»T-^S^fe363kLfcff#8r*fcy , 6,-oS»$H:|Sto/J'S < , SzELfc tV'5fU,^^&5. K¥-ett, ssy y^<--y g ybj; oftfetuteea-t- '-iy y-y- y yym&m&f 29)

(3) X-Sr-y y^RIJ^n&omm fSX'iy K/KDfieflJ (fc£ *.tf£(2.22)) **^5 y-* ©a&RSJtfcaH-S y t y t#i©^f/ww, y -y»K 18) ’ *sfia**na-ei>5. - tubroftRU ro*J6*K*J"f 5»ffl "TtettK-oiDTIi, W& £ MJr - 9 5>5t|g $ ti-5SlMft fc 5. HrtroittSpNtifiSl'^V'T**^ —y y K Mo icy-f-SESft i £, Bl -2.9 };^-f J: 5 K Afc=7.5X 1018 Nm y y y^llj MoxL't'bMo* L2 Kmt V, tfclUBtic f- yy K y^BfcfcJlS 3,). Mo (cy-rs L i*RrtD#*?§£*£*3Jttt«*l2«£ m km~15k mSS*-X?®ttEKES:5iv5 Z

13 khX 9, flSRSretl r. *fc Afo-z, m«© K yy K^ntteftfr-, me Mo ©«ic#lw h yy kmt* l Ic l.5~2.2«©4r> C5^, C ©JSH(±-t^9 * D ©Vie«cKfiH1"5 h#*6 hi. MsmAms%£M:©© tit, m=s |EHi?M0«cZ3©x7r-y y^miflU^bhi ”’. civii, *y- i*#©g*m#^#< ©#^-, * =-- KroBM^SI-d ©-eittey^fcv'5«IS^#)5. M*«*y-i«E-c*JS£-f 5B***#tt, *r-/y KMwZiS 8 1/4 *®#5 CSSISrg©$g(5;)sattSmtcA 9 ,»««#*# ©%m^02f x/i/A^©f m j: 9 /hs < ta b v' 5 wwa-ssn-Tvs34). t/tigic, *»*©S$iJE«^^*©6.ivfc»iSS*Ex^#' F/v©KIWE$ffl«tc, «,'2^x^T-li «&M-C*%V'g#©l#S(bump)d3#dsi-5 ii'5 #e«t*5 35)‘37>. c©J; 5 fr/JP®** igx^X h>©BtBtt»rJlB±©1-^9 *, *5 ©liA**T#^^MMIc7F%K

^e>*« LT#4-f-5©*\ *5*6 S©i6S^ib35BlSiElcgiiv5©/b>, i: © 5 *SlcM LTIi*#M%*iyi^#VC -HX, M8 H±©g*#Slc3E51;T-<»'24r'7=VHSj$ 9 S-o jri-5#g*t*9 l7), *%#IC#i-5a2 ff'/l/©*%#lcM*5##l±&#&#,TV^% V'. es©«j!&@e#tt&$*ttlc}e8i-d c i: It, Z#*lct #%!:##%**»# z>zbfrb, j/aH©WBS^©»%©iSS^ffl#dtv$.

2.4 (1) /l!)7t77^!)f/ St6S©»rlBli$l$4g|i4t©S«^, Mlctt* 5 * V V b W\ihi #6±©E#^ tf

14 @r-f. * fc#£ktot »»«©*#v' iisaifctjt, r©t#, ## sti-ricasB ao^ctv'fflSttt^y r ££Aitfcix3. Ay r©s®-eit®#e#j$S»$SEu, Kjg $#**ba!%4"f"5 38). SAiSiie, #&©$B*Mle#V^##a^|eit"3< 9 £ f Ac TO- Ifeil:, mcA#%l:-&A/#f5*©#f^Sc 9, S»ttt^©i*sssa T?«*S4x5J:5*S«t>*C5 5. C©£ #, £#$*1, IWC< i*J9S#*li)^%4d-iir5. W#© t 5 t£'>x?i* T* *«&««» ;*s@ fcswt#*^?5-9*?*', «#©#-§-it r*

Avayr £t* ayx-i-it, »fi±T-®*5SS»$tt*rtoi:* #V"nl«ii<'5,^T-|iPlC%©T*fc5dS, *##©%#l^#^3. § £ le i 9 , -jT^!)f^lJSIJ»l5: £ le £ 9 5* 5. ftTT-tt, Ay ■=& x /W ie o V' T IS ^ -f 5.

(2) Ay r;E7*l2S-y< iSB^WRS^-r/v

a y Ttf/HcgcK £ lt * a-> 7 ^ y 7 A y TffVt- (Specific Barrier Model) 421' 43)^$ p if 6, jl d . X A y 7 .f y 7 A y T^f^tll, RSE® It 0-2.12 tc^StLS £ 0 CfiS L, mwco&UM IE IB 2p0 T* S M IS 1C 56 A, 7t‘ I^DTIciot, fip,®P)*?7y^tfiSt5ai!©t/yf'<^F («««*) le ^S'J £ tV 5 . ®rll:£(£© 9i# It# 513U$ (sweeping velocity) FTSrlgjt A Ini teiSfr V, #«7B7h^|B-irfflt^>f'. /t*5r C1T*©#5ISS Fit, Haskell *T/W0@:»e#:ii$l.2tl3-r5. ;©ity!:o®f^.**■#• Sit# s mniM£7- y 317a7 wvfcc,(»), K@A*©%a&^A7 S/vfr G(®)ii< £, i«ja$BfiK^a$4®-f-5*iiSxA7 h/y iteti^yy^Aiokac jr»sP,, c(ffl)©gtiitG0(<»)©¥*6$fn-x?3ead*i.5. -f Jie fo%sfics#wsfc 9 i:«itet7,-i'^y i-cofswc* n, t LA £ i |g(®)|2 = nAt\Ga(af ils l& 9 St O . $ 3(C#@A#©/<9 — ^A7 b P(a>) It P(a>)«|G(

/>(»)« n|G„H!=-^L|G„H2 (2.33) 4A> *IC#-M)gy 7 yf (¥®p0) ^fe©»Di$SxA7 h /ISIS |G„(o)| ItWT© t 5 (2 L T #»6>ti5. 7 7^©f Ay 5.!.2(4)®©S;(2.i6)T-$sn5i-Ay 31, A(2.i7)©ig#men^2^eMmeLT#6tL6Aom&mmit, ft it, S.U!0-2.11 Ic^-f-t 5 left-s-^s&s 2 'irnsmmk 2 o©«g)MH:&o*if A»

15 =-j— =* vW|bij (2.34) dt2

/r — = <3, =4AV f

h ^ A^0$r^^LTV^5. ^:(2.34)(:^$il6

5W.34)&7-V=^#LTAom^#m/<9-

"" k + ^2)^/ +k^y + a2)f,a2f2 cos(o(^ -f,)) (2.36)

JJ/2 A0 sin 6d6 {^0}- I"71 sin Odd (2.37) Jo = IxKcvpQ -(factor)

ftfcL, A=((ai+a2)2,,2+(«2,2)2),/!

*fc, (fac,or) = -Lf ('^l dff

±5£, tij:tFA(2.3)»Saf 2 gu D |g0(

|Go(J)X<0, X'H'? 4 ??'<<) 7*T^i>' b #6j%6#*SKAom&/<9-z^^ hXOi*jEK$i|>l ?0!t*S;r*4-x.e)j%5.

16 a=»|g„h2 2 = (factorfwy^^ (£) (2.39)

Si(2.39)(7)Acrtterl^*o6*ttT*-ett*< , fi * <0 P3 M 9 7 V 9 rt C t icttEf 2>&%&&>&. X't-i'V 4 y 9 '*•') 7 £ ^T-roA<7*a9ftK*IWT*(Iocal stress drop) AcrL i: $» L T V'5 . global stress drop A<7a £ Uflftl/5. A-^i/7-f TtftHl, I) L & 0 , •ecOMSiOig*, «$|J Sn5.5$±t6iD5$$^^^ b/VW^/V-* Haskell ^7 9-9 b '< ]) TIME (fcSWtD-T'-f^y hE@) 2A, *sJ:tJ'»JJfJi:A!*T*AoL-effii*l-12j£T?£*

£ V' 5 flJ^Srito. &J3, *-<^7 y y 9) 7tf/VCl-d < RlgX^? 9 b/KD£(£6(j *Sttsy3iiSST-4-x:e>n5 44). s(r)=^ [i+(IV -1 )sin3 (^r )/(*r )21/2 s, (r) <2-4°) wC? SejiOlif-T'd'bro**^^? h>, T li## A'lilbT'd' b®tiESr*-t. it(2.40)i* i/r-c4xfcfi5iiSm='-i--fl$itiA))axT, bfby XT*»:t St, )-offl3-t-S»*S:St., b/KD*ESt S^tABeSE(bump)5r4-x.5>. T^'y^y y 9'< ) .

(3) T^-

j^pAudS = jAoAwdS (2.41)

1t1i t, r r-eH®rS_k©$e », w Itttvf tvAv^V'ESAt,, Aivic, i£*<7!ij£*l$ TlAo-tcS# tex.TV'5. A(2.4l)&, 0 ©MBT^^y 7yo ©m»

17 ©C'*BT*SrA(7, *V'8v$ti£Au, 0 *viiv SttSrAw i: L, Atri/^H'-f it fc #gf I- i 6.1*-$ t «£-f 5 £ 49) .

fi JaucIS = Act JawcB (2.42)

V'$, Aw tt-$-ti:A,»rS*T!c*5tj-dn®»iSc>»iSE(35:«9, 5rfflV^r,

Aw = y^-(o 2 -r2)l/2 (2.43)

£Stt?>. TX'OJTj A riSRig Oftto-ESrotiE SIC fe 5 k -T £ t, Aw © » # «I2 r=0 K *3 It 5 * ± * % 160/7* t * Z . ^73-4!)f4« cm 3 £,A«l±»rS:£ft©£v'jiV'£&i: ^4t;tiSfS, ^(2.42)(9&mij:7X-

Mo4 =-^Acroo 2 (2.44)

^JSKOAo. -*, j69 jP6T*A<7;6^ LV'¥E a <0 9 9 y 9^9* /i-£3319.516Re-9 y h Mo liftS-e-¥x.fetL5 9) .

Mo- — Ava (2.45)

&5V'ltiSi6«i»IEti:x-<9 hyvroffija SiRi® luHtt, rx^Ur-f ft »<&*#■*• ^5*8 a <09 9 y 9 *=f >V(T> o/a&kft&Z ktffrfrZ. -*, »Dji$x^9 b/woi*@&Si|ie|t/(<»)|£i;ty x^ y 9-f

20 28) Kanamori, H.: The Energy Release in Great Earthquakes, J. Geophys. Res., 82. pp. 2981-2987, 1977. 29) Somerville, P., K. Irikura, R. Graves, S. Sawada, D. Wald, N. Abrahamson, Y. Iwasaki, T. Kagawa, N. Smith and A. Kowada: Characterizing Crustal Earthquake Slip Models for the Prediction of Strong Ground Motion, Seism. Res. Lett., 70, pp. 59-80, 1999. 30) Shimazaki, K.: Small and Large Earthquakes: The Effect of the Thickness of Seismogenic Layer and the Free Surface, Earthquake Source Mechanics, AGU Geophysical Monograph, 37, pp. 209-216, 1986. 31) 9 2, 51, pp. 211-228, 1998. 32) Scholz, C. H.: Scaling Laws for Large Earthquakes: Consequences for Physical Models, Bull. Seism. Soc. Am., 72, pp. 1-14, 1982.

- F 2, 43, pp. 257-266, 1990. 34) Hartzell, S. and T. Heaton: Failure of Self-Similarity for Large (Mw > 8 1/4) Earthquakes, Bull. Seism. Soc. Am., 78, pp. 478-488, 1988. 35) Koyama, J., M. Takemua and Z. Suzuki: A Scaling Model for Quantification of Earthquakes in and near Japan, Teetonophysics, 84, pp. 3-16, 1982. 36) Gusev, A. A.: Descriptive Statistical Model of Earthquake Source Radiation and its Application to an Estimation of Short Period Strong Motion, Geophys. J. Roy. Astr. Soc., 74, pp. 787-808, 1983. 37) Izutani, Y.: Source Parameters Relevant to Heterogeneity of a Fault Plane, J. Phys. Earth, 32, pp. 511-529, 1984. 38) Bernard, P. and R. Madariaga: High-Frequency Seismic Radiation from a Buried Circular Fault, Geophys. J. Roy. Astr. Soc,, 78, pp. 1-17, 1984. 39) Das, S. and K. Aki: Fault Plane with Barriers: A Versatile Earthquake Model, J. Geophys. Res., 82, pp. 5648-5670, 1977. 40) Aki, K.: Characterization of Barriers on Earthquake Fault, J. Geophys. Res., 84, pp. 6140-6148, 1979. 41) Lay, T. and H. Kanamori: An Asperity Model for Great Earthquake Sequences, in Earthquake Prediction - An International Review, Maurice Ewing Volume 4, AGU, pp. 579-592, 1981. 42) Papageorgiou, A. S. and K. Aki: A Specific Barrier Model for the Quantitative Description of Inhomogeneous Faulting and the Prediction of Strong Ground Motion. Part I . Description of the Model, Bull. Seism. Soc. Am., 73, pp. 693-722, 1983.

21 43) Papageorgiou, A. S. and K. Aki: A Specific Barrier Model for the Quantitative Description of Inhomogeneous Faulting and the Prediction of Strong Ground Motion. Part B . Applications of the Model, Bull. Seism. Soc. Am., 73, pp. 953-978, 1983. 44) Irikura, K. and K. Aki: Scaling Law of Seismic Source Spectra and Empirical Green’s Function for Predicting Strong Ground Motions, EOS, Trans. Am. Geophys. Union, 66, pp. 967, 1985. 45) Koyama, J.: Earthquake Source Time-Function from Coherent and Incoherent Rupture, Tectonophysics, 118, pp. 227-242, 1985. 46) McGarr, A.: Analysis of Peak Ground Motion in Terms of a Model of Inhomogeneous Faulting, J. Geophys. Res., 86, pp. 3901-3912, 1981. 47) Das, S. and B. V. Kostrov: Breaking of a Single Asperity: Rupture Process and Seismic Radiation, J. Geophys. Res., 88, pp. 4277-4288, 1983. 48) Madariaga, R.: On the Relation between Seismic Moment and Stress Drop in the Presence of Stress and Strength Heterogeneity, J. Geophys. Res., 84, pp. 2243-2250, 1979. 49) Boatwright, J.: The Seismic Radiation from Composite Models of Faulting, Bull. Seism. Soc. Am., 78, pp. 489-508, 1988. 50) Aki, K.: Higher-Order Interrelations between Seismogenic Structures and Earthquake processes, Tectonophysics, 211, pp. 1-12, 1992.

22 ZZ

s* ‘7?i zz-m

(, 0¥»a>«--/54-ffi*?(iT)¥ vz-m 10

0.1 1 10 100 X

0-2.3 Micl(8irtiDti1< X>1 "C,

[-2.4 ramp £ tl 6't'* 0 TfcvLh htf'O 9t^, *£

24 ei-2.5

y

logQ

oc Mo -

oc &)

25 DISPLACEMENT

5 SECONDS

N 10KM

0.52 XA

4 SECONDS

STATION-

@-2.7 1966 Parkfield ift*# b tLfc5Sj6!SEIBft(WrlB fc *■

dzZ''' r

@-2.8

F9S* 7 y ^TVL

26 # Inter-Plate O Intra-Plate

101 ----- 1------i------1------1------1------]018 1Q19 1020 l 021 1022 1 023 1Q24

Mo (Nm)

-2.9

1 ------1------1------1------1------1016 1017 1018 1019 lO20 1021

Mo (Nm)

!i-2.io > v mo t itris l

27 V

<------L ------>

[2-2.12 Specific Barrier Model 43)

^—y X^VT-rtV JU Specific Barrier Model

0-2.13 mmm&ufeLit, y Specific Barrier Model43>(^* )(D^S;2

28 E3S

3.1 ttc.toi=

SttSf^Ay-CV^. **ftwfF«*ifettWT©ro(c*gij-e#5. (DlriTf/Mi*^^, *©ES^gSLte»-6-irtt B #!& (1W) l^fflSnSlfieiftS:^# «¥£(*2ftR*)

BifcT-it, W9IK#-^fl6*to58tcfc-^5A**Rlbff«tc*jV'T, $6*/6>ib(l)©*$»s#< fflv'ibnr#T*i9, i995^ro^sssgsnfi*y^, mm#*, MlctfMkLA, aS«)*&^E^69Ay->E»i6^fflV'556*li)7-SiJ#iS(«xtfS:R “)

©W5E^»*W*it»fe^T#TV'5(fS*(coV'TtiWxtf3Cft 2)). IbJ#IA Cltik©/£S!4«

-*, (2)ro I4« ^ Sra 61« S /sD"*- KiWff (Probabilistic Seismic Hazard Analysis : PSHA) in? I fix, 5C6T, #35, U-'fMc#

It, NRC(Nuclear Rugulatory Commission)^ 1997 ^***L.fctf-l'K5d'V 6>X’M.biMXoK, tt

*SA-|t, i«*/N-f-Kff54»©a±t5J;T>*

*s*4-¥$*sufc, HBps-y-^h^xtSkLfciieE/sD- ’-K

3.2 ttzFtSMtteK/Mf- KS#r aitl£

*>5(0-3.1).

(!)##% t#©e©/Hk

29 t»-^hjaiarot6e%$E(swf.e, zn'-mm&m, &tit>)

f(y>y;< = 1) = 1 -exp|- £ vt xqt(r >y)| (3.1)

qt(y) = £a £ [f (y >>’ I m, r)f R(r) (m)dm (3.2) muk, fcTPStt, r„t, r,t lilM't-.bSE l»©E8l ii ©** • * *7c,/„(m),/ R(r j: ©**®aM&Sr*1". £fc, P(Y>ylm,r)|4, 7^;fa-K M=m, EH 2?=r tV'5*®T'f-'fH;jsit5H6®l!l3S® r^fc-5«y Sr@x5$t*4r#"f. *(3.1)

i r« = (3.3) P(Y>y,t = \)

tt#«i©Eli«®*(4, #S*SiJEe©«S+#firj:y*i66,j%, -r'f~^a.-¥, **(*E)

30 jgBrJ»B-eH4Lfcife*[z=t-S ^u--hsnr«!s c\z±& iz&zittmwiaaLk&smmvm

0-3.1

31 mmmtst\,x, ms, **Ana*, **as,

3.3 t6*A-tf- mxmtmmMtto&mtbK

IfiStoSSS (SAMS, ft*jl$/j:ifiDS*±6$)^, zro/'D-'-KtiSUi,

Zox,fc5»s, b &oiitsimx>be>t%xbnz. ztibnxm « "Deaggregation of seismic hazard" — KO#5^#) If jA5Zk^#V^. $#@-#12jo VTt>, *ffi^w®«tiLTr©rtt*/N-!f-KW»«jtV'5jBRSr«V'5ri(;1-5.

(2)«^?feW».S** 8 >

«&Lfc, r»*|Sto«6i6*j(D*$S^«$LTV^. 2«#&lf. V'tVmmoW,n%$L* 7,/k«StiiIf, *#*Mia5C-C-mmic##(D*7c(-7^zLf ZL-K«#m M, **(*

5EUv<7y-^4:SA-j-5Gi-e, %atglcieDTffM:#LT##:(Dmg*#^R%T#5t »*awi»*fs*e>, %

_ YJEl(M\YZy(p 0))-wl(p„) M(p 9) = —------;------(3.4) Xw*

£ £, (A11" £j>(p„)) • w, (;?„) A(p0> = ^------(3.5) EXw *=i zzxw&oM, i&m^'kw,kx-m^.x^m

32 wk(p 0) = yt-sk ‘'£J^Pk(.Y>y(p 0)\mrSJ)'Pi(mi)-Pk(SJ) (3.6) < j zz-? k Sknt&m%4® knmn* m-tmtkx-hi. itz, Pt(Yiy I m„ Si) k -? ^Zilr %-?■?-?■ *-b° m„ ffiit S,

Ar=l

R*ai4, mB*Atck5#a a § i-5v^if-Kv^/vr-*ikS»i**v'ie*$a®7)sssT-fcy, ac>1ilcJ:9WeWlt

33 ti

OS '?l£:fcWiSW **t*3%#ein:fao -u eif(jVk)#fRtos WfWtOl «3-M* OS

c%ia $ 3JJuV, 'rw## z^'1? (t'-£-EI) G? ft #

SWit^a.T^- 9' \:/if$$a$S>9Tr>-a^4-^ rf.ZWm&WWiA&touWWt^tA % dni &*T-- J*'i-'*^£¥-f<2* «

0S»ti>S8t$SMW*» 3‘€-S

iU » 0)*w-t ‘j=^3UIII%9 V9!52 B8 e T- 30%;4>fc I5%6g$i:LTE£r5. •V"

50¥ffi-C 15%A^5%Srg$j:L-CK$Lfc.

M.eiSg ’XMtltT'-? • *s J: (.'■it* ? ^ > - 9 X i; M + 4 X*n Ei

iSE)S

i-vi-tlSa

S£J6*»*^ttS5h.5 -S--V- ).;k<7>)ea t-SX-t? h/u

v-vi- 1 i*KW>aii$i£ v^ZitRM^tna* £.= x-<7 h/K?)»$

RttX)«K:dSi«6J5

k-4,u ilt*«lX>JOji$K «"<,k 2 *Riij^inae #$crnma2

@-3.3 LNG j6Tl?>-?®tt:mg9SfflifieSiliaSro¥'ll[g 4>

35 ------5 1*5* X. ------5 >*1S96 \ ------5 )*30K

10* 1 10° rota (») nr*# ») m 2.4 50^M<7)fg^fllSZ) <80%<7)lv^<;i/ 12.5 50#Mm#&*gs*< 5 ~30%<7) <7>—tt/x-y- HP Lz-<;iz<7>—SAif— KBS*'*? Hi/

0-3.4 u^;u 2 tillingSJSg/V^Hu 4)

(2) SAC Project

^s-cta, sac ^^h^a joint venture of the Structural Engineers Association of California (SEAOC), the Applied Technology Council (ATC), and California Universities for Research in Earthquake Engineering (CUREe),,10) asm&wv-cvxa. FEMA(Federal Emergency Management Agency)/SAC Steel Project Phase_2 toxtzmmwi EH-^s.sroa@T*fflv'bh.TV'd. SAC Phased Los Angeles, Seattle, Boston (0 3 50 io%i: 2%©s-s-icov'T,

(Stepi) ^.-Ki*g«©i8S USGS ro National Hazard Map "e$£ ftfctlSB/'-f —K5r, luiE<0 McGuire 9l *fflV'T (M,R, t )(COV'TW^Sf-f 5. Boston Nff:7>fiS6:S:$:El-3.5 tcSi". (Step2)B#SI@#*»)0@$-%& + 5HeB8'J

IE»j)S«IO»-g-li, Somerville (;:i;6j£jg zSfcff W.MMW} v'5>1^-->3>#)£ MT-BU^ro-y^L- —>3>

36 '4 IWtni) VIA SC ififftr; llaZ!ir IH u JOI u >m Mmmk f. r l)Xi

0-3.5 SAC 6ifcR/NtF-K (U5GS IC£5. Boston O.lsee fliSSME, 10S/50

a)«iffl^Rat'. to *&L"<,W>R2 >Kl5l to SliAOC (Structural Lnginccrs Association of California) \ZX.% VlSION2000,:°'T?ii> ffi

htiX'.'Z. Cto# 0-3.6 VISION2000 ##B#(2iM

/’/ v*x = jpf(a')xp*(a)da = -j-^, iu)da (3.8) da

r. r. ■-cPi < a) rx & tt ft £ S a l r *3 a * m 1& %

j*(3.8) t. H(a)^^(3.9)^^irfi8S

//(*)= *. 3^ (3.9)

Pr^&e™ (3.10)

Cw-c wj/'-f-K#*##*. c ita:, iieet* h cw/\f-KA#t*A4k«o/9i>;y^-ARtmwc*a#(o%A**f e*#*^*u, F 7 A Pfi**! & kUtttH PSA (Probabilistic Seismic Assessment :5*S*iKl fZ-m)"

38 S:(3.lO)Sr®tc«T©J:5t»WLFRP(#«B*roiS»T*$*5ti6) ictSC

Ah I 2500 £)^m FRP = — = , v (3.11) iV 1,:(a<)

ZCTC i±77yy^-6Ee$S:i-5SS«*, k„ (±S;(3.9)t#a^'if-Kft^ro«#Sr)fi *fcDF 5o tt77v7y7 L-f-6Ero ‘fi*«(50%m®8$|*Sr4-X.d*S ##&)& Design Basis Earthquake ®fltT'I^L/ctOTT-, (#iS»(DEEB#(7)i6**b®$/EH' Lt'(±m 15)T*li, Design Factor StffcS).

V'x.6.

3.5 SBrt-y-'l' LfclfeSn+F- K«#r« *#lnlW%rtT*ro«S*^lF-h'F«1?©Sete1B4rB-3.7 Ic^-T. 2003 ^AEtt KAERI StBft NPP •tMh&&g£LT«8/'1f-KP«$:fT<>fc. JUT IC-eroSjgrSf^-t".

(!)###& 4-Ell, zXTyyS^7 ?/HcJ:5t6*^lF-K«ff¥& 7,SrfflV'7t. 3.2 ®T'l£KLfciI9, ##

##BIJ*t#*ll Gutenberg-Richter A #7>yi,6g%L-ri,'6.

Wolsung NPP (129.4773° , 35.7127° )6i"6.

#**4EeT'/H±, 3C# ’’’CSdnTVd^/D^fflWc. 3CIk ‘’’T-llEPRliy^ l8> lcW V\ 4 ;l/—y (Team A, Team B, Team C, Team D) Expert opinion

39 jCilR —KT*fcO, *STii, Team A IciS^Ex )V^=f)V A, Team B B, Team C |C C, Team D (CiSf =r>V^=t=f>V A 1-3.4 (c,

ic, Sr0-3.8~3.il »i". -e-tve A |t7> 7 'Diftt)#

±ar*§^it^E$dirrv^a. et4 b, ^--t/vC itetr/k a Kjesttrjst), 6.3-7.0 tT/k D littHt *>v'Tite*ett^®ttrv'.5«kEiE»L 3 oo77^i*«, ige^SjsjLOTrojaaBE Sr*/< —LA: 1 -7i70 B.S.Z (Background Seismic Zone) ^iKSSitlTVS. tf4D ©S^7^- B /k C j:|fl8S-efcd. HE-eits^ro^eiLyv-ritSSBIlzilE® iL^yRSSiSroSFe^tffctLTV'S^, % 2000 ^Mtc*tLfc®*Jfi*tc-7V'TI±®Si»S(70i®S^*A:ttfc^rv'*v^i, /MTomgiijtm '"tmLfc.l±BV'A:. ttSKtS^e^yKToSStcH-tdltaii, (c±#^#ge4*6A:A, ffl**i!®(75g|fii***-r/47o'-3'ILMLTIiffftWi-5^S^fc

40 2004#65gffiT$

KAER!A<|S£Ufci61f643g=ETJU (Expert opnionlCjt-S^ro^ET^W

2004#®$S^$ 1 r U.S.NRC(7)^/ilCck'5> Controlling ni/yWJ—lz£Z4?

------/ ------KAERlUJtXSg CRIEPlHiS«B

0-3.7 (2003 ^-2004 ^)

41 -3.1 Team A I

Source ID Seismicity Parameters Maximum Magnitude Ag B Weight Value Weight Source 1 4.28 1.12 0.2 7.1 0.2 Source 2 3.53 0.92 0.2 7.4 0.2 Source 3 2.59 0.69 0.2 7.6 0.2 Source 4 2.34 0.66 0.2 7.2 0.2 Source 5 3.10 0.87 0.2 7.6 0.2 Source 6 2.12 0.66 0.2 7.2 0.2 Source 7 1.70 0.59 0.2 7.7 0.2

: —3.2 Team B [Ccfc&ifeMiS)MI>* ^

Source ID Seismicity Parameters Maximum Magnitude Ag B Weight Value Weight Source 1 2.9282 0.7614 0.4 7.0 0.3 Source 2 2.5331 0.75 0.6 6.5 0.6

:~3.3 Team C ^

Source ID Seismicity Parameters Maximum Magnitude Ag b Weight Value Weight Source 1 3.092 0.8 6.3 0.3 Source 2 2.981 0.8 6.3 0.4 Source 3 2.506 0.7 7.0 0.2 Source 4 1.547 0.6 6.5 1.0

42 -3.4 Team D I—£

Source ID Seismicity Parameters Maximum Magnitude Ag B Weight Value Weight Source 1 1.0926 0.58 1.0 7.0 0.3 Source 2 1.9728 0.58 1.0 6.8 0.4 Source 3 2.5787 0.58 1.0 6.8 0.3 B.S.Z. 2.2868 0.58 1.0 6.5 0.4

-3.5 VU(7)#/h7^7 —^ZL—K

ft'J —Tzl—K A 3.8 B 3.0 C 3.5 D 3.0

43 =etji, a

125.2160 37.6650 129.4000 38.6000 123.0000 33.0000 126.0550 37.5830 127.6000 37.1300 125.0000 33.0000 126.4860 38.3290 125.4000 35.2000 128.0000 34.0000 126.4360 39.1300 125.8000 33.0000 129.0000 35.0000 126.0770 39.7900 131.6000 36.0000 129.0000 38.0000 125.2240 39.4110 129.4000 38.6000 128.0000 37.0000 125.2160 37.6650 126.0000 39.0000 > 127.6000 38.0000 125.0000 38.0000 124.0000 38.0000 123.0000 38.0000 126.5390 37.3260 124.0000 37.4000 123.0000 33.0000 36.4870 126.2800 125.4000 35.2000 > 126.4500 36.2580 127.6000 37.1300 125.0000 33.0000 127.6110 37.0350 127.6000 38.0000 128.0000 33.0000 127.5590 37.6890 132.0000 36.0000 127.1180 38.0460 132.0000 43.0000 126.5170 38.1370 130.0000 43.0000 126.2000 37.5500 128.0000 42.0000 126.5390 37.3260 129.7600 40.2600 > =E?)\s C 128.3530 37.6610 128.8000 34.6000 123.0000 38.0000 127.6690 36.9760 125.0000 38.0000 126.4940 36.1450 128.8000 35.6000 126.0000 39.0000 126.6640 35.7580 128.8000 37.0000 124.6100 40.3700 125.6000 37.4000 123.9200 40.0300 126.4400 34.4220 125.0000 36.0000 123.0000 40.0000 126.9290 34.4910 128.8000 35.6000 123.0000 38.0000 128.2250 36.5490 > 129.3620 37.2130 126.0000 37.6000 128.0000 37.0000 129.2280 37.4200 127.0000 39.0000 129.0000 38.0000 128.0001 36.6550 125.6000 40.0000 129.7800 40.2600 126.2860 34.8540 124.0000 37.6000 128.0000 42.0200 126.4400 34.4220 126.0000 37.6000 124.6300 40.3700 128.0000 37.0000 127.4620 34.7390 132.0000 33.0000 128.0620 34.8520 124.0000 33.0000 128.3320 35.4430 124.0000 37.6000 128.4950 36.1150 125.6000 40.0000 129.2470 36.5860 127.0000 39.0000 129.4330 37.1560 132.0000 39.0000 128.2650 36.4920 132.0000 33.0000 128.0320 35.6630 127.4620 34.7390 > 128.3310 35.4310 128.8220 35.1740 129.0160 35.8130 128.5090 36.1050 128.3310 35.4310

128.7920 35.0280 129.2450 35.0980 129.6170 35.9480 129.4000 37.0330

44 124E 125E 126E 127E 128E 129E 130E 131 & 132E 133E

@-3.8 Team A /U (Best Estimate Model)

45 43 E

37E-U

36E-*- —

35E

34EJ

33E 4 122E 123£ 124E 125E 126E 127E 128E 129E 130E 131E 132E 133E 134E

IH-3.9 Team B Estimate Model)

46 43E-1

I

.1 i " "

1 i 1 j

|

i |

i i i 1

jL j 1 1 M

k

122E 1235 124F 10c£<■■ ■ ■■-rj) i n f— 25E 126E 127E 128E 129E 130E 131E 132E 133E 134E

1-3.10 Team C IC*6%m#t-r,|,(Beet Estimate Model)

47 43 E

Ht-3.11 Team D (C JU(Best Estimate Model)

48 (4)*RtbroE««SS; PGA l:Mi"5Baag etal. ICj:5iC20,(ie-3.12), Toro at el.KiSS J,,(5t-3.13), Zhixin et al.tCi^S; (St-3.14) V'fc. i^-©Hds±fiz:o©iCco#tt4ia-3.i2 tc$f. A/ttn—K, #cpiit* *SE«t*-r. 0.5 ro^SES^TiTr-e^/HbLfc.

•-3.6 kaeri A'*ffofctfe*/x+f-KW«-efflt.'fci6S!li®*S(X»t l6>0El:la*)

Ground Model# Description Var Minumum Weighting Etc Motion Distance Measure 1 South Korea 0.6 0km 0.5 Baag, 1998 2 Central & 0km 0.3 Toro, PGA Eastern North Abrahamson and America Schneider, 1997 3 North China 0km 0.2 Zhixin, Xiaobai and Jingry 1 Central & 0km 0.5 Toro, Eastern North Abrahamson and SA America Schneider, 1997 (Spectral 2 South Korea 0km 0.3 Baag, 1998 Acceleration) 3 Eastern North 0km 0.2 Atkinson and America Boore (1995) A:»SS«(N V?vl:**gg«(km) ■ Baagetal. (CiSsS(1998) -0> In PGA{cm!&ej)=0.4 + 1.2M-0.76InM -0.76# -0.0094# (3.12) R = >/#!„ + 102

■ Toro, Abrahamson and Schneider (C(1997) 21)

In #04(cm /sec') = 1 -76 +12M -1.28 In M - 0.0018# + 0.05maxfln,0 (3.13)

R = tR& + 93

49 ■ Zhixin,Xizobai and Jingru.^C 17)

In PGA{cm /sec2)= 5.0244 + 0.5442M-1.002 ln^ + 8.0) (3.14)

10000 10000 M=4. 0 M=4. 0 ------M=5. 0 ------M-5. 0 - M=7. 0 - - M=6. 0 M=7. 0 1000 ~

100

Epicentral Distance(km) Epicentral Distance(km)

(a) Baag et (b)Toro et al.{ZL

@-3.12

Baag et V'£#£-©**/'-r-K#«ilt*&B-3.13~3.16 |2,

I0"3v^/HC43V'TPGA *t200GaI*»i/h$t'. tf/l-B, /I^C, Tr-r/V D "C It SB *$!&•) ffl. S.5-6.3, **EEK* S 50—10km fM-ftiiMz. tf'/k A

7 £i@x., til© 3 o©ef Toro et aU2t.55$;.S:ffl Vfot#-6-®# Sy'-!f-KfiWiSS $ -3.17-3.20 12, f 10-3-C®**«&*m3*#®#mM&*-3.8 I:#-#-. f T,l- B, C, D-m^FSig mmr> 1 o- 3 -e © m im g ^ 4oocai -e* o , /'-tF-HiS-a-v^^eL-ra s.7-6.5 -efc-ofc. -*, -tf'/w a io 3 soooai at, /\f-Ka-a-?y= f-=.-Kt 5.5—7.2

50 10-’t(O#*8lto«$Mig(Ottffl#J£#-3.9 IC»f. -eT/VB, tffl-C, tf/lxD tltf@@ *# 10"3T-©i**l!j5aS» 5 lOOGal *#6^9, ^.-Klt 5.0~6.2gg, /' f-Kl^**Eia 50~10km kmzte?kX'b'itz. —%, A tit, #6(0 3 C(OtT/>t9*$%#tkct. Baag et al.toStitJt&lftffiJgBtWJ* JS£, Toro et al. (0 'aria's, tfc Zhixin et al.©S;SrfflV'fc« ■S'It, Baag et al. (OittJitF Toro et al.oSi&fl! V'fcSStJtR Lt, In]KV—i/H2ftL Ti6SI636$jst;0;/'-!f-K®-S"r^-^^-Kit/J'5V'«|S]»sttiTV'5. 3 tilt# BRIMS it 3(0#6, #t6*%48S(0*tt$(0$#t:SrBaag etal.iCt5A&mV' fc#^|30V'TE|-3.25 13, Toro et al.frtdSi^ffl V'fcS-S-%0-3.26 |3Si".

51 200 400 600 800 1000

PGA(cm/sec**2)

10 20 30 40 50 60 Kmemm (km)

0-3.13 ifeS/vtf-KJBflrtgftC^f^UA SI*tJ*£3t:Baag et al.|Cj;£3t)

52 200 400 600 800 1000 PGA(cm/sec**2)

0-3.14 Elft&££:Baaget al.(Z£$£)

53 200 400 600 800 1000

PGA(cm/sec**2)

10 20 30 40 50 60 z\+F- KiBSilS (km)

0-3.15 c !§SIS3tS: Baag et al.lCefc-SS)

54 0-3.16 ifitS iltW

/vf-

200

k 400 55 ;u

D

600

800 /\+f-

1000 :Baag

Kmemm 30

et

al.|Z

(km) 200 400 600 800 1000

PGA(cnVsec**2)

@-3.17 A SgStSESS :Toro et al.lCj^S)

56 200 400 600 800 1000

PGA(cm/sec**2)

10'- -

0-3.18 B SEEMSit :Toro et al.lCj;^)

57 200 400 600 800 1000

PGA(cm/sec**2)

K A#

0-3.19 (tf JU C ffi)i»S3S:Toroetal.[C

58 200 400 600 800 1000

PGA(cm/sec**2)

10°

10 '

# 10- m =§ 50 _-3

10'4

10"5 0 50 100 150 200 250 300 350 400

0-3.20 ifil/vtf—SllIiEiToro et al.lCcfeSS)

59 200 400 600 800 1000 PGA(cm/sec**2)

10 20 30 40 50 60

(km)

(b)i¥iswss#l

@-3.21 **/\f-KS«T«S(?fll-A ffi»aSES:Zhixin et al.|Z*4SO

60 19

(¥<2¥-r\* )9 8 1f^3r) ^ ZZZ~m

m)

,.oi

9 .0I

S-0I M i

>-0l &

E-OI

z-Ol 200 400 600 800 1000 PGA(cm/sec**2)

[H-3.23 VI/ C :Zhixin et a\.\Z&&3t)

62 200 400 600 800 1000 PGA(cm/sec**2)

10"2

1C"3

10* 4

10"5

10^

10"7 4 4.5 5 5.5 6 6.5 7 0 10 20 30 40 50 60

y\1 f- K /xlf- KB£ENI (km)

0-3.24 D £§HMS^:Zhixin et a\.\Z&&&)

63 10"

10-2

10"

(a)t-T^l/ A (b)tf jll/ B

------No. 1 ------No. 2 ------No. 3 ------No. 2 ------No. 4 — No. 3

mam (%>

c (d)tf d

m-3.25 et ai

64 - - No. 5 ------No. 2 - No. 3 ------No. 1 ------No. 2

10'5------1------:------i------i------0 5 10 15 20 25 30 35 40 0 20 40 60 80 100

SMS (%> sms (%)

(a)=E?)l A VU B

------No. 2 - - No. 4 — No. 3

sms (%)

(c)if^ C (d)tf ;i/ D

0-3.26 et ai CD it)

65 -3.7 fflt¥ltttaj£ttK

y(po) (crn/sec2) M(po ) A (po) (few) =e^f;v A 140 6.5 35 't'T/U B 60 5.6 33 "t'X/U C — - —

^BtvV D 50 5.6 52 * ef/t/ c it^Sii$l*Jpo=iO' 3 x*ro1I«L

-3.8 5t¥»MS£tt!*

y(po) (cm/sec2) Mpo) A (po) eTvy A 860 7.2 116 380 6.2 110 eTVv c 330 6.3 305 ^"T/k D 560 6.6 170

3.9 «SISto»$*S0)ffE«(m8l»$a:Zhixin etal.roa-^aa«* Po=10-3)

>-(po) (cm/sec2) A/(do) A (po) (km) ^TVl/ A 170 5.3 16 B 120 4.5 15

c — — —

^6t-VL/ D 80 5.2 37 McXf/lxC 3 X«m#L 2003 git KAERI 4 aro**5§ A, tf/t/B, ef/l/C, ff /V D)&mv\ Wolsung NPP Site ♦ ^@«wurci6*®f|g^ PGA ro»-e-(Dte$lt, KAERI it ffg* '9> '22)i:tt»-r5i, ft

[$3S0##XSE] 1) Irikura, K.: Semi-empirical estimation of strong ground motions during large earthquakes, Bull.Disas. Prev. Res. Inst., Kyoto Univ. 33, pp. 63-104, 1983. 2) mm # 2 # # 51 #, pp. 339-354,1998.

No.162(1998-1), pp. 55-63, 1998. 4) 9-^771;- 98 1999 . 5) ###, , 1997. 6) U.S. NUCLEAR REGULATORY COMMISION: REGULATORY GUIDE 1.165 (Draft was DG-1032) Identification and Characterization of Seismic Sources and Determination of Safe Shutdown Earthquake Ground Motion, 1997.

7) Cornell, C.A. : Engineering Seismic Risk Analysis, Bulletin of Seismological Society of ,4mfnca, VoL58, No.5, pp.1583-1606, 1968.

# No.577/I-41, pp.75-87, 1997. 9) McGuire, R.K. : Probabilistic seismic hazard analysis and design earthquakes:closing the loop, Bulletin of Seismological Society of America, Vol.85, No.5, pp. 1275-1284, 1995. 10) http://quiver.eerc.berkeley.edu :8080/project/index.html 11) SAC Joint Venture: Development of Ground Motion Time Histories for Phase 2 of the FEMA/SAC Steel Project Report No.SAC/BD-97/04, 1997. 12) Somerville, P.G.Engineering applications of strong ground motion simulation, Tectonophysics , 218, pp. 195-219, 1992.

67 13) SEAOC: Vision2000-A Framework for Performance Based Earthquake Engineering, Vol.l, 1995. 14) Kennedy, R.P.: Risk based seismic design criteria, Nuclear Engineering and Design 92 pp. 117-135, 1999. 15) Kennedy, R.P^Probabilistic Seismic Safety of an Existing Nuclear Power Plant, Nuclear Engineering and Design 59, pp. 315-338, 1980. 16) Hadjian, A.H.: Extension of seismic zonation maps for design at any preselected failure probability, 12WCEE, No.1811, 2000. 17) Korea Electric Power Research Institute : An Evaluation of Inputs to the Probabilistic Seismic Hazard Analysis, Technical Report TR.96NJ21.J1 999.72, 1992. 18) U.S. Electric Power Research Institute ; Seismic Hazard Methodology for the Central and Eastern United States, EPRI NP-4726, 1988. 19) Choi, In-Kil, Young-Sun, Choun and Jeong-Moon Seo : Scenario Earthquakes for Korean Nuclear Power Plant Site Considering Active Faults, Transactions of 17th International Conference on Structural Mechanics in Reactor Technology , 2003. 20) Baag, Chang-Eob, Chang, Sung-Joon, Jo, Nam-Dae and Shin, Jin-Soo ; Evaluation of Seismic hazard in the southern part of Korea, Proceeding of the 2nd International Symposium on Seismic Hazards and Ground Motion in the Region of Moderate Seismicity, Nov. 1998. 21) Toro, G.R., Abrahamson, N.A. and Schneider, J.F. : Model of Strong Motions from Earthquakes in Central and Eastern North America: Best Estimates and Uncertainties, Seismological Research Letters Vol.68 No.l, pp. 41-57, 1997. 22) Seo, Jeong-Moon, Kwan-Hee, Yun and Sung-Kyu, Lee : Seismic Hazard of the Korean NPP Sites: Recent Innovation in the R&D and Hazard Result, the 7th Korea-Japan PSA workshop, Jeju Korea, 2002.

68 B4g mmpsa\zMt%m%

4.1 mm psA»ffivxfA©Ktt CD *#R#%-e«,^##@#'Om#PSA&a*%tC%mf^t»K,TDAP"(Time domain 3-dimensional Dynamic Analysis program 3)Sr^lCLfc'yXTivOM$8rH$6"f"5. 4^SE It, i6*Sboitfeo# 5 yxTAtoK^Srffofc. K#U->X7

a©«®&H-4.i lc$r. *-yy.T Ait tdap ^9 AjstVlSSSMtt tti-Zc 9'7 A-C«s6§tb, «E®Altif^7=Vv^i*»roA*#**b±iJ:Ut4®1S**IEi;

#113 b®K6

TDAP

0-4.1 -yzrAMl

(2) TDAP ®tt5 A»BTy;w{-J: LTIS L fc TDAPIII1)|t, &it 2 y*x. 3 % , *fc. tKZ 9 riife**§*&*> 3. $**'*? h*B, * #«»*«. inner • D#SlBrSl:$eiS^ffl*6nTV'5. m#*lt#M#%l:tdita Scffifli4i£611 vrU-gdti, it©8l»fe t *- K*ia4fc-arfe;)'^*S1xTV'o. K

69 wate^BK t5TO»*»WBjffi-e, #mff. Awt ®^ir«-r5Si6MD$*, -#i(68ADiiSA**5 4:U!tfi*#A*® 3 an, ###0# •6-li®.6A, flftRS, 3SH*fi:

(3) TDAPT-ti,

-4.1 TDAP -ettffl"BJ@»^R$*^-T/t' — f-fy#* ssiS'Bm&BsaE 400 401 iS5M«a® =T Atf4 402 LRB ^T/I/ 403 FDR ^t;!/ -y/pf xy y yy$x 404 #&y ? y #m =f AtT/p 405 406 SS^y^tfASM^AJt^TA 2001 &S* WEa^yvi- 2 #3S*»y®L#*^x/v 2002 Eaty^/b 3 x/p 2003 ^#7k?if ktx/p 4

450 2004 2201 ^SiettlfEae-r/i- 2 2002 ^SfnEif -r A 3

(4) -yx^Aiais

$'>ArAU, -y^/px ? V y V ftlc, SISt^tAp V x E t A^iffiS® V x E is =fc Xf A*#* V X E *tSS L-Sfr-fd £ TDAP ttti-fa 3-7H^oy7Ajiit:i ErSffS Ex, 9"/p^ ^ A***Sb* j3 j: VAAto^^-7 t-O* £ S Ex 5. Lfcy^/wx? y y E&Tf. #!/bin/sh

;> 9 a l MODEL-A B C' #A*i6*S)y x E WAVE='ls ./WAVE/E*'

70 BAI='1.0 2.0 3.0 4.0 5.0' for MOD in SMODEL do echo ’MODEL:’ $MOD for WAV in $WAVE do echo ' WAVE:'SWAV # 7 7 /< /!/ (7) ^ UT — if [ input ]; then rm input fi if [ tdap.cmat ]; then rm tdap.cmat fi if [ eq.wave ]; then rm eq.wave fi #TDAP cp data/$MOD"_"$WAV input cp data/$MOD.cmat tdap.cmat cp WAVE/SWAV eq.wave ##### for FAC in $BAI do echo ' Facter:'$FAC name='echo $FAC I sed -e *sZ¥./Zg ’x

# echo $FAC I make„wave # tdap coSfr tdap tdap.jcl mv tdap.1st ./LIST/${MOD}_${ WAV}_${name}.1st

./result

#

71 mv result.dat 7RESULT/$fM0D|_${ WAVL$(name} rm tdap.amp done done done

4.2 a) ###* (DO) , «S3Kfc ± VSaSroSb^ttirJtKSrff-ofc. *-4.2 iCtbt$E*Sr»1". * Z 9 , #* - m #e as a * 5 & »**#*»(= >g t *§? £•#« 1- 5& h 3 z t ■» m e> *>•?*> 6. LtttWT©4^iS^lf fjtiS. CD #iS»roji«^#vv

® w

-4.2 *s» (»*)

# m hiss %

5-15 @*$168 (Hz) 2-10 0.3—1 Hz -ZPA

a* (*> 1.0 5-10 5-20

ass* 2 — 5 2-5

««f 66S /j\ /J\ vjx

(zion so ut. a Tt'±^ec6^5rE$E-t5.

JS^*J6R©»* PSA(Probabilistic Safety Assessment)-*?I4, KitH$©)5S* S*IC L LTV'5. LfrLtetft,, ifeR«S#l4^E®tt^56< fl-fft- 5Zt^#L©. -i»(C, Newmark E ja«#iSt)5r*fSi: Lfct)©-efc 9 , A##m#© j: 5 I: bbK Am «©&©#%#©

72 r k ttUtV'. c tic Z lc)$l:co»|@lcg5ttil**!ii/^-'V4reS*A5C t t Lfc.

** psa tot Lti'fc. #3g3S© , #i&#©#*t PGA itiMasK* ofcfcA®«£*£>& *>ofc. v^L^^e,, 5Sv**®$rSitfca^icii3si$ro#E®iie «»#*<*5«|SJ|;:*>5. C© J: 5 *Si", #)&#©#%#, PGA J: 0 «tf#####&*#* fPflii$6oT,

#,##%#&## t Lk##xii, ?£**»6)fflV'6ivTV'5 pga-?«:*<, &SE#it t ^jest-5. ©M to JS« # W Sr ^ - ;* 1C ff m B fcfe Sr #1£ L T V' 5 . DG Sr^S-fbLfc*it«Mi, ±SD#iSXiSW*t®SX*#5fcfc, Xx/Wtlcfcfc

H±ro^;$r#i*LT**#iSteK0#aj$6Sff«i6*#ELfc. ftHlg&Xfi, loffl ttRSb t SrfflS VXV'5*i, » Slr|6l±5-ii:5fc»lc|i, i»Sc>x^^ h/H»tt©**5tt»©»*«iS:fl|V'T, f#& ®3:i LV'. 0-4.2 Kvi".

4.3 (l) liCfclc itt* PSA(Probabilistic Safety Assessment)-^, ® JS*#S#6 (Cdo V'T li, *## iS»©a*t X t»sSSLV't stv, ifcStoSS Ht PGA(Peak Ground Acceleration; tt® jlDiiS) SatiQaSlES *-4* i-/v), sv(a®(s«x-<^ tfaM^iKv^z L^Ltk»$6, *6* PSA ICjoV'TIt, f 5fcAlcJ6*/N-y- sroaEsic j; 9 , t pga t fiS-y-x 5,'6)»s#^ofc. -*, mf^%#*K©*# PSA ic*v\xit, (CDF : Core Damage Frequency)# JEWtC«3§• £"a * fc ">X f Aft?W Srfr * 5 &-BI4

73 f a&g#&c t". 6E©ffitvsssitifisr-tf* 5 V, PGA 5^.®##&##&, PGA Lfciil* aic**f a#&&mf. ttt, * u, #&©#a#ic -oV'T&WfS. J: t), K##f?m©6HA ttSSitSi: f±S*5^*#iSiWro#«tfflgS®iSV'«SSbm«Sr)Sl^rirfflV'5 z

pga pga &%##%# t LitassiaaicE^L, HCL?F^*#ep#f ac i^wiBi*a.

a) ESS©®$ -«lc, ®^***JSRT-fflV'BLLrV'S«S©H#J®»l4bt«6<)fiHa-e&Sfcfe, «*^fc#«S6a©i6*ltij6Sa: LTSeffiSnTVS PGA £S®h.tft$$©t«S&;fc 5M»St4L £ tfSffl**;. Li'L*i)ie>8«i

#iS«icd3V'ri4, <*#f at*, pga ©iotas P CTfcoT t MIC-ffifflfS**»©;* ^ h/p#'l4lt ttoT, j: 9»a6t*ss$tf#afc6icit, a«*Aa©ff«±, #m*©##i#M© , ^©*, ^SiCfSCT PGA»© ffi © * * »ft a ic s «t a © ifi -a- * m -c* b a t % *. e> h 5. *®-ei-i, h/v5$A5/^)T* #a£iLfctS««ftaSr*maPiSS PGA SrjfSi UfctKSSiSiElcZ&f SC i £$u6 t5«5, c CT-jSi-#-6icJ: 9 ‘ESrot6RW)ttSlc$^i-ac i:»vsTt6-e&5.

KSilclKff L&V'iESf S i, #igtt©l6S Haifa.

J*/S #.«) = e/o 0S#) (4.1)

sisfliierfcs. *fc, ±$(4m#g*-e&a ciuc® a.

74 MWilX'MS. PGA fcti.5.

£[fitf(5„,e)|^s = a] = ?/„(»„) (4.2)

z c?, £[.]jy j:V (4.DAK i %]&# 2 y H6&

Y ( FoH |4,y — o] — | Kar[e] + Rd VarlS^j = a] (4.3) de ,; j dSti e=e J \ V Sirs j

r-T?, stt3#=o©«#®J,©*#W#Sit-Ji!», KT©Af4x.f)Ji5.

s = £"[5y \AU = a] (4.4)

$fc, Fork] It EH» it let •) #5t S ft 115 S® ti: ® #ift T-$> 0 , #«®±te*#)le tlCtoT#feP)tb5. ror[Sj,|4g = a] It <$soii!i«)aa$eod$4-^6.ivfcBe£ottssb]§®sl,cotfe)o*-e&5. a^|^,=a]t Var[S,jAij = o] ® ^ifcleoV'T lift»-epitt leiB-* 5 . (4.2), (4.3) A let 0 4, =o®»#® J5S/i,®&####]! t #IR/!*** 5> t, i**$tiiBlt#:£;T-*;i ibftd.

fr (A,j = a) = 4> (4.5) V^^K™=^ j

cz-e, <9, $[.

Dimova and HirataS) « £ ft 5 S6#'f4 £r iT1“ § #ti£^ ft H & tt.t&'t 6 tz. £>

(4.3)5£

75 it, = f 3.- KM, ^ BME# £ o T fcSE«l8 esrotf 6>o* ir =k Or itt»Apas^£.T ut*,^tfc^=ai Bg|t«*5£©tf bo £&;%«-£ 5

♦dk^xmwsuamst^av aic-a?v¥^n.

*-6- fc> *£*&■$.. © &M,, ^ffle^tWKSLtfiiSsJCJ; i

-r—88tcEggtS*S;iiTS;r*4-x.61iu5 t,©^-t5.

I°g^„ =gJM,,H,,R,J) + n:jva (4.6)

:;t, «. (4.6)^-e, #*btoas © cpiMt i„ ii »,, & 0.0 i @ < r £ J; >9 SITC0&X’5-Z.bix?>.

iogA J,=g,(M„H„RIJ) (4.7)

© i=*L-c#t/>©#!*##$* T©zC T*SSih5.

n,y = (log^g -log jg )/o„ (4.8)

/og5 s = g,(Ml,H,,RIJ) + n,J(T1 (4.9)

::t, #%!=«%#**# ^(ZZ-eii PGA)i s;. ©».«»* 5 £ #;L

© %*©%*«* j: EEK**S;trjb-H-5«»$t^*«e*fflV'X'a* W6 SrH-Sf 5. W T(c**©S:*4x.6.

«’» =//M >-/.v «W" »l/2} dM■ dR- dn,j (4.10)

76 :;f, /,ttSIS5EEirgg-t — v&ttm&&&&■?&s. p-tnt**), aTomi^Ji.5.

/*W(J-'rr2- (4.11)

fc6. *fc, /M(A/,)li Gutenberg-Richter ?,iC «fc 9 4 ;t feftfc #S<0 (gig i 58 £*$ C *9 £CFi-4;i6>ft5.

b ■ exp(-b(Mj - A/;)) /«W,) = (4.12) (1 -exp{-b{M u-M,)))

Gutenberg-Richter j£fc*3 it 6 #$CT, #±fel£<9 itiB%®J £ S b 1". Sfc, (4.10)5£ exP(-«*/2)iiE#SSS:ic#5it5eES:#S-f-o MSre,

SLTV'5.

© ^ = olrfiSLT, 4-fcr/H3/,, T@-©oH-® SrfrV', $

£ts’.K-«i-(zZ"’.-s,#)/fez w„ (4.13)

^5»K=al=feSw» • (s»-vl /E2>v (4.14)

®7’D-ir^*igS? ,J:**ll]»*©a^T?SfcO )SLT*WSrfT^ 5 .

(3) »«ff»W |fi»hr**Lfc*?6$r**#|ifi!WtcSffi L. 4 &© S 3 tt Srtft W1~ 5 . *5fcT-

Ufc. itc, t&M

77 u

•54-?i xns2iswo>c-1 © 3!i/-!''4 a >"< >* 0fr6l © • >c-^v'i$@4ii«33ie*»& ‘n ?»» e o 09 ‘o-i ‘o’8».h ^.^-^5(t, wsw *.*2Ty^iBW*+l$5Sa»Ei¥*S - = 4 = 4^xt 6 ^ $$ ‘¥1«*WBt$ ‘x^E»$ 8E -K-8-to$ 9Z «3S *##%%? *zi ‘ a

4 u-w %"a0Mifgsimm ‘Sda -^na^HR 24-» *in 4 3m#aia#am4-x33/<=R -v/g?^5vqi.-i <2>i$-4 = (i R^SSa* ‘^a-tfScolfil-B '2\9%qf$sa^#g!l#iWxn*:)9g^ /:- 4 -v/ 'ii(^n?i >1 f #11«2IIIS#? = d -'/sfl«l¥ 'xi#- • vnxi c Tv-i^n^s^sn^iytiy^i-T 4##«w#^4o;* * h@-b '%$ -x/n 6 -xn ?%s «s$ES«#G>q - fi 4-< c ‘n -^n4\ic.xi4i 2'?-it»H¥se«#4#'Y* Ci •X/1$S*P$Xiai 1X11 4 zuitu/Nt-0I X SZ'Z= ’? #8,4 /: 4 \«""/N9'£Z= jf g$S#3

ch -n 4/tc Ri 4Y^t@i$i®^Y#4n ?«Ii 4 = ri fi 4 xl/i-^^t q n 4* ‘TI##W^4«‘Y*0#'# nq%^in#%M####9:f XI 6 s?T #&a>$Si® *1 4 ^###41## '2v1ixfi?aain 4 s/uioosi xicffl* « Mti^Vq/x.*.i(£>-|H)^xarKA.4r $./H«:il»e*a)T(« TSSfWtSflSTtoWEB^ •<„•<„, 2q? JXaRX/'4S:

•ttsasoz %um% E»xi## (= •xn44X24-B*xi*o>a3itoB L fcfctzvmmfem 5% t v 5 :;

L, 1.0Xl0"5[event/year/km 2], TPS**' :* - K Af, £ 5.0 b iRfe t tz. t tz, MMW. £ /f, fi — t L X 30km,4)Jz: @ L fc(0-4.2O). —2?, Gutenberg-Richter ^©bi^0.8, 1.0, 1.2 <£> 3 ±|5g-r y=.^x.— KA/.& 6.5, 7.5, 8.5 (7) 3

300km Ikmm^,

TaSEHIMSlsUt, PGA, Sv(T=2.0s; h=0.05)£ Ucgc4^(1997)^J|||| I5)LT^£ m'fc. .

log 4 = cmMi + ch Hi -cd log(^. +Cj exp(c2A/,)) + c0 +^5i;6t +8 (4.15)

C C IT, cm, ckt cd , c,, c2, Co Ip , 8 y it Kronecker (D T/V ^ , Z?t £ # g«7, efiegamic#^57>y 6. 0-4.21 \Z PGA, 0-4.22 [Z Sv(T=2.0s; h=0.05)

6# A o fc. Gutenberg-Richter ^C> b iE C> B HU £ ± P£ ^ fcl bb ^

79 hi. a) 0-4.25 (C PGA, PGV, ftmmm 2 #©Wifi$!3®J*«:i: tl B0 ^ V ' 2)Sv(T=2.0s; h=0.05) ib'itmT© 3 3f".

si'={SW)dT (4.16)

si’={-XSST'h)dT (4.17)

si<=iifoMT’h)dT (4.18)

zzx-, s„, sv, s^tt^n^, Mg, a#, b^xh^o, a^tsa It, Housner jJS * ^ ? b ;V 3& S £ S # b fc ^ 1C V' b ix ft IB 88 ffi« Sld © PGA, PGV t 0 t>&SS ©ES* ;« V't ©l§*asf# ibtlfc. rmt, S/, $ r t, ft*llifS-jSM© 1 #^e>S2S*8® 2#$-ei6 ##i/^/ix|ctc-r#*lcE'(bLTV' L &/)$ tb, **KiF8S»Efet ltlElia*a;»$i£'.5 tiitth, 4-@ro«tt-fltS$KEgffiS*S;di®*5*T.TV'5 Sv(T=2s; h=0.05)&*#i:E#&M^5. s/,KM UTIt, 4"#, EE®Ss*tSrftf£ t&W

80 Sv(T=2s; h=0.05)3rt6Siljfg$g b VT&Rja ©ft*$Sl: £831 Lj»S$ 61$ ir(ML, 8u«-e#S Lfcitt*lit§S$#ife^iSffl It PGA SrtiSSliffi® t LfctUSSi St'>•©£&«: firfcofc. ^##©#*^#6 Sv(T=2s; h=0.05)©Mffifi«T©S;r*|Hl# Vtc.

/Dtfji) = a0^ (4.19)

:;t*, aD, Pcl3@#-E«-e@'»#fff2 J;-? T*i6;t. ®»^#©e*, ao =0.0521,

Pd = 1.250 i5#lbh,fc. $fc, (4.1)S;Oelt(4.19)3:tr J:-o-C#BiVfc@@5$;*fflV'T#$ Lfc^®S©**$®*^ $eiiS(c J: ot*ie)fc**ES*©H:-x?, ff-®©f£S,

£M=i.073i, £©$##16: 35.37%^q#fr,ivfc. @#H-®r*#feiifc6» (: + 5>»!, Sftffiifci: tTtiiitS—(4.i)S;-ejS:®©T-^ t lifeo# a#x.6.*#ie#:tm#mm#©M#^(4.i9)A-e*m?$ 5i« g-t-St, (4.3)^|4«T©*T'#xe>tl,5.

= al = R;(S:i = VarM+^j rar{S,[t, = a| (4.20)

0-4.27 12 Sv(T=2s; h=0.05)t2 J: o T $15 UfctlSS 6S &$1". *fc, 0-4.28 i2*SSf

^tfc#.ffii2iot0-4.27©m#mm#&pga. 04 9, PGA &##%##): iP-f f- ©**»#«(2 J; o X gk*-?tz»miCf£Z>Zbtft>frZ>. Ztilt, H®ilfi*StoSl2j;oTfiJW«5£^5r^

#K<4otl'52i^ltV'5. tfc, Gutenberg-Richter it© b S6*^Msa42£(iH2#tovrv'5. cj%t#%©mm10C-e*#©%^#t±K-7/ = ^ = - K*£|r] G«-S-l2ttb*^/Jx$V'S, *#7-4-7^ = ^^- a:##*U2*< fc/dU, 4®©tf®X-14SgBli)*»*©««i 0 (±T Padt©IStt)SrfT7'5. Sv(T=2s; h=0.05)*ffi®t2U-tff® Lt2tt*a«S6*t, #5glhd«&E&&(2 J:-oT *fcfc PGA 6fg#it"5>#SJ$6Si: &, irii/f ib©*#/\f- K6#A^6f #® Lt@m&0-4.29 9f . 149, M, =6.5, b=1.2©^-7.*B* W#ttl$lS-&Lfc jtf $3 0 , A/„=6.5, b=l .2 ©-y-^T-M*©S?^S

81 Ei"5fcfclc, D^Ocm & 3„=30cm tc^ X.T !+> Lfc * Xh, ffi%;h.T©5 7). ttoT, 0-4.28*1 l%©##*#Kjo I* 5 *##*%©*& HCLPF %%©{****

lttsl/*. 0* 1, HCLPF K* b mc##L x*3 1, S6*©ffii)*ic*oT PGA tcMi-i. HCLPF 58J*-S $*# <

y±©mm, PGA #©*#©@@M©##

Hc*oTm%5**m##*%5**dsgip%, «, ###%«»%*TM-#L-c*. PGAtcM-rsa*

Hma©##s*atc*oT#^.ott©*^5**e^L-cj3i, #ts$

*#t5#&l*, ¥#«#*^T*#iS©$l%(Wxl*mf **«*R©^%TA##)T r-ei* PGAir-ffer-s^ett^s; c^sie-tcm^-a-c-ifed.

LftflSib, ilSl±#iSiW®«)#ttSrSet VfctfiSSbSS, XI*, #«*««© it©** 16 ffi«lc*oT»*1-5r.*^at LV'*#XTV'5.

(4) Sift

4¥®l*, tdap

*:##*##&, pga zi&mmmMt L^##AA#icm#i-5 *$SrSLfc. 4-f *65. CD TDAP zm * LfcfSffittWIB'V^rAwK^SrftV', tdap 5rit Lfc-v^f a«*© TTIgttlcoV'TtiiftSrffoTt.

© L-cmut. © ^##m%#©* ? PGA l:Mf 5##& ##!*, 1M Haa©«*S«)Slc*orS^oTV'5. tot, HCLPF 36,$3F©ff «lcEe-t5fc6SS1-5i£;-5/6$fc5r t

82 il: t 9 &S#S

[® 4 1) TDAP III Ver. 2.00 flJfl#5IS, T-9 If #x A, 1999. 2) Vigfn*. **#«, #**#. ft*#S#ioi6*6tt*Sa^ff«, B*#m### i63R«SijC#S*, $ 452 -§■, pp. 11-19, 1993. 3) f ##%, 'pftZm, tt*JS«WfflCi5»«a**ft»(SFC)rotf

»«<*, B b-i, pp.39-4 o, 2000. 4) tswe, #»;$%, #»»*^©^»israwi tfctf>*»o««*tg«ro ##, B A#e#, S 555 ■§-, pp.85-91, 2002. 5) #mm-, #**», a##, 5in», 9 ^ ^ *a, JCOSSAR'87 B3C*, pp. 111-116, 1987. 6) K. Ebisawa and T. Uga, Evaluation methodology for seismic base isolation of nuclear equipments, Nuclear Engineering and Design, Vol.142, pp. 319-326, 1993. 7) R.P. Kennedy, Overview of methods for seismic PRA and margin analysis including recent innovations, NEA/CSNI/R(99)28, pp.33-63, 1999. 8) S. L. Dimova and K. Hirata, Simplified seismic fragility analysis of structures with two types of friction devices, Earthquake Engng. Struct. Dyn., Vol.29, pp. 1153-1175, 2000. 9) B. Gutenberg, and C.F. Richter, Frequency of earthquakes in California, Bull. Seismo. Soc. Am., Vol. 34, pp. 185-188, 1944.

10) %%#-, a#, b^bss^** f**S«a*(i*), pp. 1027-1028, 1997. 11) VBft*. %%#-#, «Slg?tF^*eibiSKM-#-5e%, # ^-#6®:U34, 1998. 12) A%e9f#SKS-S»#g#t JEAG4601-1991 it#®, B 1991. 13) %m^A, itiES, ffBEI##, K* ^gffi±T-©3SR«)SS yt--43r Wt-ro^Stt, % 10@B*i6*X#-yyd<-^3. 9 A, pp.547-552, 1998. 14) *-#, #B)I, T-fflV'btl5±TPfiDt«rW-f51ia£-*C>atSKlW ft, SI 506 ft, pp.57-65, 1998.

83 i5)2cfjE, Z%^tcM±mW}RTffc%x co^^, pp. 161-164, 1997.

84 memf

0.5, 1A 2J0 f# Cjch

ixsmazttr&mmm

0-4.2

Shear Stress

(b) Restoring Force of Upper Structure

Shear Force

EL - 14.0

EL - 16.0 EL - 18.0

(a) Structural Model (c) Restoring Force of Isolator 0-4.3 ^-7"^

85 m-4.3 am:## mm# msi^cs #mm#mam#mam* Sv (T=2s) Sla Slv Sid mm^, mmum^ No. (km) (km) (km) (km) (cm/s2) (cm/s) (cm/s) (cm/s2) (cm/s) (cm)

1 1985 y "7 -rl'XXOOE) 8.1 28 — — 85.0 162.8 20.4 34.8 232.0 36.1 7.7 2 1994 m^(NS) 8.1 49 81.6 173.4 — 369.0 28.2 54.6 348.5 51.1 10.0 3 1985 -; v 8.0 30 — — 19.0 254.9 19.3 30.5 206.4 30.8 5.9 4 1968 -H&M' A;'(NS) 7,9 0 — — 187.0 264.1 31.3 54.6 305.4 44.6 10.3 5 1993 WGM' M(F.W) 7.8 110 104.4 103.4 — 919.1 60.2 64.0 919.0 111.1 11.2 6 1993 ^m\s) 7.8 10 61.1 92.4 — 216.0 10.1 13.2 153.0 18.8 2.6 7 1952 t-: ^7RS69E) 7.7 16 — — 43.0 175.9 14.6 33.7 188.8 30.3 5.8 8 1999 fr# TCU078(e) 7.6 — — — — 439.4 36.9 72.9 521.0 71.8 12.3 9 1994 A) - ^ A F 7.5 27 62.7 188.9 — 602.3 , 25.5 32.1 321.6 38.6 3.2 10 1999 1- /U : i Sakarya(+) 7.4 — — — — 398.9 30.7 81.3 355.2 56.8 12.3 11 1978 AMIR m^%(TR) 7.4 40 — — 83.0 394.4 25.5 32.3 247.5 34.5 5.9 12 2000,q,l|klRmmi ll!Pf(NS2) 7.3 8 2.1 12.8 — 917.8 103.9 179.6 1150.2 167.6 30.4 13 1995 #r*TY^*ff(NS) 7.2 8 2.0 — 19.0 818.0 92.9 160.4 1045.2 171.7 30.2 14 I989DV7VJ.9 GlLROY#l(90dcg) 7.1 18 — -- - 29.0 433.6 35.3 60.1 420.8 63.6 8.8 13 1949 ^V>U'7'(N86L) 7.1 70 __ — 17.0 274.6 16.9 34.6 239.8 36.0 7.2 16 l94()/f^"JTA//L- n-/i/iT>hn(SOOE) 7.1 16 — — 9.0 341.7 31.0 62.4 388.7 58.7 12,2

17 1976 #%'!)'- V/X9-(EW) 7 0 15 — — 10.0 703.3 52.9 121.5 638.4 89.6 22.0 18 1979 (180 6.9 12 — — 27.0 371.9 44.9 79.7 544.6 88.3 17.5 19 1994 /-^Jvy' (-7(360) 6.7 19 — — 19.0 424.2 48.1 77.5 466.9 71.6 12.8 20 1987 'f&MdU/M' /£J*;((N090E) 6.7 38 32.2 62.0 — 419.7 30.6 35.5 292.3 42.7 7.2 21 2001 HHM007(NS) 6.7 50 — — — 399.9 16.5 32.0 285.6 35.6 4.5 22 1967 n iy riA'E(LG) 6.5 0 — — 0.0 619.8 26.3 38.8 300.2 40.3 7.4 23 1997 %|AL^lR^mim AZ%(EW) 6.5 12 — 16.9 — 493.3 34.5 41.1 366.5 48.5 6.5 24 1990 AA(F.W) 6 5 8 12.7 13.7 — 327.1 24.9 35.8 317.8 42.1 6 3 25 1997 ill nm«S j$foSf(NS) 6.3 9 — 12.7 — 421.3 13.4 15.7 162.4 19.4 2.3 N»«NS) 26 1998 6.1 10 — 10.8 — 714.5 41.4 58.4 477.0 67.6 7.3

86 *- 4.4 Mem tm®. Sv(T=2s) Sla Slv Sid No. SE8l(km) (s) (cm/s2) (cm/s) (cm/s) (cm/s2) (cm/s) (cm)

27 8.0 25.0 69.59 531.0 59.9 127.8 774.1 121.9 26.1 28 8.0 50.0 84.44 210.0 23.5 59.0 325.2 53.9 11.2 29 8.0 100.0 106.05 101.0 12.9 36.8 177.0 29.1 6.4 30 8.0 200 0 137.45 31.0 4.8 15.3 71.2 12.5 2.8 31 7.0 12 0 31.18 440.0 28.3 73.7 470.9 69.7 13.6 32 7.0 25.0 38.24 182.0 11.5 29.9 201.8 31.5 5.8 33 7.0 50.0 48.47 72.0 4.9 16.1 85.2 13.3 2.6 34 7.0 100.0 63.07 21.0 1,8 4.9 28.0 4.3 0.9 35 6.0 6.0 14.40 327.0 15.8 28.5 254.8 34.4 5.7 36 6.0 12.0 17.54 152.0 9.0 15.9 120 0 17.5 2.8 37 6.0 25.0 22.44 66.0 3.5 8.0 53.0 7.7 1.2 38 6.0 50.0 29.23 24.0 1.6 2.4 20.7 2.9 0.5

87 Acc. [GAL] A cc. [GAL] Acc. [GAL] 0

20 NO.3

EH.4

CENTRAL No.2 No.1 40

Hokkaido

Launion-NOOE

CHILE-TRANSVERSE 60 Time

Time Time

toho-NS

[s] [s] [s]

80 (1985.9.19)

(1994.10.4)

1

00

(1985.3.3)

1 20

140 88 1 10 10* 10 3 Period Period

[s] [s] 10 h/L- Iff M E

10° t0 10 10 (ton ’ 2 / Period Period

[s] [s] 10 No.4 Hachirtohe-NS (1968.5.16) [GAL]

Acc. [GAL]

Acc. [GAL]

Acc.

EH.5 (tKi2) Acc. [GAL] Acc. [GAL] 0^.6 NO.8 No.9

No. Chi-Chi

Hachinohe

7

Tafto-S69E

Earthquake-E Time Time

oki-NS

[s] [s]

(1952.721)

(1994.12.28)

(1999.9.20) 90 2 Period Period

[s] [s] (tea) Period Period Period

[s] [s] [e] Acc. [GAL] A cc. [GAL] 400 No.

10 No.1

TURKEY,SAKARYA-E 1

Kaihoku-TR Time Time Time

[s] [s] [s]

(1978.6.12)

(1999.8.17) 91 Period Period Period

[s] [s] [s] Period Period

[s] [s] (so;*) s-t-a Acc.

[GAL] Acc.

[GAL] Acc.

[GAL]

(itT966l)SN-eqo>l e|oN No.16 El Centro-SOOE (1940.5.18) ] 2 [GAL] [cm/s] [cm/s

Acc. Sv(T) Sa(T)

]

2 [GAU [cm/s] [cm/s

Acc. Sv(T) Sa(T)

] 2 [cm/s] [GAL] [cm/s

Acc. Sv(T) Sa(T)

0-4.9 h/i- (-t© 6) Acc. [GAL] Acc. [GAL] Acc. [GAL] PS No.20 No.19 -4.10 No.21

Chiba Pacomak-360DEG

EHM007-NS

toho-N090E Time

[s]

(2001.3.24)

(1987.12.17) (1994.1.17) 94 Period Period

[s] [s] Period Period

[s] [s] Acc. [GAL] Acc. [GAL] El-4.11 No.22 No.24 No.23

Koyna-LONGTUDE

lzu Miyanojo-EW

oshima-EW Time

[s]

(1997.3,26)

(1990.2.20) (1967,12.10

) 95 Period Period Period

[s] [s] [s] hA-

(t(D8) Period Period Period

[s] [s] [s] Acc. [GAL] Acc. [GAL] Acc. [GAL] EM No.25 No.26 . 12

Yamaguchi-NS Shizukuishi-NS No.27

Time M8

X=25[kmj

[s]

(1997.6.25)

(1998.95) 96 Period

[s] h/v

(^9) Period

[s] Acc. [GAL] Acc. [GAL] HI -4.13 No.28

M8

X=50[km] 97 1 IS 3

10 10 (t#

10) Period Period

[s] [s] 10 ° Acc. [GAL] Acc. [GAL] Acc. [GAL] -500 500 0 0 0

5 5

El -4.14 10 10

No.31 No.32 No.33 15

15

Time Time M7 M7 M7 20

X- X=25[km] X=50[km]

[s] [s] 12 20 [ton]

25

25

30

30 35

40 35 98 Period Period Period

[s] [s] [s] h/i/

(ir^)

11) Period Period Period

[s] [s] [s] A cc. [GAL] A cc. [GAL] Acc. [GAL] No.34 No.36 No.35

M7 Time Time

M6 M6

X=100[km]

X=12[km]

X-6[km] [s] [s]

99 No.3? M6 X=25[km]

Time [a]

El-4.16 V)V (%

100 10° • Artificial O Observed

I o 0*0 0) 0 10' •o ° 8 #o O • 0 • 1 o s° o ScP • 8° •o * O I 10 ■ X

6.0 7.0 8.0 9.0 Magnitude

0-4.17

Period [sec]

0-4.18 wvi#t£

101 o 400

PGA [GAL]

0-4.19 PGA h Sv (T=2.0s; h=0.05)0)0#

Depth Hi=30km

Uniform Random Source V- 1.0X10'-5 event/year Am' 2

El-4.20

102 Stiff.4 9 4-M-i vod iz>-0 Probability i

of f

Exceedance K>

O

03 Average pf Sv(T=2.0s;h=0.05) ert-m

ro o oo as ) i = z

o s 2 -

o=q - G>(so Deformation of Isolators [cm] Deformation of Isolators [cm] 100

I ------

EH -k NJ Lfl 1 & M 100 n , 35 ------It

(V ------

m

n® c ------a ,

100 Ff a s # Probability of Failure Probability of Failure o o —^ O C7I O

m .k w

II o LZlb M

4 O CO o* * Mu=8.5;b=1.2 €> -

Mu=8.5;b=1.0 €) -

Mu=8.5;b'0.8 • -

Mu=7.5;b=1.2 © -

Mu=7.5;b=1.0 ® -

Mu=7.5,*b=0.8 ©

Mu=G.5,b=1.2 O *

Mu=6.5;b=1.0 ®

Mu=6.5;b=0.8 6 PGA ® * Sv(T«2.0s;h=0.05)

Probability of Failure

Ei-4.29

Mu=8.5;b=1.2 O

Mu=8.5;b=1.0 • O

Mu=8.5;b=0.8 - O

Mu=7.5;b=1.2 o

Mu=7.5;b=1.0 o

Mu=7.5;b-0.8 o

Mu=6.5;b=1.2 o

Mu=6.5;b=1.0 o

Mu=6.5;b=0.8 o

0 2500 5000 HCLPF Capacity in terms of PGA [GAL] m-4.30 HCLPF&&

107 -4.3

Moment of Geometrical Weight inertia Shear Area moment of Node (UN) (xioW

EL 57.2 1 25.1 18.3 27.7 0.338 EL 46.2 2 22.3 16.4 27.7 0.338 EL 36.7 3 28.8 55.4 64.3 1.450 EL 30.2 4 52.9 1382 81.2 3.060 EL 24.7 5 111.0 290.1 107.0 5430 EL 16.7 6 138.0 360.6 130.0 6 250 EL 10.2 7 236.9 658.6 241 3 8.699 EL 4.2 8 185 7 496.7 256.3 8.699 EL -1 8 9 168.9 454.1 2603 8.699 EL -10.5 10 218 5 572.3 3584.0 97.300 EL -14.0 11 147.5 386.1 EL -1 6.0 12 102.1 386.1 EL -18.0 13 102.1 386.1 4340.0 139.000

-4.4

Spring Constant Damping

53.8 MN/cm(1.0Hz) Horizontal K2= 13.5 MN/cm(0.5Hz) h = 0.02 fy = 66.7 MN (0.05W)

Rotation Kg =5.63 X 1010MN • cm/rad h = 0.02

-4.5

Spring constant Damping

Horizontal 8.98 X 1010 N/cm 1.22 X 10*N - s/cm

Rotation 9.67 X 1016 N • cm/rad 1.91 X 1014N-cm-s/rad

108 -4.6 HCLPF

HCLPF ** [GAL] bH PGA Sv(T=2.0s) ^ — K Mu

0.8 2.75 X ID’12 3.00 x 10* 12 3251

6.5 1.0 1.62 X Id"12 1.84 X 10'12 3270

1.2 9 34 X 10'12 4.25 X 10-14 3293

0.8 2.09 X IQ"? 232 X 10"7 1252

7.5 1.0 8.14 X 10"8 9.45 X 10'8 1283

1.2 3 03 X 10'8 3 72 X IQ* 8 1322

0.8 3.96 X 10"5 4.91 X 10* 5 537

8.5 1.0 9.64 X 10-6 1 34 X 10'5 599

1,2 222 X 10-6 3.55 x 10"6 674

109 5.1 69-»«f«» # ¥ ftti, ftHJS?‘^W^j9f(Korean Atomic Energy Research Institute);^ 6 A# Lft## oTfi, #*tjf«£Sgi-<5 i i tic, ttSroESISWtrSIMLfc. *ft, SittlRtH urii, s. 2 *#T?li, @*H-T-»SiJdtLfct6««S®Sa, &U= ?-###»%% Lft#*IC"3V\T *-<5. »«rKtti Lfc«6*»»/j5|a»§JxfcSSJ^.

##Jdjtfc#«iiroS*[email protected] tcrS-f. @419 , 8li*S*4Lfc*li!#< etc, sifefiteitibsass m^b 37«, $g 12s ®^e> 130 BWififtH't1 t-CV'5. *ft, 201cm STJitfcKttSIV'MifcTfcSiiiJJ to^S. 0-5.3 @4 9$$: 10km A>fe 15km#ifitc**ai* =t= LTV5 ;c rjitt, SS@toV^to*S*?$$-efc5 soknV’i: ItR-t 5 £ «V'£**.$. 0-5.4 tcifcsiosaescest-. •?#■=.?*.- *5ft£>*>* 9 «SI3iVTV'*V'as, -7^=.?-a- K 3-4.5 fa 6.

5 o.2gal ^T^tto&im^Lftftft, * 9 l

®ii73«T'*-5. «l|fj**3$$^****lfflKSSr0-5.6~5.17 ICS t\ t ft, 0-5.18~5.29 1C 5%M«$#roin3S$)£S^^^ WVfciiSjSSx^lS' h*8r ::t, twni, TkVtoro 0.02#ic*Nt5®T-S¥-fbLTv>5. LftiSSro ib.mmM km zucfrk LT»o^©#$iJSft|eS5nfc«®|j:/<;uxto T*, *#Ki(0##e^^##(c@v\ -*U4, ittRc$«»S/jx5v'ft»fc^x.e>n5. 4 ft, H/H$, ES'J-S; BBK.HAK #to-g|$$r®#, #*4' I-T-1$ l£ |Rl C *# h /v®«lcftoTV6. 4ft, tlilf 0.1 » <* fe V'T-fco ft. 0-5.30 (C7k¥$) k _kT»9 ,

110 its #)$.$£> #-6-tctt 0.5~0.7 tteail&V-^/Ht/J'SV't)©©, Tj3,€> ©ttlt. a*¥V—tetoKSt-ilTV'S l/2~2/3 <*&V'£ ** y

fttr, itR##tcit, g*r*

-5.32 tc$f-. TCTIi, h/V36E©lfc£tt$$ Ut. it$Stcttffl L?tx ^ i^SSfoSi^HTt/Tt.

s/. = ^/0>AWr (5.1)

5/- = I?£>-(r'Wr (5.2)

^=l4^

0-5.33, 5.34 Kit: *$#$$£ 7?:-*. 0fIS »*iaie©tt;-efe$. 0* y , esjsstt, tmtimssuy tiuetotc*^? hyvssg #'J' £ < , Sid, SIv, SIa y , Sid #$fcfc«to#fll6K^%S8*LfcS»"e*6C irtcea VTV'5i:#t 6*1-5. fiPfe, «*©a«^±jRfi*jlc/J'Sir'iV' 5 C £&©©, ##L4##I: It $,* y*jiMAj>©KSrS$j3Tj3ibi*, ^##©*ia*#m%tc#LTit, mwis £«§C«LTA4 L4i LTt, fc$ 0 ** 4l£*:#£ 124V'£ * * £ ft 5 . %cT, tt MC*tl,TA*ifcSltt«r*£'*-5»#fcli, g®SW^ 0 - ISV'

5.3 B*i6S©»«f *86Tlt, ttlS«)E5&tt*ti:ov'X»WSrff*ofc. ##Tlt, S» 2 ^~i904 ^icfi C c4##©g5, S*ffi*ji5#$Sh.rV'$ 1859 1@©i6*^ffi Wc. 4*5, ##©%#tc Hi -f 5 tt« AS ¥ Jfe £ T* fc 5 fc ft, <% 0 © # W T* It, * 4 it« i: ^ 1* t c t -5 s m * 4 o 4. 0-5.35 0-5.36 |C%t#mcMf 0*0, *$.$ 37 a«iWT^ < ©#®z)$^^ LT V'd C iz)S*>!)»5. tfc, ®@ 1500 ^ C* 51C tS& Sh,TV'51**i45#< < 4-oTV'5. C fttt, AT*# TV'5 £#;L6>ft5 4*4«jf*»4M*£lli&ft5>fi;fc5 5 . 0-5.37-5.41 IC^ft6©**6eSr#V'fc@4-^t-. 0*OB* 1500 f ji'S 1600 fl: ^ltTlt$a##A^#TI3K&A/^A/4< LTV'6^, 37 S6Ut©ltt«^#V'C 0-5.42 lefts, gatet 5**{$*©E$^WH^Tt-. tfc, 0-5.43 t 0-5.44 IC% *»*L4m#tc*5it e#Tlt,

ill 5.4 Wirtt

(1) ms 1994 #-1998 ^icE#SH7tS$©**$dtt*I 10-15km Xhotz. (2) ##aiz&ct. (3) ISSf /hS < , # h/vro3M;55toKl£^'h£;S>ofc. (4) B£«i®Sr#t/f tfcigf*, *»37*a®r>#< ffl#i*«i«4iti'5;i, w» isoo -i600#z:5lz#< roE«»$adiLTV'5 z: t&frfrolz.

#«Wic**Riffi*14®oSa, #WSrtf£ofc. #tJf©te*. MJttS SrSEHSL, «»©a9JSrlf®ff*5iK>»^a!>« Z. kifitofro*.. itz, S***lzM Utt, 0 it hi) ®t-i4fet5f;.aa!fc5Z £ jSM6!l>i*ofc.

[S5 ¥©##jcK] l) tt-B, #BMI, #®16K$lWtif-efflV'e,fL$±T®tt&*'t5 8«5>*toSI665W #, $ 506 3§-, pp. 57-65, 1998.

112 Station Number of Selected Longitude Latitude Seismometer Name Records Records BBK 129.4373 35.5762 JC-V100 527 2 CGD 128.8450 35.6055 JC-V100 114 2 CHS 129.0910 36.1785 JC-V200 156 5 GRE 127.4443 35.2587 JC-V200 58 2 KJM 128.5930 34.8295 JC-V200 260 2 MKL 129.2436 35.7295 JC-V100 799 21 PCH 127.1342 35.9617 JC-V100 51 1 BGD - - JC-V100 38 0 DKJ 129.1115 35.9443 JC-V100 866 11 HAK 129.5030 35.9265 JC-V100 517 10 KMH 128.9268 35.3418 JC-V200 297 4 MAK 129.1788 35.3673 PMK-110 297 8 MUN 126.4288 34.9072 JC-V100 117 5 Depth [km] Depth [km] Latitude i 124

24 ------______

o

• 125 125 1 1 1 ______------_ ?.

0 ©

oo--- 0

006 126 .4$ El-5. bo :>Q : 1 : : i ;G ------______

1994/12/14- @0 ■* CO 2

c ■ ttfo I

% CP w •

127 127 o

cOo Longitude Longitude 1 1 i ______------_ _ ------O O Latitude

114 (ED 37

1998/5/14 — 0 ^ 128 128 C o' ® 3 o

;

1 EPoo Hr ------0

T^X

w C 129 129 C 1 to ------a

Tj|J 00

0 ^ 130 u 130 0 :

i 1 1 ------

2 O

o

.y 131 131 Frequency VX a ov $ Exceedance

of

Number

Cumulative

Magnitude 10

...... j •• • - •}»•*}«*•»!*...... ;...... £...*.»»f...... v* *'>* \>*•

.; y. 10 ...... * » ...... f...... v:v:v.Tv^'-^

...... *• ! j...... < V 1. : ...... i - y: ...... ; ...... 4-t. ,. • (i »*V...... v ’••■■• ~ v '* i •'••' : : jj i :[i / 2 *j : •;: j : : j : j:;: t-y : r * ¥< ft-...... ?...... ;••*.; ' , )...... —\.s * • ::sV:*i:W :...... £..#*«,* #** jsi ...... ••••>•-• ...\ ...... ^»!•>{...... }...u.i.j../.« i ...... ••••!•*!' ...... ***»**•• C* j ••■ i * «...... ^ « •...... - '••••#*■•*!* ...... iL?J *nv •:> ::::=: < ! : L. : : : =!;:=: : i = i ; ;j .'i-’.’.'.'J.'LiV *• i

t:r: f .*r r:i:: .v * * *.-r:,vr*r.*i* *^.*1-ri .f

mm# sai

10 10 10 PGA(Horizontal) [GAL]

10 ■*m v\'W

l T u: ' r » » i i -I- j j m 10 MHS 1- : xp

• *• * i* • 7 *r c •> ?rrr ****** ## ...... v . • vI'K • • ■ s- • V ... !'T //.*. v. *

I I m O CLio" Ira • ...... !•«$•#•• •,»;■>»• .►.«,..«*► .j...... *{«j f*<•!••.»« •••*•;* j *<•!-* * ► *i

10 a >•>{»•;••><• s*jvjj...... i j...... v^j '^'V • ■ *4' *■ •»*.•••• • »••••;•• •. •• %•**-» •••••*•••••»>—»• •• •

10 . . . ^ t . j ■> , . . itttui. . i ...... a , , ,, .wd. 10 10 10 10 10 10 10 10 10 PGV(Horizontal) [Kinc]

0-5.5

116 Station: BBK [cm/s]

PGV(NS) [cm/s]

PGV(EW) [cm/s]

PGV(UD)

E I-5.6 117 Station: CGD

Time [s] Time [s]

Time [s]

Time [s] Time [s]

13-5.7 coo[caattammija:*:*# 118 PGV(UD) [cm/s] PGV(EW) [cm/s] PGV(NS) [cm/s] 0.1 Station:

CHS @-5.8

CHS 119 3 5 o Q_ -2 -1 0 2 1 0

50

100 Time

[s] 150

200

250 031 g% D 6 S - 0 ■5

PGV(UD) 1

[cm/s] 1

PGV(EW)

[cm/s] PGV(NS)

[cm/s]

GRE Station: Station: KJM ] 2 [cm/s] [cm/s

PGV(NS) PGA(NS) ] 2 [cm/s] [cm/s

1 PGV(EW) PGA(EW)

g _ _ 8

3 n> s * ] 2 [cm/s] [cm/s

PGV(UD) PGA(UD)

Ei-5.io KjM Station: MKL 2 ] 2

8 [cm/s] [cm/s

o PGV(NS) PGA(NS)

] 2 [cm/s] [cm/s

PGV(EW) PGA(EW)

] 2 [cm/s] [cm/s

PGV(UD) PGA(UD)

El-5.11 122 PGV(EW) [cm/s]

PGV(UD) [cm/s] ^ p p 0 PGV(NS) [cm/s] Station: Time Time

[s] [s] PCH 0 - 5.12 123 Station: DKJ [cm/s]

PGV(NS) [cm/s]

PGV(EW) [cm/s]

PGV(UD)

EI-S.13 DKJ 124 PGV(UD) [cm/s] PGV(EW) [cm/s] PGV(NS) [cm/s] Station: Time Time Time

[s] [s] [s] HAK 0-5.14

HAK 125 Time

[s] PGV(EW) [cm/s] PGV(NS) [cm/s] Station: Time Time Time

[s] [s] [s] KMH 0 - 5.15

KMH 126 Time Time Time

[s] [s] [s] PGV(UD) [cm/s] PGV(EW) [cm/s] PGV(NS) [cm/s] 0.04 Station: Time Time 200

[s] [s] MAK (3-5.16 250

300

350 MAK 127 D. \

50

100

150

Time Time 200

[s] [s] 250

300

350

400 Station: MUN [cm/s]

PGV(NS) [cm/s]

PGV(EW) [cm/s]

PGV(UD)

0-5.17 EM MUN lC*5lt3E»Jfl:*i67B ] Station: BBK 2 [cm/s] [cm/s

Sv(T) Sa(T)

Horizontal Horizontal

Normalized Normalized

] 2 [cm/s] [cm/s

Sv(T) Sa(T)

Vertical Vertical

Normalized Normalized

(8-5.18 1/4 ? I»»a- q od 'im »ers-ta Normalized Normalized

Vertical Vertical

Sa(T) Sv(T)

[cm/s [cm/s] 2 ]

Normalized Normalized

Horizontal Horizontal

Sa(T) Sv(T)

[cm/s [cm/s]

2 CGD Station: ] Station: CHS ] Station: GRE 2 [cm/s] [cm/s

Sv(T) Sa(T)

Horizontal Horizontal

Normalized Normalized ] 2 [cm/s] [cm/s

Sv(T) Sa(T)

Vertical Vertical

Normalized Normalized

0 -5 .2 1 ORE T '« fliJ b JV ■V4 wirs-m m Normalized Normalized

Vertical Vertical

Sa(T) Sv(T)

[cm/s [cm/s] 2 ]

Normalized Normalized

Horizontal Horizontal

Sa(T) Sv(T)

[cm/s [cm/s]

2

] KJM Station: Station: MKL

E-5.23 mm&MKL b/1/ Station: PCH Station: DKJ

0-5.25 EM DKJ h/v- Station: HAK ] 2 [cm/s] [cm/s

Sv(T) Sa(T)

Horizontal Horizontal

Normalized Normalized

] 2 [cm/s] [cm/s

Sv(T) Sa(T)

Vertical Vertical

Normalized Normalized

0 -5 .2 6 H A K b A - ] Station: KMH

[cm/s] [cm/s

Sv(T) Sa(T)

Horizontal Horizontal

Normalized Normalized

] 2 [cm/s] [cm/s

Sv(T) Sa(T)

Vertical Vertical

Normalized Normalized

13-5.27 KMH b/V ] Station: MAK

[cm/s] [cm/s

Sv(T) Sa(T)

Horizontal Horizontal

Normalized Normalized j

[cm/s] [cm/s

Sv(T) Sa(T)

Vertical Vertical

Normalized Normalized

m-5.28 A MAK-em#j $ v/v Station: MUN ] 2 [cm/s] [cm/s

Sv(T) Sa(T)

Horizontal Horizontal

Normalized Normalized

] 2 [cm/s] [cm/s

Sv(T) Sa(T)

Vertical Vertical

Normalized Normalized

0-5.29 E 9 jy £ MUN T E ffi 5 .h, fc iti! g » $ X ^ £ h A- Frequency Frequency 1-5.30 Vertical/Horizontal

_kTW)t7k¥W}(DVc 141 PGV

(PGV) ±Tioae [gal] *v»ag cgali

Sv(T) [cm/sec] 0-5.31 10.0

Time 15.0

[sec]

20.0

25.0

30.0 b mgkvtm [GAL] [GAL] [GAL]

143 PGA PGA PGA

5.33 - 0

[z s/Uio] (900=M) eIS [zs/uio] (50 0=M )A|S [., s/uio] (S00=M)PIS

3 1.0 •

PGA [GAL]

PGA [GAL]

^ 0.15

3 0.10

PGA [GAL]

EI-5.34

144 Latitude 1904

Vlft

(Year) Latitude Latitude

GO GO GO GO CO GO GO GO CO CO GO GO _x4^ cn O) '-j oo to l4s» cn <3> -4 OO CD o V, Lk> 'xl

m-

a l n - 0 0 5 9

bp Longitude

1000 -Px Os

w (Year) 8

u m Latitude Latitude

Vt CO CO CO CO GO GO -U G3 GO CO CO CO CO Lu l4^ cn O) ^ oo to o cn cr> c» to o OQ

>& m # ro . a

PS

P 1100 I - Longitude

m 4^ 1200 o o (Year) Q 8 8 jft ~A 8?

#

o 5 Latitude Latitude 1300 1200- 27 27

Longitude Longitude -

1300 1400

128 128 (Year) (Year) m-5.4o Latitude Latitude

m&tmtDm&izm |OOC

1500- 1400- 8c. .0:0 =

11 e Longitude 27 Longitude 'ooo

@

149

1600 1500

moo ,o

c

128

128 (Year) - (Year) isoo :

ri£ 0

: • 09

e ' @

1500-1600

#) Latitude CO CO CO CO CO CO ^ cn CT> -O 00 LD O - 0 0 8 1

O CJO Longitude

: CO O Ul 1904 oo:o o o o

(Year)

:"o o o o:o o OQCOO 0 Frequency Frequency 400

im-5.42 ------

t ------Occurence Occurence r ------

127

Frequency Longitude Frequency Latitude

151 t ------12

(Longitude) (Latitude) t ------=

Frequency Frequency Frequency 300 (±f£

:

ES

127

0-5.43 127$ 128$ Longitude

S

.

Longitude

^ 152 Year 127-128

Longitude <

127$

<

$,

128$

T#

:

128 Frequency Frequency Frequency 34-36 m-5.44

g, 36®

34® .

38®

S ^ .

Latitude Latitude 153 S Year Year Year

36-38 Latitude

< < K

38®

36® T#:0®38®a±) mem

6.1 i6SSittfifclcM-f£E& 5 *>, # 1: lem L T ® 6 a##*®# t-f/P® % MIS £ v fa- L, Lt. a##* RS^-T/Ht, RSro*®ro*£Sti$8ro£#*^@LTV5£T*l^MteSgftMfflo.i~io#' 8$®Jtti&?]@v D,4-#Zj%6®tf /Hc*^v 'fcas® Sdff« & SlJfe-r 5 5.

6.2 HbS/Mf- Klc|lf6E% KW®&#? & 5, *®/\f - KffW®«6:*5J:0a*566tiffl$tliR®* BlmlcoV'-OM-f 5 B*-*H^*5l45i6*^if- KffflroS^toSfflSfiKoV'-Cjig^ 5rfrofc„ KAERI-eKStfc4o®ttS*4S^7 f/u&fflV\ WolsungNPPSite Sr*f#!9 **38£i!*4r7^V®^7^- ;?®tfioo££r#®LT«ffll*llH' hrotfcR^-f- Ki?*srfT5 #4rS$^.$^$T-fcd„

6.3 HgPSAI=BSt^m?S *##m#®#R PSA iFUBto&Wf'T ’n ^7ASrSCLfci/x-^A

tteStotolife-D* 681^69 ri:SrASLfc. ifc, KffirotiS* psa ff *#&&&# L, ^.*1*®!WtcSLfcff«^&5r*Lfc. S6>t-, #$»®»SS6S®i6g«ifgg

kaeri LAL, 4r7vWt&m\ «»•&*»«**'> SaP->3yt5. *fc, $6*a&U=^S$®^SffleiE (DG) ®tf;Mbe#®, fl£*B#ttffl ttff«Sr*tSt-d^S-e$>5.

6.4 SSHT®® SfifctteSiK® £ E£lt!!®®$S- #tff SSBT-SSIJ54L* 4097 fi®#Ri6®£, BStBRK'DV'TSa-^Srfl'-Dfc. %###&##L fcg*, Ji«ds»o.ig>r-fc5ii, #mm®^^8 U;!p£&ofc. Sfc, 37$yiWT-#-< ®tti*»s% £ftV'5>£ t, ffi* 1500-1600 ^r*-5>lc#<®E*;4$aS4b-CV'5ii/jifc75^7t. ik¥$l4, E*ifc®KHt-5PS^^I4*fT®ttH®ieR@S!i$, H/H#ttKoV'TSML rv>< i-fg.-ehz.

154 ttH-A ffliS

mm s* its * © * 4 m t lx=t t/vit ut r y y ? a a m & j r y - hm # * t»©t«*Lfc%a?hs. «tt, tectonics ©fBfR. #$©tt#0#5S(MlISSHit&T’n-fe^-tiifcfc

“i6ffittroBtoe#"***L, StoT'v —htoit^.jA^n-efcd. i«4 %r# E(ic(-fn)SrS«L,

i. USS PSA 1B36ttV$1/6it (Aleatory uncertainty/Randomness) (Epistemic uncertainty) (HftltTSmCfiitl-SiLtiS#!/''. ——K7.-^7 h/v “Uniform Hazard Spectrum”

a*«ifflW©l3S«4r/Xtfc^-:^('/K

155 tts-B

log M„

Mw: ^e—yyb-v'^ —k

Ml: n—yfr/W^n^-^L —K Ms K a—K

##%#

156 ttS-C c-i zta'fyAvcDwm^m

cntl.dat

site.txt

regions.dat

R„histxxxxjf##.txt

■t#--i'HfcS5ISro;u-^'

ttutm

Poissonig*llC££*gig5t3l

lnfo_RXXXX.log SWA'-?

Out_R.txt

157 C-2

DOUBLE PRECISION FUNCTION BAAG(XM.XR) C Baag,Chang,Jo and Shin[1998]: PGA

REAL(8) :: XM,XR,RR,PGA C inputs C XM: Local Magnitude of earthquake C XR: Epicentral distance (km) C Output C PGA: Peak ground acceleration C RR=SQRT(XR**2+tO.**2) PGA = EXP(0.4D0 + 1,2*XM-0.76*LOG{RR)-0.0094*RR) BAAG=PGA C

DOUBLE PRECISION FUNCTION TO_AB(XM,XR) C Toro, Abrahamson & Schneider[1997]: PGA

REAL(8) :: XM,XR,RR,PGA C Inputs C XM: Local Magnitude of earthquake C XR: Epicentral distance (km) C Output C PGA: Peak ground acceleration C RR=SQRT(XR*2,0+9.3D0**2.0) PGA=EXP(1 -76D0+1.2*XM-1.28*LOG(RR)-0.Q018*RR & +0.05*MAX(LOG(RR/10O.),O.D0)) C TO_AB=PGA C

DOUBLE PRECISION FUNCTION ZHIXIN(XM.XR) C Zhixin, Xiaobai and Jingru: PGA

REAL(8) :: XM,XR,PGA C Inputs C XM: Local Magnitude of earthquake C XR: Epicentral distance (km) C Output C PGA: Peak ground acceleration C PGA=EXP(5.0244D0+0.5442*XM-1.002*LOG(XR+8.D0» ZHIX!N = PGA C END

IS& BIBLIOGRAPHIC INFORMATION SHEET

Performing Org. Sponsoring Org. Standard Report No. INIS Subject Code Report No. Report No. KAERI/RR-2392/2003 Korea-Japan Joint Research on Development of Seismic Capacity Title } Subtitle Evaluation and Enhancement Technology Considering Near-Fault Effect (Annual Report 2003)

Project Manager Young-Sun Choun (Korea Atomic Energy Research Institute) and Department Yasuki Ohtori (Central Research Institute of Electric Power Industry) Researcher and Department In-Kil Choi (Korea Atomic Energy Research Institute) Yoshiatd Shiba (Central Research Institute of Electric Power Industry) Masato Nakajima (Central Research Institute of Electric Power Industry) Publication Abiko, Publication Publisher CRIEPI 2003. 12 Place Japan Date Page 158 p. 111. & Tab. Yes(O), No ( ) Size 21x29. 7cm.

Note

Open Open(O), Closed( ) Report Type Research Report Classified Restricted(),__ Class Document

Sponsoring Org. Contract No.

Abstract (15-20 Lines)

In chapter 1, the summary of the project is described. The bases of earthquake source modeling are reviewed and discussed in chapter 2. The kinematic source model, which assumes the shape of slip function a priori, with finite extent of fault is very effective and useful model for evaluation of strong ground motions, especially near-fault region. In chapters, first, the concept of hazard de-aggregation and an idea of Probabilistic Scenario Earthquakes (PSE) are described. Next, several cases in which PSHA have been practically used are introduced. The case study is demonstrated in which the PSE is applied for the Korean NPP site in order to evaluate dominating earthquakes. In chapter 4, a prototype system for seismic PSA (Probabilistic Safety Assessment) developed is described. And then, a method for generating fragility curves are re­ viewed and illustrated based on the review. In addition, a conversion methodology for ground motion index for fragility curve is introduced and the validity of the method is shown. In chapter 5, analysis of ground motions and historical earthquakes in Korea are analyzed. The epicenter depth, dominant period, spectral intensities and so forth are investigated. And also, earthquake activities in Korea based on historical record are investigated. Finally, the conclusions of the research in this year are described.

Subject Keywords source process, kinematic source model, heterogeneous source (About 10 words) seismic hazard, hazard deaggregation, probabilistic scenario earthquake seismic PSA, fragility curve, ground motion index historical earthquakes