Sodium Dichromate Product Stewardship Summary February 2012

Total Page:16

File Type:pdf, Size:1020Kb

Sodium Dichromate Product Stewardship Summary February 2012 Sodium Dichromate Product Stewardship Summary February 2012 (Na2Cr2O7) Chemical Name: Sodium dichromate Chemical Category (if applicable): Inorganic chemical reagent Synonyms: Sodium bichromate; Chromic acid, disodium salt; Disodium dichromate(VI); Dichromic acid, disodium salt; Disodium dichromium heptaoxide; Sodium bichromate, anhydrous CAS Number: 10588-01-9 (anhydrate); 7789-12-0 (dihydrate) CAS Name: Sodium dichromate EC (EINECS) Number: 234-190-3 Other identifier (Please specify): GPS0064 Sodium dichromate is a strong oxidizing agent. Honeywell manufactures sodium dichromate for use by industry to treat and coat metal surfaces and for electroplating applications. Exposure can occur at either a sodium dichromate production facility or at other manufacturing, packaging or storage facilities that handle sodium dichromate. Persons involved in maintenance, sampling and testing activities, or in the loading and unloading of sodium dichromate packages are at risk of exposure, but worker exposure can be controlled with the use of proper general mechanical ventilation and personal protective equipment. Good manufacturing practices and industrial hygiene practices are also implemented to prevent or reduce exposure to sodium dichromate. Workplace exposure limits for hexavalent chromium compounds have been established for use in worksite safety programs. The general public or consumers have negligible exposure to sodium dichromate. Please see the MSDS for additional information. Sodium dichromate is an odorless solid in the form of orange-red crystals or powder. It is stable under normal conditions of use and storage. Sodium dichromate is not combustible, but it is a strong oxidizer that enhances the combustion of other substances. Avoid excess heat, combustible materials, and dust formation. Sodium dichromate reacts violently with hydrazine, anhydride, ethanol, and sulfuric acid. Sodium dichromate is not compatible with oxidizing agents (such as perchlorates, peroxides, permanganates, chlorates, nitrates, chlorine, bromine and fluorine), and combustibles. Sodium dichromate can cause irritation or burns of the skin and eyes, sores or ulcers of the skin, and/or allergic contact dermatitis. If ingested, sodium dichromate may cause gastrointestinal irritation, nausea, vomiting and diarrhea, and damage to the liver and kidneys. Short-term inhalation of sodium dichromate dust or mist can cause irritation to the nose, throat and respiratory system This product stewardship summary is intended to give general information about the chemical or categories of chemicals addressed. It is not intended to provide an in-depth discussion of all health and safety information. Additional information on the chemical is available through the applicable Material Safety Data Sheet which should be consulted before use of the chemical. The product stewardship summary does not supplant or replace required regulatory and/or legal communication documents. Statements concerning use of our products are made without warranty that any such use is free of patent infringement and are not recommendations to infringe any patent. Prolonged or repeated inhalation exposures to sodium dichromate can cause sores to develop in the nose and resultant nosebleeds, and if the damage is severe, the nasal septum may perforate. Inhalation of sodium dichromate may also lead to asthmatic symptoms, such as wheezing and shortness of breath. Sodium dichromate is a known human carcinogen, affecting the respiratory tract. Sodium dichromate may cause reproductive and/or developmental toxic effects. Sodium dichromate is toxic to some aquatic organisms and may result in long-term adverse effects in the aquatic environment. Please contact us for more information. Additional information may also be found at the following links: European Risk Assessment Report, Vol 53 - Chromium trioxide, Sodium chromate, Sodium dichromate, Ammonium dichromate and Potassium dichromate IARC Monograph Vol. 49, Chromium, Nickel and Welding SIDS Initial Assessment Profile - 5 Chromium Substances U.S. EPA IRIS - Chromium (VI) U.S. EPA Tox Review in Support of IRIS - Hexavalent Chromium U.S. Department of Labor, OSHA - Hexavalent Chromium U.S. NTP TOX 72 - Sodium Dichromate Dihydrate U.S. NTP TR 546 - Sodium dichromate dihydrate WHO Environmental Health Criteria 61 - Chromium WHO Guidelines for Drinking-water Quality - Chromium in Drinking-water Version 1.0 Current Issue Date: February 2012 Document DOC Number: NAME GPS0062 Page 2 of 2 Page 2 of 2 .
Recommended publications
  • Working with Hazardous Chemicals
    A Publication of Reliable Methods for the Preparation of Organic Compounds Working with Hazardous Chemicals The procedures in Organic Syntheses are intended for use only by persons with proper training in experimental organic chemistry. All hazardous materials should be handled using the standard procedures for work with chemicals described in references such as "Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 2011; the full text can be accessed free of charge at http://www.nap.edu/catalog.php?record_id=12654). All chemical waste should be disposed of in accordance with local regulations. For general guidelines for the management of chemical waste, see Chapter 8 of Prudent Practices. In some articles in Organic Syntheses, chemical-specific hazards are highlighted in red “Caution Notes” within a procedure. It is important to recognize that the absence of a caution note does not imply that no significant hazards are associated with the chemicals involved in that procedure. Prior to performing a reaction, a thorough risk assessment should be carried out that includes a review of the potential hazards associated with each chemical and experimental operation on the scale that is planned for the procedure. Guidelines for carrying out a risk assessment and for analyzing the hazards associated with chemicals can be found in Chapter 4 of Prudent Practices. The procedures described in Organic Syntheses are provided as published and are conducted at one's own risk. Organic Syntheses, Inc., its Editors, and its Board of Directors do not warrant or guarantee the safety of individuals using these procedures and hereby disclaim any liability for any injuries or damages claimed to have resulted from or related in any way to the procedures herein.
    [Show full text]
  • Sodium Chromate 10 Percent Section 1
    Conforms to US OSHA Hazard Communication 29CFR1910.1200 SAFETY DATA SHEET Sodium Chromate 10 percent Section 1. Identification 1.1 Product identifier Product name : Sodium Chromate 10 percent Part no. : AR176, AR376 Validation date : 6/24/2020 1.2 Relevant identified uses of the substance or mixture and uses advised against Material uses : Laboratory use Container type: Dispenser Pack AR176 // Sodium Chromate 10 percent // Artisan Grocott's Methenamine Silver Stain Kit // 65 mL and 115 mL AR376 // Sodium Chromate 10 percent // Artisan Grocott's Methenamine Silver Eosin Stain Kit // 65 mL and 115 mL Reference number: SDS056 1.3 Details of the supplier of the safety data sheet Supplier/Manufacturer : Agilent Technologies, Inc. 5301 Stevens Creek Blvd Santa Clara, CA 95051, USA Tel: +1 800 227 9770 Agilent Technologies Singapore (International) Pte Ltd. No. 1 Yishun Avenue 7 Singapore, 768923 Tel. (65) 6276 2622 Agilent Technologies Denmark ApS Produktionsvej 42 2600 Glostrup, Denmark Tel. +45 44 85 95 00 www.Agilent.com e-mail address of person : [email protected] responsible for this SDS 1.4 Emergency telephone number In case of emergency : CHEMTREC®: 1-800-424-9300 Section 2. Hazards identification 2.1 Classification of the substance or mixture OSHA/HCS status : This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Classification of the substance or mixture Date of issue : 06/24/2020 1/15 Sodium Chromate 10 percent Section 2. Hazards identification H302 ACUTE TOXICITY (oral) - Category 4 H311
    [Show full text]
  • Coast Guard, DHS Pt. 150, App. I
    Coast Guard, DHS Pt. 150, App. I APPENDIX I TO PART 150—EXCEPTIONS Member of reactive group Compatible with TO THE CHART Propylene glycol (20) (a) The binary combinations listed below Oleum (0) ............................... Hexane (31) have been tested as prescribed in Appendix Dichloromethane (36) III and found not to be dangerously reactive. Perchloroethylene (36) These combinations are exceptions to the 1,2-Propylene glycol (20) ...... Diethylenetriamine (7) Compatibility Chart (Figure 1) and may be Polyethylene polyamines (7) Triethylenetetramine (7) stowed in adjacent tanks. Sodium dichromate, 70% (0) Methyl alcohol (20) Member of reactive group Compatible with Sodium hydrosulfide solution Methyl alcohol (20) (5). Acetone (18) .......................... Diethylenetriamine (7) Iso-Propyl alcohol (20) Acetone cyanohydrin (0) ....... Acetic acid (4) Sulfuric acid (2) ..................... Coconut oil (34) Acrylonitrile (15) ..................... Triethanolamine (8) Coconut oil acid (34) Palm oil (34) 1,3-Butylene glycol (20) ......... Morpholine (7) Tallow (34) 1,4-Butylene glycol (20) ......... Ethylamine (7) Sulfuric acid, 98% or less (2) Choice white grease tallow Triethanolamine (8) (34) gamma-Butyrolactone (0) ...... N-Methyl-2-pyrrolidone (9) Caustic potash, 50% or less Isobutyl alcohol (20) (b) The binary combinations listed below (5). Ethyl alcohol (20) have been determined to be dangerously re- Ethylene glycol (20) active, based on either data obtained in the Isopropyl alcohol (20) Methyl alcohol (20) literature or on laboratory testing which has iso-Octyl alcohol (20) been carried out in accordance with proce- Caustic soda, 50% or less (5) Butyl alcohol (20) dures prescribed in Appendix III. These com- tert-Butyl alcohol, Methanol binations are exceptions to the Compat- mixtures ibility Chart (Figure 1) and may not be Decyl alcohol (20) stowed in adjacent tanks.
    [Show full text]
  • Chemical Resistance Chart
    CHEMICAL RESISTANCE CHART CHEMICAL RESISTANCE DATA These recommendations are based upon information from material suppliers and careful examination of available published information and are believed to be accurate. However, since the resistance of metals, plastics and elastomers can be affected by concentration, temperature, presence of other chemicals and other factors. This information should be considered as a general guide rather than an unqualified guarantee. Ultimately, the customer must determine the suitability of the pump used in various solutions. All recommendations assume ambient temperatures unless otherwise noted. RATINGS — CHEMICAL EFFECT FOOTNOTES A — No effect—Excellent 1. P.V.C. — Satisfactory to 72 °F B — Minor effect—Good 2. Polypropylene — Satisfactory to 72 °F C — Moderate effect—Fair 3. Polypropylene — Satisfactory to 120 °F D — Severe effect—Not recommended 4. Nitrile — Satisfactory for “O” Rings 5. Polyacetal — Satisfactory to 72 °F 6. Ceramag — Satisfactory to 72 °F The ratings for these materials are based upon the chemical resistance only. Added consideration must be given to pump selections when the chemical is abrasive, viscous in nature, or has a Specific Gravity greater than 1.1. NOTE: The materials shown below in BOLDFACE TYPE are used in the construction of Little Giant chemical pumps. ” 302 Stainless Steel 304 Stainless Steel 316 Stainless Steel 440 Stainless Steel Aluminum TITANIUM C276 NICKEL ALLOY Cast Bronze Brass Cast Iron Carbon Steel 1) PVC (Type (E-3606) Tygon PTFE Polyacetal Nylon ABS Thermoplastic
    [Show full text]
  • Chemical Compatibility Guide
    Chemical Compatibility Guide Guide Applicable to the Following: PIG Portable Spill Containment Pool Guide Information This report is offered as a guide and was developed from information which, to the best of New Pig’s knowledge, was reliable and accurate. Due to variables and conditions of application beyond New Pig’s control, none of the data shown in this guide is to be construed as a guarantee, expressed or implied. New Pig assumes no responsibility, obligation, or liability in conjunction with the use or misuse of the information. PIG Spill Containment Pools are constructed from PVC-coated polyester fabric. The chemical resistance guide that follows shows the chemical resistance for the PVC layer only. This guide has been compiled to provide the user with general chemical resistance information. It does not reflect actual product testing. Ratings / Key or Ratings – Chemical Effect 1. Satisfactory to 72°F (22°C) 2. Satisfactory to 120°F (48°C) A = Excellent D = Severe Effect, not recommended for ANY use. B = Good — Minor Effect, slight corrosion or discoloration. N/A = Information not available. C = Fair — Moderate Effect, not recommended for continuous use. Softening, loss of strength, swelling may occur. Due to variables and conditions beyond our control, New Pig cannot guarantee that this product(s) will work to your satisfaction. To ensure effectiveness and your safety, we recommend that you conduct compatibility and absorption testing of your chemicals with this product prior to purchase. For additional questions or information,
    [Show full text]
  • Na2cr04 from Domestic Chromite Concentrates by an Alkali-Fusion Method
    R I 1916 T Nor REMOVE FRCl1 r~·ReS~:r~~ n~:nter . ~ E. 315 Montgomery Ave. Spokane, WA 99207 Bureau of Mines Report of Investigations/1988 LI BRARY Na2Cr04 From Domestic Chromite Concentrates by an Alkali-Fusion Method By Gary L. Hundley, R. E. Mussier, R. A. Holmes, and R. S. Olsen UNITED STATES DEPARTMENT OF THE INTERIOR .. Report of Investigations 9167 Na2Cr04 From Domestic Chromite Concentrates by an Alkali-Fusion Method By Gary L. Hundley, R. E. Mussier, R. A. Holmes, and R. S. Olsen UNITED STATES DEPARTMENT OF THE INTERIOR Donald Paul Hodel, Secretary BUREAU OF MINES T S Ary, Director Library of Congress Cataloging in Publication Data: Na2Cr04 from domestic chromite concentrates. (Bureau of Mines report of investigations : 9161) Bibliography: p. 12. Supt. of Does. no.: I 28.23:9167. 1. Chl'omium--Metallurgy. 2. Sodium chromate. 3. Chromite. 4. Sodium hydroxide. 5. Fused salts. 6. Leaching. 1. Hundley, Gary L. II. Title: Alkali-fusion method. III. Series: Report of investigations (United States. Bureau of Mines) ; 9167. TN23.U43 [TN799.C5] 62 s [669'.734] 88-600002 gas CONTENTS Abstract ......•...•..••......•..•....................•..... 1 Introduction ••••••••••••••••••••••••••••• · .............. 2 Raw materials ..••••.••••.•.••.•.•...•••.. 4 Countercurrent leaching •••••••••••••••••• .................... 5 Equipment and procedures ••••••••••••••• 5 Results and discussion ••••••••••••••••••• 6 Solution purification •••••••••••••••••••• 7 Crystallization •••••••••••••••••••••••••• ·. .. .. .. ............. 9 Equipment and procedures
    [Show full text]
  • Massachusetts Chemical Fact Sheet
    Massachusetts Chemical Fact Sheet Hexavalent Chromium Table 1: HEXAVALENT CHROMIUM COMPOUNDS: Compounds SELECTED EXAMPLES* Compound Chemical Formula CAS # This fact sheet is part of a series of chemical fact sheets Ammonium chromate (NH ) Cr0 7788-98-9 developed by TURI to help Massachusetts companies, 4 2 4 community organizations and residents understand the Ammonium dichromate (NH4)2Cr2O7 7789-09-5 chemical’s use and health and environmental effects, as Barium chromate BaCrO4 10294-40-3 well as the availability of safer alternatives. tert-Butyl Chromate [(CH3)3CO]2CrO2 1189-85-1 Hexavalent chromium compounds are a toxic form of Calcium chromate CaCrO4 13765-19-0 chromium and are used in a variety of industrial processes Chromic acid H2CrO4 7738-94-5 and products. Chromium VI chloride CrCl6 14986-48-2 Hexavalent chromium compounds are human carcinogens, Chromic trioxide CrO3 1333-82-0 mutagens and developmental toxicants and are acutely Hexavalent chromium ion Cr6+ 18540-29-9 toxic. Non-hexavalent chromium compounds do not pose Lead chromate PbCrO4 7758-97-6 the same level of concern with regard to either chronic or Lead chromate oxide PbCrO4-PbO 8454-12-1 acute toxicity. Potassium chlorochromate KCrO3Cl 16037-50-6 Until 2011, all chromium compounds were treated as Potassium chromate K2CrO4 7789-00-6 a single category under TURA. Beginning with Potassium dichromate K Cr O 7778-50-9 reporting year 2012, hexavalent chromium 2 2 7 compounds are reportable under TURA as a Silver chromate Ag2CrO4 7784-01-2 separate category and are designated as a Higher Sodium chromate Na2CrO4 7775-11-3 Hazard Substance, which lowers the reporting Sodium dichromate 7789-12-0 threshold to 1,000 lb/year.
    [Show full text]
  • Oxidation of 9-Fluorenol to 9-Fluorenone with Sodium Hypochlorite
    CHEM 2229 EXP 1: Oxidation of 9-Fluorenol to 9-Fluorenone with Sodium Hypochlorite Objective: In this experiment you will learn how to perform an oxidation reaction by oxidizing an alcohol (9- hydroxyfluorene) to a ketone (9-fluorenone) using sodium hypochlorite in an acidic environment; how to perform TLC to monitor a reaction; how to perform an extraction to isolate a product; and, how to verify purity of a product using TLC and melting point. * Chromatography is a useful method for separating components of a mixture of compounds based on their polarity. Thin layer chromatography is especially useful for determining the number of components in a mixture, the identity of the compounds, and the purity of a compound. **Solvent Extraction is also known as Liquid–liquid extraction (LLE) or partitioning. It is a method used to separate compounds based on their relative solubilities in two different immiscible liquids: usually the polar solvent water and a non-polar organic solvent. Immiscible means that the liquids do not mix and because of this form two distinct layers. ***The melting point (MP) is a physical property of a solid also used for the purpose of identification and purity determination. Reading Assignment: OCLT: OCLT, pp. 83-108 (chromatography generalities & TLC), pp. 368-369 (TLC technique summary), pp. 203-246 (extraction); pp. 376-381 (extraction illustrations); 366 (vacuum filtration); and 309-315 (melting point). Solomons Organic Chemistry, 12th ed. (Note: Pages correspond to 12th ed.) pp. 542-547 (12.4 Oxidation of Alcohols) Concepts: Acids, Bases, Decantation, Drying Agents, Exothermic Reactions, Extraction, Half Cell Method, Oxidation/Reduction, Oxidizing Agents, Reducing Agents, Reflux, Salting Out Chemicals: acetic acid (glacial), acetone, 9-fluorenol, 9-fluorenone, hexane, sodium bicarbonate, sodium chloride, sodium hypochlorite (aq soln) / bleach, sodium sulfate Safety Precautions: Wear chemical splash-proof goggles and appropriate attire at all times.
    [Show full text]
  • Sodium Dichromate Listing Background Document for the Inorganic Chemical Listing Determination
    SODIUM DICHROMATE LISTING BACKGROUND DOCUMENT FOR THE INORGANIC CHEMICAL LISTING DETERMINATION This Document Does Not Contain Confidential Business Information August 2000 U.S. ENVIRONMENTAL PROTECTION AGENCY ARIEL RIOS BUILDING 1200 PENNSYLVANIA AVENUE, N.W. WASHINGTON, D.C. 20460 i TABLE OF CONTENTS 1. SECTOR OVERVIEW ....................................................1 1.1 SECTOR DEFINITION, FACILITY NAMES AND LOCATIONS .....1 1.2 PRODUCTS, PRODUCT USAGE, AND MARKETS ....................1 1.3 PRODUCTION CAPACITY .........................................4 1.4 PRODUCTION, PRODUCT AND PROCESS TRENDS ...................4 2. ELEMENTIS CHROMIUM ................................................5 2.1 PRODUCTION PROCESS DESCRIPTION .............................5 2.2 PRODUCTION TRENDS, CHANGES AND IMPROVEMENTS ............7 2.3 RESIDUAL GENERATION AND MANAGEMENT ......................7 2.3.1 Spent Post-Neutralization Ore Residue .............................7 2.3.2 Caustic Filter Sludge ..........................................9 2.3.3 Sodium Dichromate Evaporation Unit Wastewater ...................10 2.3.4 Sodium Chromate Evaporation Unit Wastewater ....................10 2.3.5 Reduced Chromium Treatment Residues from Spent Ore Residue Treatment Unit .....................................................11 2.3.6 Reduced Chromium Treatment Residues from Wastewater Treatment Unit .........................................................12 2.3.7 Commingled Treated Wastewaters ...............................13 2.3.8 Process Filters, Membranes,
    [Show full text]
  • United States Patent Office Patented Nov
    as 2,695,215 United States Patent Office Patented Nov. 23, 1954 1. 2 slurry of sulfur in sodium hydroxide, or to a solution of sodium sulfide or polysulfide, or to an aqueous mass 2,695,215 containing a mixture of such reagents. Although the PRODUCTION OF CHROMUM OXDE chromium compound used may be either the chromate, the dichromate or mixtures of the same, superior re William A. Pollock, Allentown, Pa., assignor to C. K. sults are obtained when a mixture of about 14 to 18 per Williams & Co., East St. Louis, Ill., a corporation of cent of the former with about 82 to 86 per cent of the Delaware latter are used. The reaction is ordinarily carried out at elevated temperatures up to those at which the re No Drawing. Application May 16, 1950, O action mass boils. Serial No. 162,397 In accordance with a special feature of the invention, the alkalinity of the chromium hydroxide-sodium thio 5 Claims. (Cl. 23-145) sulfate reaction mass is reduced to a level approaching neutrality. It has been ascertained that the shade of the This invention relates to the production of chromium 5 chromium oxide ultimately obtained is lightened by this oxide and more particularly to the manufacture of chro adjustment and pigments in greater commercial demand mium oxide pigments by the reduction of sodium chro will result. This step, which also increases yields, can mate or dichromate and calcination of the reduced be accomplished simply by the addition of sulfuric acid product. or other suitable acid. If the alkalinity is not changed a It has heretofore been proposed that chromium oxide 20 shade of green is obtained of limited commercial value.
    [Show full text]
  • Chromate and the Environment: Removal and Utilization of Industrial Waste
    J. Chem. Chem. Eng. 10 (2016) 147-152 doi: 10.17265/1934-7375/2016.03.006 D DAVID PUBLISHING Chromate and the Environment: Removal and Utilization of Industrial Waste Fernando B. Mainier, Pedro Paulo B. Leite, Marcone F. Reis and Thiago Teobaldo Silva Engineering School, Federal Fluminense University(UFF), Niterói, Rio de Janeiro 24220-261, Brazil Abstract: Chromate and dichromate sodium as a function of oxidizer characteristics are used in several industrial areas; for example, in surface protection of coated parts of cadmium, zinc and aluminum (chromate coated treated), corrosion inhibitors, the treatment of leather, the manufacture of pigments, etc. However, the use of such products has been questioned due to the problems of toxicity and pollution that can be caused in the environmental. The Brazilian environmental agency has established that the concentrations of 2- chromate in water courses are less than 0.5 ppm. In order to reuse chromate (CrO4 ) from industrial effluent, laboratory experiments have been proposed based on chemical reduction or electrolytic processes, in order to transform these chromate ions in a final mix of oxides (in solid form), which can then be packed and sent to the production process of sodium chromate. The results of these experiments have become useful industrially (without regard to costs) considering the environmental reuse and the life cycle of the chemical compound. Key words: Chromate, dichromate, contamination, chemical reduction, electrolytic process. 1. Introduction waste, among others [1, 2]. In
    [Show full text]
  • ANALYSIS of ALTERNATIVES Public Version
    ANALYSIS OF ALTERNATIVES Public Version Legal name of applicant(s): Kemira Chemicals Oy Submitted by: Kemira Chemicals Oy Substance: Sodium dichromate Use title: Use of sodium dichromate as an additive for suppressing parasitic reactions and oxygen evolution, pH buffering and cathode corrosion protection in the electrolytic manufacture of sodium chlorate with or without subsequent production of chlorine dioxide or sodium chlorite. Use number: 1 Disclaimer This report has been prepared by Risk & Policy Analysts Ltd, with reasonable skill, care and diligence under a contract to the client and in accordance with the terms and provisions of the contract. Risk & Policy Analysis Ltd will accept no responsibility towards the client and third parties in respect of any matters outside the scope of the contract. This report has been prepared for the client and we accept no liability for any loss or damage arising out of the provision of the report to third parties. Any such party relies on the report at their own risk. Note This public version of the Analysis of Alternatives includes some redacted text. The letters indicated within each piece of redacted text correspond to the type of justification for confidentiality claims which is included as an Annex (Section 7) in the complete version of the document. Table of contents 1 Summary..............................................................................................................................1 1.1 Use applied for................................................................................................................................1
    [Show full text]