Emptying Pit Latrines

Total Page:16

File Type:pdf, Size:1020Kb

Emptying Pit Latrines MOBILE NOTE 27 Emptying pit latrines Introduction Well-managed pit latrines offer an effective, safe and hygienic way of containing excreta at relatively low cost. Excreta decomposes in the pit, which will eventually fill up and need to be emptied. This note considers the principal issues relating to safely removing excreta from a pit. The note is specifically concerned with dry systems, rather than septic tanks and cesspits. Contents Introduction ....................................................1 Suitable method .............................................3 Avoiding the need to empty pits ....................3 Emptying a single pit latrine ..........................9 Disposing of faecal sludge ...........................19 References ...................................................23 About this note .............................................25 Suitable method Choosing the most suitable method of emptying excreta from a pit is determined by: • the actual cost to the household (how affordable it is and therefore how likely it is that the household will pay for the service); • the relative cost of building a new latrine against the cost of emptying the existing one; • the health impact on workers; • the type of latrine to be emptied; • the type of pit lining; and • how the excreta will be disposed of. Avoiding the need to empty pits Move the latrine If there is sufficient space, one solution is to construct shallow pits (less than a metre deep) and relocate the latrine superstructure, or build a new one, when the pit is almost full – rather than empty the pit. With the superstructure and pit cover moved for reuse, or demolished, a tree can be planted in the pit. The tree makes use of the nutrients in the excreta and can yield a good crop. This latrine system is often referred to as an Arborloo. To be affordable, the superstructure should be either easy to relocate, or made of local materials that are easily replaced. Bucket latrines Bucket latrines are not a recommended sanitation option. However, in some circumstances such as short-term emergency response, or in highly flood- prone areas, they may be the only viable short-term option. As bucket latrines are emptied on a frequent basis (often daily or weekly), the fresh excreta must be handled extremely carefully. This is an unpleasant and unhealthy task. Additives Certain chemical and biological additives claim to enhance decomposition of excreta, but this only extends the time between emptying pits, rather than addressing the challenge of emptying pits altogether. Warning! Additives must be handled with extreme care. Emptying alternating pits Alternating ‘twin-pit’ pit latrines make use of the same pits on a rotational basis. This means that a permanent superstructure can be used. Two pits are dug, each sized to store about two year’s worth of excreta. Each pit has a removable cover slab, providing access to the pit. One pit only is put into use and filled over time. Once this pit is full, it is closed off for storage, while the second pit is used. As the second pit fills, the first pit is emptied and put back into use (Figure 1). Side view Inspection chamber Handles for pit and inspection chamber covers Pan Water trap >d d (if fitted) d = depth of pit Connecting pipe Approx. 1m Top view Pit 1 not in use Approx. 1m Inspection chamber with stone or block of wood for >d blocking secondary pipe Pit 2 in use Figure 1. Twin-pit latrines Given the right conditions of temperature, moisture content and pH, after 2 years storage the excreta will have decomposed and the disease- causing organisms died off sufficiently that the excreta to be manually handled. The stored excreta may look like soil, but it should still be handled carefully to minimize health risks associated with any incorrect use of the latrine. Manual emptying often involves someone entering into the pit, so they should be equipped with ladders, ropes, protective clothing, shovel and buckets as a minimum. Composting and dehydrating latrines Latrines can be designed and used in a way that speeds up excreta decomposition and makes emptying easier. Examples are composting and dehydrating latrines. Two pits are typically used in a composting latrine, with one left unused for the excreta to decompose while the other is in use. With dry material (such as wood ash or soil) added to the faeces they can decompose, and the pathogens die-off more rapidly. Composting latrines require more day-to-day management by the user and usually have to be emptied more frequently than simple pits, but emptying tends to be easier, with reduced (but not removed) associated health risks. In dehydrating latrines, urine is diverted away from the pit into a separate collecting vessel, or to a soakaway (Figure 2). The removed faeces can be used, with care, as a soil conditioner for certain crops. Both types require excreta reuse to be socially acceptable, with the faeces carefully removed and transported to the field and correctly applied to the land, ideally where children do not play (WELL, 2006a). Drop hole with tight-fitting cover Door for emptying compost Urine collection pot or open system to soakway Figure 2. Twin-pit urine-diverted composting latrine Emptying a single pit latrine Where a single pit that is continually in use is to be emptied, two techniques can be used: mechanical pumping and manual emptying. The pit should be fully lined, especially where mechanical emptying is to take place, as the removal of the semi-liquid material may cause unlined pits to collapse. A single shallow pit will need emptying more frequently than a more expensive deep pit, but this may suit the finances of the household – who may be reluctant to save up for many months to pay for the evacuation of a deep pit. Regular emptying of shallow pits however needs to be supported by a responsive service, especially in urban areas (WELL, 2006b). Mechanical pumping Mechanical emptying systems exist that are both technically and financially viable, but these are typically the services provided by local sewage operators in the more formal areas of towns and cities, using large conventional vacuum tankers to empty both pits and septic tanks (Figure 3). Inspection hole Vacuum pipeline Suction inlet Pipe Manhole cover Vacuum pump Suction inlet valve © WEDC Discharge outlet valve Figure 3. KenA Chattertonconventional © WEDC Loughborough vacuum University tanker To address the challenge of providing mechanized pit emptying services in informal areas and slums, a low- cost technical solution has had to be developed. The solution is portable vacuum tankers, specifically designed for use in slums and other areas that are difficult to reach with a conventional vacuum tanker. Portable tankers are currently used in informal settlements and slum areas of Dhaka (Bangladesh), Nairobi (Kenya), Maputo (Mozambique), Dar es Salaam (Tanzania) and other cities (Figure 4). Vacuum pump and guage Extractor pump motor (reversible to blow out tank contents) Discharge outlet valve Towing bracket Suction inlet valve © WEDC Figure 4. Features of a portable vacuum Kentanker Chatterton © WEDC Loughborough University One of the most successful attempts in recent years to develop hand-operated machines for pit emptying was in Tanzania. The tankers were made of local materi- als based on the standard oil drum. To date, results have been promising but they have only been used for wet pits containing no solids (Figure 5). Handle Pump operated by turning hand wheel Handle Vaccum © WEDC pipe Connection also used as waste outlet for Waste Inlet disposing of drum contents Vaccum pump Waste disposal cart Ken Chatterton © WEDC Loughborough University Figure 5. Hand-operated vacuum tankers Vacutug The Vacutug is probably the most widely used small vacuum tanker operating in informal settlements. The original module was designed by Manus Coffey Associates (with support from UN Habitat) for use in Kibera, Kenya in the late 1990s. The first Vacutug has a 500 litre capacity tank and vacuum pump assembly, driven by a small, motorized operating vehicle. A suction hose runs from this unit into the pit, either through the squatting hole or a seat in the slab, or through a special opening directly into the pit. The excreta to be removed may be too solid for the pump to lift, so water may need to be added and the contents mixed to liquefy them first. Any stones, sticks, plastic bags and other solid items thrown into the pit will block the suction hose. Users need to be educated into what can and can’t be put into the pit, if this emptying option is to be used. Although the vehicle can access properties in densely-populated settlements, its small capacity and a speed limit of 4 km/hour makes for frequent trips and significant travel times to take excreta to a disposal site. Operators may resort to disposing the faecal sludge into a nearby watercourse or onto waste ground, if there is no provision for discharging into a sewer, or at a nearby treatment plant. Figure 6. UN-Habitat Vacutug However, the modified Vacutug (Mark II) subsequently developed operates with two units: a 1,900 litre main collection tank and a 200 litre unit. This ‘satellite’ unit can be pulled by a small tractor or pick-up, making access to densely- populated areas both easier and faster. In Dhaka, Bangladesh, demand for pit emptying services using the Vacutug Mark II has been steadily increasing in slums and squatter settlements, as well as for emptying septic tanks in middle- income areas. Finding suitable sites for sludge disposal remains an ongoing challenge (GHK, 2005). The Vacutug Mark II also has its limitations. The pit must be within 30m of the satellite unit for the suction pipe to reach into the pit, which can really only lift excreta from a maximum of 2m below ground.
Recommended publications
  • Sustainable Environmental Protection Using Modified Pit-Latrines
    Sustainable Environmental Protection Using Modified Pit-Latrines Esnati James Chaggu Promotor: Prof. dr.ir. G. Lettinga Hoogleraar in de anaërobe zuiveringstechnologie en hergebruik van afvalstoffen Co-promotoren: Dr. W. T. M. Sanders Post-doc onderzoeker bij de sectie Milieutechnologie, Wageningen Universiteit, Nederland Prof. A. Mashauri Dar-es-Salaam Universiteit, Tanzania Samenstelling promotiecommissie: Prof. G. Spaargaren Wageningen Universiteit Prof. dr. H. J. Gijzen UNESCO-IHE, Delft, Nederland Dr. G. J. Medema KIWA Water Research, Nieuwegein, Nederland Prof. Dr. H. Folmer Wageningen Universiteit Dit onderzoek is uitgevoerd binnen de onderzoekschool Wimek Sustainable Environmental Protection Using Modified Pit-Latrines Esnati James Chaggu Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. Dr. Ir. L. Speelman, in het openbaar te verdedigen op dinsdag 23 maart 2003 des namiddags te half twee in de aula CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG. Chaggu, E. J. Sustainable Environmental Protection Using Modified Pit-Latrines ISBN: 90-5808-989-4 Subject headings: excreta disposal/blackwater/nightsoil/anaerobic digestion/improved pit latrines Abstract - Chaggu, E. J. (2004). Sustainable Environmental Protection Using Modified Pit-Latrines. Ph.D Thesis, Wageningen University, The Netherlands. Pit-latrines are on-site excreta disposal facilities widely used as anaerobic accumulation system for stabilizing human wastes like excreta, both in rural and urban settlements of developing countries. Flooding of pit-latrines is often a common phenomenon, especially in situations of high water table (HWT) conditions and during the rainy season, causing a health jeopardy to residents. The pits are not water-tight, the (ground)water can freely flow in and out of the pit, especially in HWT areas.
    [Show full text]
  • HEALTH ASPECTS of DRY SANITATION with WASTE REUSE Anne Peasey
    HEALTH ASPECTS OF DRY SANITATION WITH WASTE REUSE Anne Peasey Task No. 324 WELL STUDIES IN WATER AND ENVIRONMENTAL HEALTH Health Aspects of Dry Sanitation with Waste Reuse Anne Peasey WELL Water and Environmental Health at London and Loughborough Health Aspects of Dry Sanitation with Waste Reuse ii London School of Hygiene and Tropical Medicine Keppel Street London WC1E 7HT © LSHTM/WEDC Peasey, A. (2000) Health Aspects of Dry Sanitation with Waste Reuse WELL Designed and Produced at LSHTM Health Aspects of Dry Sanitation with Waste Reuse EXECUTIVE SUMMARY BACKGROUND Dry sanitation is defined in this report as the on-site disposal of human urine and faeces without the use of water as a carrier. This definition includes many of the most popular options for low- cost sanitation including pit latrines, Ventilated Improved Pits, SanPlats, etc. There has always been an interest in the reuse of human waste as a fertiliser, and there has been much recent work on the development of composting and other processes to permit human waste reuse. This report examines the practice of dry sanitation with reuse in Mexico, with a particular focus on health issues and the lessons to be learned from case studies and experience. DRY SANITATION WITH REUSE There are two distinct technical approaches to dry sanitation with reuse; · Dehydration. Urine and faeces are managed separately. The deposited faecal matter may be dried by the addition of lime, ash, or earth, and the contents are simply isolated from human contact for a specified period of time to reduce the presence of pathogens. · Decomposition (composting) In this process, bacteria, worms, or other organisms are used to break organic matter down to produce compost.
    [Show full text]
  • UD & Composting Toilets (Ecosan)
    UD Toilets and Composting Toilets in Emergency Settings This Technical Brief looks at the criteria for selecting Urine Diversion (UD) and Composting Toilets options in an emergency setting, including the construction, operation and maintenance of such units which is used to store and dry the faeces over a specified Ecological Sanitation or period. Normally, it is recommended to store faeces for a Sustainable Sanitation? minimum of 12-months in one vault before emptying. Adding a desiccating material such as ash or sawdust will The approach of Ecological Sanitation (Ecosan) in accelerate the faeces drying process. Typically, in a well- emergency settings breaks with conventional excreta managed ecosan unit, storage times of greater than 3- disposal options such as pit latrines or pour-flush toilets. months will reduce many pathogens to safe levels, in Traditionally, Ecosan systems re-use both faeces and particular those responsible for Ameobiasis, Giardiasis, urine, turning them into either a soil conditioner or a Hepatitis A, Hookworm, Whipworm, Threadworm, fertilizer. This not only benefits peoples’ health through Rotavirus, Cholera, Escherichia coli, and Typhoid safe excreta disposal and by reducing environmental amongst others. Ascaris is more persistent though, and contamination, but also implies re-using the by-products may require retention times of 12-months or more. for some form of agricultural activity. In an emergency setting, the choice of ecosan options is very often driven by factors other than the re-use of all or part of the by-products. Ecosan toilets are very often better suited to rocky ground or areas with high water tables, making them more resistant to cyclic flooding for instance.
    [Show full text]
  • Technology Review of Urine-Diverting Dry Toilets (Uddts) Overview of Design, Operation, Management and Costs
    Technology Review of Urine-diverting dry toilets (UDDTs) Overview of design, operation, management and costs As a federally owned enterprise, we support the German Government in achieving its objectives in the field of international cooperation for sustainable development. Published by: Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Registered offices Bonn and Eschborn, Germany T +49 228 44 60-0 (Bonn) T +49 61 96 79-0 (Eschborn) Friedrich-Ebert-Allee 40 53113 Bonn, Germany T +49 228 44 60-0 F +49 228 44 60-17 66 Dag-Hammarskjöld-Weg 1-5 65760 Eschborn, Germany T +49 61 96 79-0 F +49 61 96 79-11 15 E [email protected] I www.giz.de Name of sector project: SV Nachhaltige Sanitärversorgung / Sustainable Sanitation Program Authors: Christian Rieck (GIZ), Dr. Elisabeth von Münch (Ostella), Dr. Heike Hoffmann (AKUT Peru) Editor: Christian Rieck (GIZ) Acknowledgements: We thank all reviewers who have provided substantial inputs namely Chris Buckley, Paul Calvert, Chris Canaday, Linus Dagerskog, Madeleine Fogde, Robert Gensch, Florian Klingel, Elke Müllegger, Charles Niwagaba, Lukas Ulrich, Claudia Wendland and Martina Winker, Trevor Surridge and Anthony Guadagni. We also received useful feedback from David Crosweller, Antoine Delepière, Abdoulaye Fall, Teddy Gounden, Richard Holden, Kamara Innocent, Peter Morgan, Andrea Pain, James Raude, Elmer Sayre, Dorothee Spuhler, Kim Andersson and Moses Wakala. The SuSanA discussion forum was also a source of inspiration: http://forum.susana.org/forum/categories/34-urine-diversion-systems-
    [Show full text]
  • Sanitation Options
    MIT OpenCourseWare http://ocw.mit.edu 11.479J / 1.851J Water and Sanitation Infrastructure in Developing Countries Spring 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. On-site Sanitation Brian Robinson and Susan Murcott Week 12 - MIT 11.479J / 1.851J Water and Sanitation Infrastructure in Developing Countries Mass. Institute of Technology May 8, 2007 On-site Sanitation • Sanitation ladder: options in sanitation • Ecological Sanitation • Case Study: Ecosan in Kenya Improved sanitation • connection to a public sewer • connection to septic system • pour-flush latrine • simple pit latrine • ventilated improved pit latrine The excreta disposal system is considered “adequate” if it is private or shared (but not public) and if it hygienically separates human excreta from human contact. "Not improved“ = service or bucket latrines (where excreta are manually removed), public latrines, latrines with an open pit. Sanitation “Ladder” Technology Hygiene 1. Open defecation, “flying toilet” 2. “Cathole” burial 3. Pit latrine 4. VIP 5. EcoSan 6. Pour-flush 7. Water-sealed toilets + neighborhood wastewater collection 8. Water-sealed toilets + neighborhood wastewater collection + treatment 1. No Poop sanitation *S. Murcott (T.P.) 2. “Cathole” burial Sanitation “Ladder” Technology Hygiene 1. Open defecation, “flying toilet” 2. “Cathole” burial 3. Pit latrine 4. VIP On-site sanitation 5. EcoSan 6. Pour-flush 7. Water-sealed toilets + neighborhood wastewater collection 8. Water-sealed toilets + neighborhood wastewater collection + treatment 3. Pit latrine – with pit Drainage? 3. Pit Latrine, No Pit 4. Ventilated Fly screen improved Air (ventilation) pit latrine (VIP) Vent pipe Seat cover A dry latrine system, with a screened vent pipe Pedestal to trap flies and often Pit collar Cover slab (May be extended to with double pits to base of pit in poor allow use on a ground conditions) permanent rotating basis.
    [Show full text]
  • 1.5 Design of Composting Toilet for Practical Application in Burkina Faso
    Design of composting toilet for practical application in Burkina Faso Kenta Yabui*, Ken Ushijima, Ryusei Ito, Naoyuki Funamizu Department of Environmental Engineering, Graduate school of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628, Japan [email protected] 011-706-6272 Abstract Resource recycling sanitation system, which utilize composting toilet, is one of the promising concept to improve the sanitary conditions in developing countries. In this sanitation system, toilet has to have two functions; sanitary equipment and fertilizer generator. As sanitary equipment, toilet has to provide clean, safe, comfortable environment for daily defecation. As fertilizer generator, toilet has to convert urine and feces into safe and good quality of fertilizer. The composting toile should be designed in order to perform both two functions in high quality, with low cost. In this research, design requirements for toilet as sanitary equipment and fertilizer generator are abstracted basing on field survey to 6 families from 3 villages in rural area of Burkina Faso. According to abstracted requirements, one design of composting toilet was proposed for rural area of Burkina Faso. The feces degradation performance was same level as commercial composting toilet and required torque for mixing was smaller than commercial screw type composting toilet. Key words: user oriented design, resource recycling sanitation system, composting toilet 1. Introduction Currently, in Burkina Faso, people living in rural area can access to improved toilet are 6%. In Millennium developing Goals (MDGs), the target is the number of people do not have improved sanitary facilities reduces by half by 2015. In that area, the progress of installation of sanitary facilities to achieve MDGs is too low, while more than half of the people still have open defecation culture or unimproved toilets, especially poor people.
    [Show full text]
  • Investigation Into Methods of Pit Latrine Emptying April 2009
    WRC PROJECT 1745 Management of sludge accumulation in VIP latrines Investigation into Methods of Pit Latrine Emptying April 2009 by Mark O’Riordan Mark O’Riordan Investigation of Methods of Pit Latrine Emptying Page - i Executive Summary Improving sanitation is now increasingly being recognized as a key factor in ending poverty; providing basic sanitation has been included in the Millennium Development Goals (MDGs) under target 10 of halving the proportion of people without access to adequate basic sanitation by 2015. In an attempt to reach this MDG target many developing countries have embarked on the construction of pit latrines and improved sanitation in people’s homes. An emerging challenge that is resulting from this work is what to do when the latrines are full. If they are to be emptied how should the waste be extracted, where should the waste go and what should be done to it and with it? The approaches to meeting this question are the focus of this report. The report aims to summarise all information currently available to PID resulting from; • General research • Durban’s pit latrine emptying programme • Work with the Vacutug on loan from UN Habitat • A visit to UN Habitat in Nairobi • Site visit to Vacutug facilitating charity Maji na Ufanisi working in Kibera, Nairobi • Design and development work on the ‘Gobbler’ The main part this report is a fairly high level introduction to the issue of faecal sludge management. Where details and information have been readily available the report goes into further depth. A large section of this report focuses on assessment of the United Nations Vacutug project in an attempt to build guidance for the development of a successful latrine exhausting system.
    [Show full text]
  • 1. Urine Diversion
    1. Urine diversion – hygienic risks and microbial guidelines for reuse © Caroline Schönning Department of Parasitology, Mycology and Environmental Microbiology Swedish Institute for Infectious Disease Control (SMI) SE-171 82 Solna Sweden [email protected] This chapter is based on the doctoral thesis published by the author in February 2001: Höglund, C. (2001). Evaluation of microbial health risks associated with the reuse of source separated human urine. PhD thesis, Department of Biotechnology, Royal Institute of Technology, Stockholm, Sweden. ISBN 91-7283-039-5. The full thesis (87 pages, without published papers) can be downloaded from: http://www.lib.kth.se/Sammanfattningar/hoglund010223.pdf Dr Håkan Jönsson, Swedish University for Agricultural Sciences is acknowledged for compiling Section 3, and Dr Jan-Olof Drangert, Linköping University is acknowledged for compiling Section 9. TABLE OF CONTENTS TABLE OF CONTENTS 1 1. INTRODUCTION 2 1.1 History 2 1.2 Nutrient content and volume of domestic wastewater 3 2. URINE DIVERSION 3 2.1 Urine diversion in Sweden 4 2.2 Source-separation of urine in other parts of the world 6 2.3 Ecological Sanitation 6 3. URINE AS A FERTILISER IN AGRICULTURE 7 3.1 Characteristics of diverted human urine 7 3.2 Collection and storage of the urine – developing countries 7 3.3 Urine as a fertiliser 8 3.4 Crops to fertilise 9 3.5 Dosage 9 3.6 Fertilising experiments 10 3.7 Acceptance 11 4. PATHOGENIC MICROORGANISMS IN URINE 11 5. FAECAL CONTAMINATION 13 5.1 Analysis of indicator bacteria to determine faecal contamination 14 5.2 Analysis of faecal sterols to determine faecal contamination 15 5.3 Discussion 16 6.
    [Show full text]
  • Assessing the Costs of On-Site Sanitation Facilities Study Report
    Eawag Überlandstrasse 133 P.O. Box 611 8600 Dübendorf Switzerland Phone +41 (0)44 823 55 11 Fax +41 (0)44 823 50 28 www.eawag.ch Assessing the Costs of on-Site Sanitation Facilities Study Report Lukas Ulrich, Prit Salian, Caroline Saul, Stefan Jüstrich & Christoph Lüthi March 2016 Eawag: Swiss Federal Institute of Aquatic Science and Technology Assessing the Costs of on-Site Sanitation Facilities Contents 1. Summary .......................................................................................................................................... 4 2. Introduction ....................................................................................................................................... 5 3. Methods ............................................................................................................................................ 6 3.1. Comparing the cost of on-site sanitation facilities across countries ............................................ 6 3.1.1. Ensuring comparability ............................................................................................................. 6 3.1.2. Selection of technologies ......................................................................................................... 6 3.2. Cost items included in the country comparison ........................................................................... 7 3.3. Data collection and analysis ......................................................................................................... 8 3.3.1. Development
    [Show full text]
  • Doctor of Philosophy
    KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY KUMASI, GHANA Optimizing Vermitechnology for the Treatment of Blackwater: A Case of the Biofil Toilet Technology By OWUSU, Peter Antwi (BSc. Civil Eng., MSc. Water supply and Environmental Sanitation) A Thesis Submitted to the Department of Civil Engineering, College of Engineering in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy October, 2017 DECLARATION I hereby declare that this submission is my own work towards the PhD and that, to the best of my knowledge, it contains no material previously published by another person nor material which has been accepted for the award of any other degree of any university, except where due acknowledgement has been made in the text. OWUSU Peter Antwi ………………….. ……………. (PG 8372212) Signature Date Certified by: Dr. Richard Buamah …………………. .................... (Supervisor) Signature Date Dr. Helen M. K. Essandoh (Mrs) …………………. .................... (Supervisor) Signature Date Prof. Esi Awuah (Mrs) …………………. .................... (Supervisor) Signature Date Prof. Samuel Odai …………………. .................... (Head of Department) Signature Date i ABSTRACT Human excreta management in urban settings is becoming a serious public health burden. This thesis used a vermi-based treatment system; “Biofil Toilet Technology (BTT)” for the treatment of faecal matter. The BTT has an average household size of 0.65 cum; a granite porous filter composite for solid-liquid separation; coconut fibre as a bulking material and worms “Eudrilus eugeniae”
    [Show full text]
  • Accelerating the Reduction of Open Defecation in Rural India Begins by Admitting the Problem
    Accelerating the reduction of open defecation in rural India begins by admitting the problem Diane Coffey, r.i.c.e.1 note prepared for Kolkata Group meetings, February 4-7, 2015 Summary Why does rural India have uniquely high rates of open defecation? In rural India, 70% of households do not own a toilet or latrine. Indian rates of open defecation are uniquely high, much higher than in many poorer countries. This note asks why rural India has uniquely high rates of open defecation. It first explains that the “usual suspects” – GDP, poverty, education, water access – are not to blame for widespread open defecation in rural India. Second, it discusses how the sanitation technology used in rural India differs from the rest of the developing world – in short, very few rural Indian households use latrines with inexpensive underground soak pits. Third, it presents qualitative and quantitative evidence that Hindu practices of purity and pollution, as well as India’s unique history and renegotiation of untouchability, complicate the adoption of the kinds of simple, inexpensive latrines that have been used to reduce open defecation and improve health in rich countries before they were rich and in other developing countries. Finally, it ends with a brief comment on implications for Indian government policy. Although the evidence is overwhelmingly clear that the reduction of open defecation in rural India will not be importantly accelerated by the large investments in government latrines proposed by the Swachh Bharat Mission, it is unclear what kinds of interventions will help. It is almost certainly the case that accelerating the reduction of open defecation in rural India will require frank and uncomfortable conversations about what purity, pollution and the continuing practice of untouchability have to do with rural India’s open defecation crisis.
    [Show full text]
  • Household Sanitation
    Technical brief Household sanitation Part of a series of Introduction WaterAid technology briefs. Open defecation in fields, bushes or beaches results in disease-causing pathogens being Available online at spread freely, and should be prevented. There www.wateraid.org/ are many designs of latrine, ranging from a technologies simple pit with a slab and superstructure, January 2013 to a double vault composting latrine producing high quality organic fertiliser, and any of these will effectively contain faecal pathogens (provided they are well used and maintained). Pit latrines have proven to be a popular choice with many people in various countries and are highly affordable; however it is important that people are given the opportunity to examine a variety of options and decide which they would prefer. Given sensitive guidelines and a little technical help, families can build latrines for themselves at very low cost. It should be noted that latrines are only one part of a sanitation system, particularly in urban areas. This technology note is concerned solely with on-site sanitation. For decentralised systems and collection and treatment of sludge please refer to the technology note ‘Wastewater treatment’. There are three main components in latrine design: • Pit • Slab • Superstructure Many variations of each component exist, which can be interchanged to design an optimum solution for a particular area. Technical brief Household sanitation Main components design, the slab should be shaped so that liquid drains towards the central Pit hole. Larger slabs should not be cast The pit for a family latrine should be over the pit, and should be preferably about 1.2m in diameter (this is the cast in two pieces (for easier smallest dimension that can be dug transport).
    [Show full text]