Chromate and the Environment: Removal and Utilization of Industrial Waste

Total Page:16

File Type:pdf, Size:1020Kb

Chromate and the Environment: Removal and Utilization of Industrial Waste J. Chem. Chem. Eng. 10 (2016) 147-152 doi: 10.17265/1934-7375/2016.03.006 D DAVID PUBLISHING Chromate and the Environment: Removal and Utilization of Industrial Waste Fernando B. Mainier, Pedro Paulo B. Leite, Marcone F. Reis and Thiago Teobaldo Silva Engineering School, Federal Fluminense University(UFF), Niterói, Rio de Janeiro 24220-261, Brazil Abstract: Chromate and dichromate sodium as a function of oxidizer characteristics are used in several industrial areas; for example, in surface protection of coated parts of cadmium, zinc and aluminum (chromate coated treated), corrosion inhibitors, the treatment of leather, the manufacture of pigments, etc. However, the use of such products has been questioned due to the problems of toxicity and pollution that can be caused in the environmental. The Brazilian environmental agency has established that the concentrations of 2- chromate in water courses are less than 0.5 ppm. In order to reuse chromate (CrO4 ) from industrial effluent, laboratory experiments have been proposed based on chemical reduction or electrolytic processes, in order to transform these chromate ions in a final mix of oxides (in solid form), which can then be packed and sent to the production process of sodium chromate. The results of these experiments have become useful industrially (without regard to costs) considering the environmental reuse and the life cycle of the chemical compound. Key words: Chromate, dichromate, contamination, chemical reduction, electrolytic process. 1. Introduction waste, among others [1, 2]. In order to individualize the problem of Industrial production processes, especially chemical contamination of workers and environmental pollution, ones, continue to exert strong pressure on the chromate and dichromate are highlighted, usually environment, in view of the inherent risks of their called hexavalent chromium compounds, because, due manufacturing processes in e.g.: the security industry, to their oxidizing characteristics, such products are used contamination, tailings, effluent, packaging, reuse, in various industry segments. Certain studies have recycling, toxic metals and toxic waste, which often argued that such products are harmful to human health, get confused or are interlinked. because contact can promote dermatitis, and inhalation Large industrial complexes such as oil and gas and ingestion promote irritation and ulceration in the production, petrochemical metallurgical industries, for intestines, stomach and the risk of lung cancer [3-5]. the most part, become polluters and end up having an Fig. 1 presents chromite ore (FeO·Cr2O3) that is the impact upon the world with their waste, becoming main raw material for applications in different enemies of society, sustainability and man himself. industries, such as: 76% for production of chromium They give the impression of not taking precautions in and chromium alloys [6, 7]; 13% for refractory bricks relation to the present or the future, according to leaks, and 11% for chemicals [8-10]. accidents and disasters that occur in various parts of Currently, chromite ore is extracted and purified in the world. Some of these disasters can be associated South Africa (39%), India (16%), Kazakhstan (15%), with obsolete technologies and the direct or indirect and other countries as Brazil, Finland, Oman, Russia use of recycling or recovery of packaging and toxic and Turkey (representing 21%). In the 1970s to 1990s in Brazil, most of the chromite ore was intended for Corresponding author: Fernando B. Mainier, Ph.D., professor, research fields: corrosion, corrosion protection, the production of chromate [11]. Currently, chromate materials and environment. is imported from South Africa. 148 Chromate and the Environment: Removal and Utilization of Industrial Waste Fig. 1 Industrial routes using chromite ore. Globally, roughly 11% of chromite ore and chrome generated. It is believed that the treatment or waste are intended for the production of chemical processing of waste should be carried out by those compounds, mainly: chromic oxide (CrO3) for companies that generate the source of pollution chromium plating, sodium chromate (Na2CrO4), (segregated treatment), because usually a great effort sodium dichromate (Na2Cr2O7), lead chromate is accompanied by high cost of treatment to recover (PbCrO4), chrome alum (KCr(SO4)2·12H2O), etc. The the final system when, in fact, it is contaminated [1, 15]. quality of these products depends on the origin of the The reactions for obtaining sodium chromate and raw material and industrial processing; therefore, the industrial sodium dichromate from chromite ore are treatment of waste and the final disposal of this waste presented below: 4FeO.Cr O + 8Na CO + 7O → in landfill are both essential. 2 3 2 3 2 2Fe O + 8 Na CrO + 8CO (1) In this industrial scenario, application of the rules 2 3 2 4 2 2Na CrO + H SO → and regulations of Clean Technologies [1, 12] and the 2 4 2 4 Na Cr O + Na SO + H O (2) premises of LCA [13, 14] of materials (i.e. from the 2 2 7 2 4 2 cradle to the grave from raw materials to final landfill) To illustrate the use of segregated waste treatment, are important bases of environmental sustainability the use of chromate as a corrosion inhibitor in a and human health protection from the toxicity of such cooling system was chosen. Generally, the chromate 2- products. concentration (CrO4 ) can vary from 50-600 mg/L Clean technologies should be established in order to depending on the operating conditions and the water meet the demands for sustainability and to ensure that used, mainly in relation to the content of chloride the environment, public health, worker safety, and the (Cl-). safety of the inhabitants surrounding industrial To evaluate the removal and reuse of chromate, in complexes are protected using methods that reduce the form of “chromite”, double oxide of iron (II) and energy, and programs that reuse or recover raw (III) chromium (4FeO·Cr2O3) were selected two materials, in order to reduce the amount of waste processes. Chromate and the Environment: Removal and Utilization of Industrial Waste 149 The first is based on chemical reduction using 2. Materials and Methods reducing substances such as: sodium sulfite (Na SO ), 2 3 The test of chemical reduction consisted, essentially, sodium bisulfite (NaHSO ), ferrous sulfate (FeSO ), 3 4 of a glass container 500 mL in volume, equipped with sulfur dioxide (SO ), whose reactions are listed below: 2 a magnetic stirrer, in which were placed 200 mL of 2Na CrO +5H SO + 3Na SO → 2 4 2 4 2 3 sodium chromate solution referred to as the chromate 5Na SO + Cr (SO ) + 5H O (3) 2 4 2 4 3 2 2- ion (CrO4 ). The chromate solutions evaluated were 4Na CrO + 7H SO + 6NaHSO → 2 4 2 4 3 100, 200 and 600 mg/L, were used a high purity of 7Na SO + 2Cr (SO ) + 10H O (4) 2 4 2 4 3 2 sodium chromate. The pH for each solution was 2 Na CrO + 6FeSO + 8H SO → 2 4 4 2 4 adjusted in the range of 2.7-2.8 using a solution of 2 2Na SO + 3Fe (SO ) + Cr (SO ) + 8H O (5) 2 4 2 4 3 2 4 3 2 M H2SO4. The masses of Na2SO3, NaHSO3 and 2Na CrO +2H SO + 3SO → 2 4 2 4 2 FeSO4 used in the chemical reduction were 2Na SO + Cr (SO ) + 2H O (6) 2 4 2 4 3 2 determined, stoichiometrically and using, respectively, Neutralization of the acid solution and the Eqs. (3-5). To guarantee the reduction of chromate precipitation in their hydroxides and calcium sulfate 2- 3+ ions (CrO4 ) from the chromium ions (Cr ), the (CaSO4) can be made using calcium hydroxide or calculated masses were multiplied by 1.1. Then, sodium hydroxide, whose reactions are presented aiming at the removal of precipitates, were added to below: the resulting solution sodium hydroxide or calcium Cr2(SO4)3+ 3Ca(OH)2→ 2Cr(OH)3↓ + 3CaSO4↓ (7) hydroxide based on earlier Eqs. (7, 9-11), with an Na2SO4+ Ca(OH)2→ CaSO4↓ + 2NaOH (8) increase of 1.1 of the mass calculated. Finally, the Fe2(SO4)3 + 3Ca(OH)2→ 3CaSO4↓ + 2Fe(OH)3↓ (9) solution is filtered through a filter press to remove the Cr2(SO4)3+ 6NaOH → 2Cr(OH)3↓ + 3Na2SO4 (10) precipitate formed and, in the resulting solution, the Fe2(SO4)3 + 6NaOH → 3Na2SO4 +2Fe(OH)3↓ (11) chromate content was determined that had not been The second process is based on reduction by ferrous removed. 2+ ions (Fe ) obtained by the electrolytic dissolution of In the experiments based on the reduction by carbon steel electrode by applying a continuous ferrous ions (Fe2+), an electrolytic cell (Fig. 2) electric current, in acidic medium (H2SO4), as shown consisting of an acrylic container with a maximum in the following reactions: capacity of 500 mL was used, containing the anode 2+ Anodic reaction: Fe - 2e → Fe (12) and the cathode of carbon steel connected to a power + Cathodic reaction: 2H + 2e → H2 (13) supply of adjustable direct current (current rectifier) Ferrous sulfate (FeSO4) formed in solution, reacts with a maximum voltage of 30 V. with chromate as shown in the reaction: The current ranged from 0.2-0.6 A and the time 2Na CrO + 6FeSO + 8H SO → 2Na SO + 2 4 4 2 4 2 4 ranged from 10-30 minutes, were placed in the cell 3Fe (SO ) + Cr (SO ) + 8H O (14) 2 4 3 2 4 3 2 200 mL of high purity sodium chromate solution (100, 2- Later, the solution is neutralized with calcium 200, 600 mg/L), referred to as the chromate (CrO4 ) hydroxide or sodium hydroxide as shown in the ion. The pH for each solution was adjusted in the following reactions: range of 2.7-2.8 using a solution of 2 M H2SO4. Cr2(SO4)3+ 3Ca(OH)2→ 2Cr(OH)3↓ + 3CaSO4↓ (15) Some of the operational conditions, such as the time Na2SO4+ Ca(OH)2 → CaSO4↓ + 2NaOH (16) and current/voltage for this experiment, were based on Fe2(SO4)3 + 3Ca(OH)2→ 3CaSO4↓ + 2Fe(OH)3↓ (17) Faraday’s law, Cr2(SO4)3+ 6NaOH → 2Cr(OH)3↓ + 3Na2SO4 (18) m = Zit (20) Fe2(SO4)3 + 6NaOH → 3Na2SO4 + 2Fe(OH)3↓ (19) where, 150 Chromate and the Environment: Removal and Utilization of Industrial Waste platinum electrode.
Recommended publications
  • Sodium Chromate 10 Percent Section 1
    Conforms to US OSHA Hazard Communication 29CFR1910.1200 SAFETY DATA SHEET Sodium Chromate 10 percent Section 1. Identification 1.1 Product identifier Product name : Sodium Chromate 10 percent Part no. : AR176, AR376 Validation date : 6/24/2020 1.2 Relevant identified uses of the substance or mixture and uses advised against Material uses : Laboratory use Container type: Dispenser Pack AR176 // Sodium Chromate 10 percent // Artisan Grocott's Methenamine Silver Stain Kit // 65 mL and 115 mL AR376 // Sodium Chromate 10 percent // Artisan Grocott's Methenamine Silver Eosin Stain Kit // 65 mL and 115 mL Reference number: SDS056 1.3 Details of the supplier of the safety data sheet Supplier/Manufacturer : Agilent Technologies, Inc. 5301 Stevens Creek Blvd Santa Clara, CA 95051, USA Tel: +1 800 227 9770 Agilent Technologies Singapore (International) Pte Ltd. No. 1 Yishun Avenue 7 Singapore, 768923 Tel. (65) 6276 2622 Agilent Technologies Denmark ApS Produktionsvej 42 2600 Glostrup, Denmark Tel. +45 44 85 95 00 www.Agilent.com e-mail address of person : [email protected] responsible for this SDS 1.4 Emergency telephone number In case of emergency : CHEMTREC®: 1-800-424-9300 Section 2. Hazards identification 2.1 Classification of the substance or mixture OSHA/HCS status : This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Classification of the substance or mixture Date of issue : 06/24/2020 1/15 Sodium Chromate 10 percent Section 2. Hazards identification H302 ACUTE TOXICITY (oral) - Category 4 H311
    [Show full text]
  • Chemical Resistance Chart
    CHEMICAL RESISTANCE CHART CHEMICAL RESISTANCE DATA These recommendations are based upon information from material suppliers and careful examination of available published information and are believed to be accurate. However, since the resistance of metals, plastics and elastomers can be affected by concentration, temperature, presence of other chemicals and other factors. This information should be considered as a general guide rather than an unqualified guarantee. Ultimately, the customer must determine the suitability of the pump used in various solutions. All recommendations assume ambient temperatures unless otherwise noted. RATINGS — CHEMICAL EFFECT FOOTNOTES A — No effect—Excellent 1. P.V.C. — Satisfactory to 72 °F B — Minor effect—Good 2. Polypropylene — Satisfactory to 72 °F C — Moderate effect—Fair 3. Polypropylene — Satisfactory to 120 °F D — Severe effect—Not recommended 4. Nitrile — Satisfactory for “O” Rings 5. Polyacetal — Satisfactory to 72 °F 6. Ceramag — Satisfactory to 72 °F The ratings for these materials are based upon the chemical resistance only. Added consideration must be given to pump selections when the chemical is abrasive, viscous in nature, or has a Specific Gravity greater than 1.1. NOTE: The materials shown below in BOLDFACE TYPE are used in the construction of Little Giant chemical pumps. ” 302 Stainless Steel 304 Stainless Steel 316 Stainless Steel 440 Stainless Steel Aluminum TITANIUM C276 NICKEL ALLOY Cast Bronze Brass Cast Iron Carbon Steel 1) PVC (Type (E-3606) Tygon PTFE Polyacetal Nylon ABS Thermoplastic
    [Show full text]
  • Chemical Compatibility Guide
    Chemical Compatibility Guide Guide Applicable to the Following: PIG Portable Spill Containment Pool Guide Information This report is offered as a guide and was developed from information which, to the best of New Pig’s knowledge, was reliable and accurate. Due to variables and conditions of application beyond New Pig’s control, none of the data shown in this guide is to be construed as a guarantee, expressed or implied. New Pig assumes no responsibility, obligation, or liability in conjunction with the use or misuse of the information. PIG Spill Containment Pools are constructed from PVC-coated polyester fabric. The chemical resistance guide that follows shows the chemical resistance for the PVC layer only. This guide has been compiled to provide the user with general chemical resistance information. It does not reflect actual product testing. Ratings / Key or Ratings – Chemical Effect 1. Satisfactory to 72°F (22°C) 2. Satisfactory to 120°F (48°C) A = Excellent D = Severe Effect, not recommended for ANY use. B = Good — Minor Effect, slight corrosion or discoloration. N/A = Information not available. C = Fair — Moderate Effect, not recommended for continuous use. Softening, loss of strength, swelling may occur. Due to variables and conditions beyond our control, New Pig cannot guarantee that this product(s) will work to your satisfaction. To ensure effectiveness and your safety, we recommend that you conduct compatibility and absorption testing of your chemicals with this product prior to purchase. For additional questions or information,
    [Show full text]
  • Na2cr04 from Domestic Chromite Concentrates by an Alkali-Fusion Method
    R I 1916 T Nor REMOVE FRCl1 r~·ReS~:r~~ n~:nter . ~ E. 315 Montgomery Ave. Spokane, WA 99207 Bureau of Mines Report of Investigations/1988 LI BRARY Na2Cr04 From Domestic Chromite Concentrates by an Alkali-Fusion Method By Gary L. Hundley, R. E. Mussier, R. A. Holmes, and R. S. Olsen UNITED STATES DEPARTMENT OF THE INTERIOR .. Report of Investigations 9167 Na2Cr04 From Domestic Chromite Concentrates by an Alkali-Fusion Method By Gary L. Hundley, R. E. Mussier, R. A. Holmes, and R. S. Olsen UNITED STATES DEPARTMENT OF THE INTERIOR Donald Paul Hodel, Secretary BUREAU OF MINES T S Ary, Director Library of Congress Cataloging in Publication Data: Na2Cr04 from domestic chromite concentrates. (Bureau of Mines report of investigations : 9161) Bibliography: p. 12. Supt. of Does. no.: I 28.23:9167. 1. Chl'omium--Metallurgy. 2. Sodium chromate. 3. Chromite. 4. Sodium hydroxide. 5. Fused salts. 6. Leaching. 1. Hundley, Gary L. II. Title: Alkali-fusion method. III. Series: Report of investigations (United States. Bureau of Mines) ; 9167. TN23.U43 [TN799.C5] 62 s [669'.734] 88-600002 gas CONTENTS Abstract ......•...•..••......•..•....................•..... 1 Introduction ••••••••••••••••••••••••••••• · .............. 2 Raw materials ..••••.••••.•.••.•.•...•••.. 4 Countercurrent leaching •••••••••••••••••• .................... 5 Equipment and procedures ••••••••••••••• 5 Results and discussion ••••••••••••••••••• 6 Solution purification •••••••••••••••••••• 7 Crystallization •••••••••••••••••••••••••• ·. .. .. .. ............. 9 Equipment and procedures
    [Show full text]
  • List of Substances Subject to Prohibited / Undesirable / Declaration
    List of substances subject to prohibited / undesirable / declaration Appendix 1 to the Guidelines to Design and Purchasing Prohibition of Harmful Substances : ebmpapstMulfingen: 90-001 ebmpapstSt.Georgen: WN 3-12.2 ebmpapstLandshut: 60118.00040 (Ver. 5.0-31.07.2008) 1 2 3 4 5 6 7 8 9 10 Consecu N - new Substance EU-INDEX-No.: CAS-No. Source (law, decree, guideline). Hazard/risk example of application/occurrence Remarks and comments (of 0.1% deviating consideration limit) tive No. V = prohibited (verboten) U = undesirable (unerwünscht) D = subject to declaration (deklarationspflichtig) V = prohibited RoHS from 100 ppm 7439-92-1 TRGS 905, Pb-stabilisers and pigments are subject to declaration. GefStoffV, Prohibited: Anhydrite neutral lead carbonate, lead hydrogen carbonate and lead Lead and compounds (red lead oxide, lead sulphate, lead (7446-14-2 ChemVerbotsV, cable coating, heat transfer medium for accumulators, hybrid integrated sulphate as dye pigment hydrogen carbonate, lead carbonate, lead phtalates, lead 1319-46-6 BatterieV, circuits, stabilisers in plastics, vessels and pipes for aggressive liquids, < 0.4 % in batteries 1 V N acetates, lead phosphates, lead stereates , etc) lead 598-63-0 2002/95/EG (RoHS), K3, R 1, R 3 V E F according to RoHS: Lead as alloying additive in aluminum (up to 0.4 mass%) in steel (up to 67/458/EEC pigment production, lead alloys, anti-corrosion agents (fuel additives), chromate: refer to 0.35 mass%), in copper (up to 4%), 301-04-2 76/769/EEC (89/667/EEC, 97/10/EC, 97/56/EC) soldering agent chromium (VI)
    [Show full text]
  • Sodium Dichromate Listing Background Document for the Inorganic Chemical Listing Determination
    SODIUM DICHROMATE LISTING BACKGROUND DOCUMENT FOR THE INORGANIC CHEMICAL LISTING DETERMINATION This Document Does Not Contain Confidential Business Information August 2000 U.S. ENVIRONMENTAL PROTECTION AGENCY ARIEL RIOS BUILDING 1200 PENNSYLVANIA AVENUE, N.W. WASHINGTON, D.C. 20460 i TABLE OF CONTENTS 1. SECTOR OVERVIEW ....................................................1 1.1 SECTOR DEFINITION, FACILITY NAMES AND LOCATIONS .....1 1.2 PRODUCTS, PRODUCT USAGE, AND MARKETS ....................1 1.3 PRODUCTION CAPACITY .........................................4 1.4 PRODUCTION, PRODUCT AND PROCESS TRENDS ...................4 2. ELEMENTIS CHROMIUM ................................................5 2.1 PRODUCTION PROCESS DESCRIPTION .............................5 2.2 PRODUCTION TRENDS, CHANGES AND IMPROVEMENTS ............7 2.3 RESIDUAL GENERATION AND MANAGEMENT ......................7 2.3.1 Spent Post-Neutralization Ore Residue .............................7 2.3.2 Caustic Filter Sludge ..........................................9 2.3.3 Sodium Dichromate Evaporation Unit Wastewater ...................10 2.3.4 Sodium Chromate Evaporation Unit Wastewater ....................10 2.3.5 Reduced Chromium Treatment Residues from Spent Ore Residue Treatment Unit .....................................................11 2.3.6 Reduced Chromium Treatment Residues from Wastewater Treatment Unit .........................................................12 2.3.7 Commingled Treated Wastewaters ...............................13 2.3.8 Process Filters, Membranes,
    [Show full text]
  • Sd0000029 Evaluation of Chromfte Ore and The
    SD0000029 EVALUATION OF CHROMFTE ORE AND THE OPTIMUM METHODS FOR INDUSTRIAL EXTRACTION OF CHROMIUM A TI1HSIS SUBMITTED BY Bakheit Mustafa Mohamed Salih IN CANDIDATURE FOR TIU:DI:GRFJ:OI MASTER OF SC1HNCT DEPARTMENT OF CHEMISTRY FACULTY OF SCIENCE (P.O.BOX 321) OCTOBER 1999 UNIVERSITY OF KHARTOUM 31/ 28 ABSTRACT Samples of chromite ore, collected from Gam and Cheikay mining area (Ingessana Hills) in east Sudan, were analysed to assess the chromium content. Methods for extraction and analysis of chromium metal were developed and established. Analysis were carried out using atomic absorption spectroscopy (AAS) to estimate the contents of chromium, iron, calcium, and magnesium. X-ray fluorescence (XRF) was used to evaluate the levels of chromium, iron, and calcium in the ore. Volumetric analysis was performed to assess chromium and iron, whilst gravimetric analysis was employed to measure the amounts of calcium, magnesium, aluminum and silicon present in the ore. The data was chemically and statistically analyzed to compare the results obtained by the given analytical methods. The results are in good agreement except iron oxide, which displayed a significantly different value when measured by x-ray fluorescence. The data obtained exhibited similarity in almost all cases, when compared with local and global researches, reports, and literature. The study has revealed the average contents of Cr2O3, FeO, CaO, MgO, A12O3, and SiO2 as 40.66. 11.96, 11.94. 0.36. 16.94, 11.45% respectively. MnO and NiO were detected in trace amounts, the corresponding levels in the ore being 72 and 27 ppm. The average chromium content in extracted potassium dichromate measured by using AAS, XRF, and volumetric methods was found to be 31.7%.
    [Show full text]
  • THE FUTURE DIRECTIONS of TANNING* by ANTHONY D
    7 QUO VADIT CHROMIUM? THE FUTURE DIRECTIONS OF TANNING* by ANTHONY D. COVINGTON* British School of Leather Technology The University of Northampton BOUGHTON GREEN ROAD, NORTHAMPTON NN2 7AL, UK ABSTRACT La pregunta expuesta es: donde nos llevará este nuevo concepto en términos del futuro de la curtición? From leather science, a deeper understanding of the La respuesta es: a un desplazamiento paradigmático. theoretical basis of the tanning mechanism has unified the inorganic and organic chemistries of Curtición al cromo permanecerá con nosotros, pero leather making processes. The 'link-lock' mechanism en un futuro se visualizará muy diferentemente provides an explanation of present reactions and a su tecnología por hoy percibida. Opciones para la tool for future developments. transformación del proceso ya sí se pueden proponer. Es importante en este ejercicio cuestionar detalladamente The question now posed is: where does this new los aspectos convencionalmente aceptados de thinking take us, in terms of the future of tanning? esta reacción. The answer is: into a paradigm shift. Tecnologías alternativas de curtición en la era Chrome tanning will remain with us, but in the moderna pueden ahora ser desarrolladas, para future it can be viewed very differently from its producir cueros altamente estables hidrotérmicamente. currently perceived technology. Options for Aquí la teoría eslabón-cerrojo ha demostrado que tales transforming the process may now be proposed. resultados no son obtenibles con un solo reactivo, por lo Important in this exercise is to question closely the menos dos componentes de curtido son requeridos. conventionally accepted features of the reaction. Más aun, la curtición podrá ser más acertadamente formulada para que encaje con la química (o bioquímica) Alternative technologies for tanning in the modern de la reacción según su rendimiento y los requerimientos era can now be developed, to make high hydrothermal del impacto ambiental del cuero.
    [Show full text]
  • Potassium Dichromate CAS Number: 7778-50-9 EC Number: 231-906-6
    21.5.2010 COMMENTS AND RESPONSE TO COMMENTS ON ANNEX XV SVHC: PROPOSAL AND JUSTIFICATION Substance name: Potassium dichromate CAS number: 7778-50-9 EC number: 231-906-6 Reason of the submission of the Annex XV: CMR Disclaimer: The European Chemicals Agency is not responsible for the content of this document. The Response to Comments table has been prepared by the competent authority of the Member State preparing the proposal for identification of a Substance of Very High Concern. The comments were received during the public consultation of the Annex XV dossier. General comments Date Submitted by (name, Comment Response Organisation/MSCA) 20100323 CLEAPSS, UK (on behalf of an CLEAPSS is an advisory service providing support in No answer expected. organisation) science and technology for a consortium of local authorities and their schools including establishments for pupils with special needs. Independent schools, post-16 colleges, teacher training establishments, curriculum developers and others can apply for associate membership. We offer help from nursery education through to A-level studies or equivalent. Our services cover health & safety, risk assessment, sources and use of chemicals, living organisms and equipment. CLEAPSS also provides advice on technicians & their jobs, as well as the design of laboratories and facilities & fittings for D&T and science rooms. 20100324 Germany, company (on behalf of an We reject the ban of Potassium Dichromate in general, Thank for your comment. organisation) because the substance is used in a low concentration (< 1%) in an almost closed system of cuvette tests 20100408 Draeger Safety AG & Co. KGaA, comments k2Cr2O7R1.doc Thank you for this information.
    [Show full text]
  • Rpt POL-TOXIC AIR POLLUTANTS 98 BY
    SWCAA TOXIC AIR POLLUTANTS '98 by CAS ASIL TAP SQER CAS No HAP POLLUTANT NAME HAP CAT 24hr ug/m3 Ann ug/m3 Class lbs/yr lbs/hr none17 BN 1750 0.20 ALUMINUM compounds none0.00023 AY None None ARSENIC compounds (E649418) ARSENIC COMPOUNDS none0.12 AY 20 None BENZENE, TOLUENE, ETHYLBENZENE, XYLENES BENZENE none0.12 AY 20 None BTEX BENZENE none0.000083 AY None None CHROMIUM (VI) compounds CHROMIUM COMPOUN none0.000083 AY None None CHROMIUM compounds (E649962) CHROMIUM COMPOUN none0.0016 AY 0.5 None COKE OVEN COMPOUNDS (E649830) - CAA 112B COKE OVEN EMISSIONS none3.3 BN 175 0.02 COPPER compounds none0.67 BN 175 0.02 COTTON DUST (raw) none17 BY 1,750 0.20 CYANIDE compounds CYANIDE COMPOUNDS none33 BN 5,250 0.60 FIBROUS GLASS DUST none33 BY 5,250 0.60 FINE MINERAL FIBERS FINE MINERAL FIBERS none8.3 BN 175 0.20 FLUORIDES, as F, containing fluoride, NOS none0.00000003 AY None None FURANS, NITRO- DIOXINS/FURANS none5900 BY 43,748 5.0 HEXANE, other isomers none3.3 BN 175 0.02 IRON SALTS, soluble as Fe none00 AN None None ISOPROPYL OILS none0.5 AY None None LEAD compounds (E650002) LEAD COMPOUNDS none0.4 BY 175 0.02 MANGANESE compounds (E650010) MANGANESE COMPOU none0.33 BY 175 0.02 MERCURY compounds (E650028) MERCURY COMPOUND none33 BY 5,250 0.60 MINERAL FIBERS ((fine), incl glass, glass wool, rock wool, slag w FINE MINERAL FIBERS none0.0021 AY 0.5 None NICKEL 59 (NY059280) NICKEL COMPOUNDS none0.0021 AY 0.5 None NICKEL compounds (E650036) NICKEL COMPOUNDS none0.00000003 AY None None NITROFURANS (nitrofurans furazolidone) DIOXINS/FURANS none0.0013
    [Show full text]
  • Food and Drug Administration, HHS § 178.3130
    Food and Drug Administration, HHS § 178.3130 List of substances Limitations Alum (double sulfate of aluminum and ammonium, potassium, or sodium). 4-Chloro-3-methylphenol(p-chlorome-tacresol) ............................................ For use as preservative only. Chromium potassium sulfate (chrome alum) ............................................... For use only in glue used as a colloidal flocculant added to the pulp suspension prior to the sheet- forming operation in the manufacture of paper and paper board. 3,5-Dimethyl-1,3,5,H-tetrahydrothiadia-zine-2-thione .................................. For use as preservative only. Disodium cyanodithioimidocarbonate .......................................................... Do. Defoaming agents ........................................................................................ As provided in § 176.210 of this chapter. Ethanolamine. Ethylenediamine. Formaldehyde .............................................................................................. For use as a preservative only. Potassium N-methyldithiocarbamate ........................................................... Do. Potassium pentachlorophenate .................................................................... Do. Rosins and rosin derivatives ........................................................................ As provided in § 178.3870. Sodium chlorate. Sodium dodecylbenzenesulfonate. Sodium 2-mercaptobenzothiazole ................................................................ For use as preservative only. Sodium
    [Show full text]
  • United States Patent Office Patented Nov
    as 2,695,215 United States Patent Office Patented Nov. 23, 1954 1. 2 slurry of sulfur in sodium hydroxide, or to a solution of sodium sulfide or polysulfide, or to an aqueous mass 2,695,215 containing a mixture of such reagents. Although the PRODUCTION OF CHROMUM OXDE chromium compound used may be either the chromate, the dichromate or mixtures of the same, superior re William A. Pollock, Allentown, Pa., assignor to C. K. sults are obtained when a mixture of about 14 to 18 per Williams & Co., East St. Louis, Ill., a corporation of cent of the former with about 82 to 86 per cent of the Delaware latter are used. The reaction is ordinarily carried out at elevated temperatures up to those at which the re No Drawing. Application May 16, 1950, O action mass boils. Serial No. 162,397 In accordance with a special feature of the invention, the alkalinity of the chromium hydroxide-sodium thio 5 Claims. (Cl. 23-145) sulfate reaction mass is reduced to a level approaching neutrality. It has been ascertained that the shade of the This invention relates to the production of chromium 5 chromium oxide ultimately obtained is lightened by this oxide and more particularly to the manufacture of chro adjustment and pigments in greater commercial demand mium oxide pigments by the reduction of sodium chro will result. This step, which also increases yields, can mate or dichromate and calcination of the reduced be accomplished simply by the addition of sulfuric acid product. or other suitable acid. If the alkalinity is not changed a It has heretofore been proposed that chromium oxide 20 shade of green is obtained of limited commercial value.
    [Show full text]