NACE 17 Program Book

Total Page:16

File Type:pdf, Size:1020Kb

NACE 17 Program Book PROGRAM and ABSTRACTS Northeast Aquaculture Conference & Exposition and the 37th Milford Aquaculture Seminar January 11-13, 2017 Omni Hotel Providence Providence, Rhode Island The 2017NACE/MAS$Aquaculture$Conference$General$Program NACE-MAS at a Glance Wednesday,$January$11 Recirculating$Aquaculture$Systems$Workshop$(Kent$Room) 8:00$AM$\$5:00$PM Field$Trips$(meet$in$the$hotel$lobby) 4:00$PM Registration$opens$in$the$Hotel$Lobby 7:00$PM Opening$Reception$in$the$Narragansett$Ballroom$(trade$show$opens) Thursday,$January$12 7:00$AM Registration$in$Hotel$Lobby Plenary$Session$in$the$Narragansett$Ballroom 8:30$AM Rapid$fire$industry$updates$of$issues$facing$the$northeastern$states 10:00$AM Break$&$Trade$Show$opens$in$the$Narraganset$Ballroom Bristol/Kent Newport/Washington Providence$II/III Providence$I/IV South$County$(classroom) Farmer(to(Farmer:(What( Shellfish(Genetics(and( Social(Aspects(of( Works(and(Doesn’t(When( 10:30$AM Public(Health General(Aquaculture Breeding(Forum Aquaculture it(Comes(to(Biofouling( Control 12:00$PM Lunch$in$the$Narragansett$Ballroom Bristol/Kent Newport/Washington Providence$II/III Providence$I/IV South$County Is(the(Algae(Really( Greener(on(the(Other( Aquaculture(and(the( Aquaculture( Data:(what(is(available( Side?(West(Coast(Growers( 1:30$PM Finfish(farming Environment(I Management and(what(is(needed Perspectives(on(Raising( Shellfish(on(the(“Other”( Coast 3:00$PM Break$in$the$Narragansett$Ballroom Bristol/Kent Newport/Washington Providence$II/III Providence$I/IV South$County Aquaculture(Education:(Is( Aquaculture(and(the( 3:30$PM Northeast(Ocean(Plan IMTA there(something(fishy( Aquaculture(Policy(Forum Environment(II going(on(at(school? 5:00$PM Poster$Session$&$Happy$Hour$in$the$Narragansett$Ballroom 6:00$PM East$Coast$Shellfish$Growers$Association$Annual$Meeting$(South$County$Room) Dinner$on$your$own$out$on$the$town Friday,$January$13 7:00$AM Registration$in$the$Hotel$Lobby 7:00$AM Breakfast Bristol/Kent Newport/Washington Providence$II/III Providence$I/IV South$County Overview(of(2016( Roll(Your(Own((oyster( 8:30$AM Shellfish(Biology Shellfish(Husbandry(I Seaweed(Farmers(Forum Northeast(Region( seed(that(is)(Growers( Phytoplankton(Blooms Forum 10:00$AM Break$in$the$Narragansett$Ballroom Bristol/Kent Newport/Washington Providence$II/III Providence$I/IV South$County Instrumentation(for(SIte( 10:30$AM Shellfish(Health Shellfish(Husbandry(II Kelp(Farming Shellfish(Theft(Deterrence Evaluations 12:00$PM Lunch$in$the$Narragansett$Ballroom Bristol/Kent Newport/Washington Providence$II/III Providence$I/IV South$County Developing(a(Public( 1:30$PM Aquaculture(Student( Relations(and(Media( Mussel(Farming(and(Seed( Shellfish(Disease( Ocean(Acidification Roundtable Relations(Plan(for( Production Diagnostics Aquaculture(Business 3:00$PM Break$in$the$Foyer Bristol/Kent Newport/Washington Providence$I/IV South$County 3:30$PM RealWtime(Environmental( Risk(Management:(How( Scallop(Aquaculture( Shellfish(Disease( Forecasting(Workshop does(it(work? Forum Diagnostics 5:00$PM Closing$Refreshments Welcome The NACE – MAS Planning Committee welcomes you to this joint meeting of our organizations. We hope that by bringing together industry producers, resource managers, researchers and students in an informal setting, all can share each other’s knowledge on aquaculture production. This year’s event promises to deliver a quality program with thirty-four special sessions on finfish, sea vegetables and shellfish culture, informative workshops, field trips to area aquafarms, research facilities and a tradeshow including major aquaculture vendors from across North America. We hope that you enjoy the meeting. NACE-MAS Organizing Committee Chris Davis – Maine Aquaculture Innovation Center Lisa Milke - NOAA National Marine Fisheries Service Milford Laboratory Gef Flimlin – Rutgers University Cooperative Extension Dale Leavitt– Roger Williams University Thank you to our sponsors! Gold Sponsors Maine Aquaculture Innovation Center NOAA NMFS NEFSC Milford Laboratory USDA/NIFA Northeastern Regional Aquaculture Center National Oceanic and Atmospheric Administration Aquaculture Program Silver Sponsors Aquaculture North America Skretting USA Bronze Sponsors US Aquaculture Society University of Maine Aquaculture Research Institute Maine Sea Grant Woods Hole Sea Grant Rhode Island Sea Grant Connecticut Sea Grant East Coast Shellfish Growers Association USDA/NASS Associate Sponsors New Hampshire Sea Grant New York Sea Grant MIT Sea Grant Thanks to Our Exhibitors Formutech Inc. Aquaculture North America Booth #1 Booth #6 Jesse Fortune Jeremy Thain 135 Kent Street 4623 William Head Road PO Box 893 Victoria, BC Canada V9C 3Y7 Charlottetown, PEI Canada C1A7L9 250-474-3982 855-599-0099 [email protected] [email protected] Skretting USA/Bio-Oregon Future Nets & Supplies Booth #7 Booth #2 George Demos Clarence Blanchard 613 Durham Bridge Road 48 Armstrong Loop Road Newport, ME 04953 Pennfield, NB Canada E5H1007 207-951-1622 506-755-6728 [email protected] [email protected] Fish VetGroup Aquabotix Technology, Corp. Booth #8 Booth #3 Jason Collins Dawn Doraz 350 Commercial Street 21 Father DeValles Blvd. Portland, ME 04101 Suite 106 207-699-5901 Fall River, MA 02723 [email protected] 508-676-1000 [email protected] Reed Mariculture Inc. Booth #9 Hoopers Island Oyster Aquaculture Eric Henry Booth #4 900 E. Hamilton Avenue Chris Wyer Suite 100 2500 Old House Point Road Campbell, CA 95008 Fishing Creek, MD 21634 408-426-5456 703-628-0071 [email protected] [email protected] Brooks Trap Pentair Aquatic Eco Systems Inc. Booth #10 Booth #5 Garth Hersey Eric Moore 211 Beechwood Street 2395 Apopka blvd. Thomaston, ME 4861 Apopka, FL 32703 207-354-8763 978-578-2740 [email protected] [email protected] Thanks to Our Exhibitors! Helix Mooring Systems Ketchum Supply Traps Booth #11 Booth #16 & 17 Peter Morrison Bob Ketchem 27 Farwell Avenue 111 Myrtle Street Cumberland, ME 04021 New Bedford, MA 02740 207-489-9345 508-997-4787 [email protected] [email protected] Center For Cooperative Aquaculture Pro Act Bio Tech Research Booth #18 Booth #12 Bill Campion Steve Eddy 64 Church Street 33 Salmon Farm Road Warren , RI 02885 Franklin, ME 04634 401-486-2007 207-422-9096 [email protected] [email protected] US Aquaculture Society Maine Aquaculture Association Booth #19 Booth #13 Gef Flimlin Rhonda Cook 1623 Whitesfield Road PO Box 148 Toms River, NJ 8755 Hallowell, ME 04347 732-349-1152 207-622-0136 [email protected] [email protected] Seafood Health Facts Maine Aquaculture Innovation Center Booth #20 Booth #14 John Ewart Chris Davis 700 Pilottown Rd 193 Clarks Cove Road Lewes, DE 19958 Walpole, ME 04573 302-645-4060 207-832-1075 [email protected] [email protected] RWU Diagnostics Lab University of Maine Booth #21 Booth #15 Roxanna Smolowitz Anne Langston One Old Ferry Road 5784 York Complex Roger Williams University Orono, ME 04469-5784 Bristol, RI 02809 207-581-4397 401-253-1040 [email protected] [email protected] Thanks to Our Exhibitors! Global Aquaculture Alliance Ltd. New England Marine & Industrial Inc. Booth #22 Booth #27 Steve Hedlund Michael Richardson 2 International Drive, Suite 105 200 Spaulding Turnpike Portsmouth, NH 03801 Portsmouth, NH 03801 603-317-5000 603-436-2836 [email protected] [email protected] East Coast Shellfish Growers Association NOAA Technology Partnerships Office Booth #23 Table #1 Bob Rheault Derek Parks 1623 Whitesville Road 1305 East West Highway Toms River, NJ 08755 SSMC4, Room 7602 732-349-1152 Silver Spring, MD 20910 [email protected] 301-628-1010 [email protected] Rhode Farm Service Agency Booth #24 USDA, NASS Sheryl Michener Table #2 60 Quaker Lane Suite 49 Sherry Deane Warwick, RI 02886 53 Pleasant Street 401-828-3120 opt.2 Room 3450 [email protected] Concord, NH 03301 603-224-9639 USDA/NRCS [email protected] Booth #25 Walter Marshall USDA Rural Development 60 Quaker Lane, Suite 40 Table #3 Warwick, RI 02886 Tom McGarr 401-828-1300 60 Quaker Lane, Suite 44 [email protected] Warwick, RI 02886 401-826-0842 Bouctouche Bay Industries [email protected] Booth #26 Rheal Savoie PO Box 216 Bouctouche, New Brunswick, Canada E4S 2J2 506-743-5455 [email protected] Thanks to Our Exhibitors! Program for Wednesday &Thursday Morning NACE/MAS Aquaculture Conference Schedule Wednesday, January 11 Recirculating Aquaculture Systems Workshop (Kent Room) 8:00 AM - 5:00 PM Field Trips leave at vaious times (meet in the hotel lobby) 4:00 PM Registration opens in the Hotel Lobby 7:00 PM Opening Reception in the Narragansett Ballroom (trade show opens) Thursday, January 12 7:00 AM Registration in Hotel Lobby Plenary Session in the Narragansett Ballroom 8:30 AM Rapid fire industry updates of issues facing the northeastern states 10:00 AM Break & Trade Show opens in the Narraganset Ballroom Bristol/Kent Newport/Washington Providence II/III Providence I/IV South County (classroom) Farmer to Farmer: What Shellfish Genetics and Social Aspects of Public Health General Aquaculture Works and Doesn’t When it Breeding Forum Aquaculture Comes to Biofouling Control Chairs: Tessa Chairs: Paul Rawson and Marta Getchis, Sandra Shumway, Alex Chair: Paul Anderson Chair: Mark Dixon Chair: Teresa R. Johnson Gomez-Chiarri Walsh, Stephan Bullard Assessing Opportunities for Aquaculture in Shellfish Growing Areas Adjacent to Wastewater Enhancing a long-standing applied Understanding social carrying Treatment Plant Outfalls: shellfish farming
Recommended publications
  • Aquaculture and Marketing of the Florida Bay Scallop in Crystal River, Florida
    Aquaculture and marketing of the Florida Bay Scallop in Crystal River, Florida Item Type monograph Authors Blake, Norman J.; Adams, Charles; Degner, Robert; Sweat, Don; Moss, Susan D.; Sturmer, Leslie Publisher Florida Sea Grant College Program Download date 10/10/2021 07:29:03 Link to Item http://hdl.handle.net/1834/20351 FLORIDA SEA GRANT COLLEGE PROGRAM FLSGP-T-00-002 C2 R/LRcAc20 Aquaculture and Marketing of the Florida Bay Scallop in Crystal River, Florida by Norman J. Blake, Charles Adams, Robert Degner, and Don Sweat with special reports on Marketing Analysis by Susan D. Moss, Robert Degner, and Charles Adams and Economic Analysis by Charles Adams and Leslie Sturmer TP-106 October 2000 l_ UNIVERSITY OF ~.·JFLORID·A Sm~ "..:',..!.!!!.;/ ~ EXTENSION Florida Institute of Food and Agricultural Sciences This technical paper was supported by the National Sea Grant College Program of the U.S. Department of Commerce's National Oceanicand Atmosheric Administration under NOAA Grant # NA 76RG-0120. The views expressed herein do not necessarily reflect the views of any of these organizations. Aquaculture and Marketing ofthe ~lorida Bay Scallop in Crystal River, Florida By Norman 1. Blake, Department ofMarine Sciences, University ofSouth Florida, St. Petersburg Charles Adams, Food & Resource Economics, University ofFlorida, Gainesville Robert Degner, Florida Agricultural Market Research Center, University ofFlorida, Gainesville Don Sweat Florida Sea Grant Marine Agent University of Florida St. Petersburg Submitted to·Florida Sea Grant Final
    [Show full text]
  • Overcoming Barriers in the Scallop Aquaculture Industry a First Nations Perspective Spring 2013
    Fall 08 0 OVERCOMING BARRIERS IN THE SCALLOP AQUACULTURE INDUSTRY A FIRST NATIONS PERSPECTIVE SPRING 2013 Photo Credit: Jeff Svanhill JEFF SVANHILL ISIS, Sauder School of Business, University of British Columbia Published in partnership with the Nanwakolas Council ISIS | Overcoming Barriers in the Scallop Aquaculture Industry | Jeff Svanhill | 1 TABLE OF CONTENTS ACKNOWLEDGEMENTS 3 EXECUTIVE SUMMARY 4 INTRODUCTION 5 Layout of this Report 5 1.0 WHY SCALLOPS? 6 2.0 COLLABORATION 8 2.1 Collaboration 8 2.1.1 Why Collaborate? 8 2.1.2 Notes on Collaboration 9 3.0 FUNDING OPTIONS 10 3.1 Funding and Financing options 10 3.1.1 Funding 10 3.1.2 Financing 11 4.0 SCALLOP SEED SUPPLY OPTIONS 12 4.1 Scallop Seed Procurement Overview 12 4.1.1 Domestic Procurement 12 4.1.2 International Procurement 13 4.2 Local Supply Options 14 4.2.1 Island Scallops 14 4.2.2 Wenlian Aquaculture Company 15 4.3 Future Supply Options 15 4.3.1 Coastal Shellfish Corporation 15 ISIS | Overcoming Barriers in the Scallop Aquaculture Industry | Jeff Svanhill | 2 LIST OF FIGURES FIGURE 1 – MAJOR SHELLFISH SPECIES HARVESTED IN BRITISH COLUMBIA (2011) 6 FIGURE 2 – CHANGE IN ATMOSPHERIC CO2, SEAWATER PCO2 AND SEAWATER PH OVER TIME IN THE NORTH PACIFIC 7 FIGURE 3 – FUNDING FOR SKILLS DEVELOPMENT 10 FIGURE 4 – FUNDING FOR BUSINESS PLANNING 10 FIGURE 9 – VANCITY FINANCING PROGRAMS 11 FIGURE 10 – LOCATION OF SCALLOP AQUACULTURE INDUSTRY IN CHINA 13 ISIS | Overcoming Barriers in the Scallop Aquaculture Industry | Jeff Svanhill | 3 ACKNOWLEDGEMENTS This report was prepared by Jeff Svanhill at the ISIS Research Centre, Sauder School of Business, University of British Columbia.
    [Show full text]
  • Reproduction and Larval Development of the New Zealand Scallop, Pecten Novaezelandiae
    Reproduction and larval development of the New Zealand scallop, Pecten novaezelandiae. Neil E. de Jong A thesis submitted to Auckland University of Technology in partial fulfilment of the requirements for the degree of Master of Science (MSc) 2013 School of Applied Science Table of Contents TABLE OF CONTENTS ...................................................................................... I TABLE OF FIGURES ....................................................................................... IV TABLE OF TABLES ......................................................................................... VI ATTESTATION OF AUTHORSHIP ................................................................. VII ACKNOWLEDGMENTS ................................................................................. VIII ABSTRACT ....................................................................................................... X 1 CHAPTER ONE: INTRODUCTION AND LITERATURE REVIEW .............. 1 1.1 Scallop Biology and Ecology ........................................................................................ 2 1.1.1 Diet ............................................................................................................................... 4 1.2 Fisheries and Aquaculture ............................................................................................ 5 1.2.1 Scallop Enhancement .................................................................................................. 8 1.2.2 Hatcheries .................................................................................................................
    [Show full text]
  • Marine Cage Culture and the Environment: Effects on Water Quality and Primary Production
    Vol. 6: 151–174, 2015 AQUACULTURE ENVIRONMENT INTERACTIONS Published online February 4 doi: 10.3354/aei00122 Aquacult Environ Interact OPENPEN ACCESSCCESS REVIEW Marine cage culture and the environment: effects on water quality and primary production Carol Price1,*, Kenneth D. Black2, Barry T. Hargrave3, James A. Morris Jr.1 1Center for Coastal Fisheries and Habitat Research, National Centers for Coastal Ocean Science, National Ocean Service, NOAA, 101 Pivers Island Rd., Beaufort, North Carolina 28516, USA 2SAMS, Scottish Marine Institute, Oban, Argyll, PA37 1QA, UK 3561 Balmy Beach Road, Owen Sound, Ontario N4K 5N4, Canada ABSTRACT: Increasing human population and reliance on aquaculture for seafood will lead to expansion of the industry in the open ocean. To guide environmentally sustainable expansion, coastal stakeholders require tools to evaluate the risks that marine aquaculture poses and to craft science-based policies and practices which safeguard marine ecosystems. We summarized cur- rent knowledge regarding dissolved nutrient loading from marine fish farms around the world, direct impacts on water quality and secondary impacts on primary production, including forma- tion of harmful algal blooms. We found that modern operating conditions have minimized impacts of individual fish farms on marine water quality. Effects on dissolved oxygen and turbidity are largely eliminated through better management. Nutrient enrichment of the near-field water col- umn is not detectable beyond 100 m of a farm when formulated feeds are used, and feed waste is minimized. We highlight the role of siting fish farms in deep waters with sufficient current to dis- perse nutrients and prevent water quality impacts. We extensively discuss the potential for advances in integrated multi-trophic aquaculture (IMTA) to assimilate waste nutrients.
    [Show full text]
  • Aquaculture Notes
    AKU-L-87-002 C2 aquaculture notes WHERE TO GET MORE INFORMATION ON SCALLOP AQUACULTURE Curt Kerns Aquaculture Specialist Marine Advisory Program University of Alaska Juneau, AK 99801 University of Alaska AlaskaSea Grant College Program January 1987 Aquaculture Note ¹10 Alaska Sea Grant College Program 590 University Avenue, Suite 102 Fairbanks, AK 99709-1046 WHERE TO GET NORE INFORMATION ON SCALLOP AQUACULTURE Curt Kerns Aquaculture Specialist, Marine Advisory Program University of Alaska Juneau, AK 99801 University of Alaska Alaska Sea Grant January 1987 Aquaculture Note f10 ACKNOWLEDGEMENTS This publication is the result of work sponsored by the Alaska Sea Grant College Program, which is cooperatively sponsored by the U.S. Department of Commerce, NOAA Office of Sea Grant and Extra-Mural Programs, under grant number NA86AA-D-SG041, project numbers A/71-01 and A/75-01; and by the University of Alaska with funds appropriated by the state. 11 TABLE OF CONTENTS ntroduction...............................................l Regulations................................................l Fish Transport Permit.............. ~ ~. ~ .,............ ~ 1 Paralytic Shellfish Poison... ~ ......... ~ ~.............1 Research Assistance...... ~ ........... ~ .....................l Interlibrary loan.....................................l Computer Searches' ........ ~ ....................... ~ ...l Organizations... ~ ............ ~ ........................2 P eriodicals................................................3 General References.........................................4
    [Show full text]
  • Understanding the Interaction of Extractive and Fed Aquaculture
    14InteractionM.V. Rawson of Extractiveet al. and Fed Aquaculture Understanding the 14 Interaction of Extractive and Fed Aquaculture Using Ecosystem Modelling Mac V. Rawson, Jr, 1 Changsheng Chen,2 Rubao Ji,2 Mingyuan Zhu,3 Daoru Wang,4 Lu Wang,5 Charles Yarish,6 James B. Sullivan,2 Thierry Chopin7 and Raquel Carmona6 1Director, Georgia Sea Grant College Program, The University of Georgia, 220 Marine Sciences Building, Athens, GA 30602–3636, USA; 2Department of Marine Sciences, The University of Georgia, 220 Marine Sciences Building, Athens, GA 30602–3636, USA; 3The First Institute of Oceanography, State Oceanic Administration, PO Box 98, Qingdao 266003, People’s Republic of China; 4Hainan Marine Development, Planning and Design Institute, 10th Yiyuan Building No. 69, Haifu Rd, Haikou, Hainan 570203, People’s Republic of China; 5Marine and Fishery Department of Hainan Province, Haikou, Hainan, People’s Republic of China; 6University of Connecticut, Department of Ecology and Evolutionary Biology, 1 University Place, Stamford, CT 06901–2315, USA; 7University of New Brunswick, Centre for Coastal Studies and Aquaculture, and Centre for Environmental and Molecular Algal Research, PO Box 5050, Saint John, New Brunswick, E2L 475, Canada Abstract One of the most difficult tasks resource managers face is understanding the carrying capacity of coastal waters for aquaculture. Aquaculture, like many other human activi- ties, can threaten coastal waters. Understanding eutrophication and the interaction of two different types of aquaculture is very important to the safe and effective management of coastal aquaculture. The first type of aquaculture, producing shrimp CAB International 2002. Responsible Marine Aquaculture (eds R.R. Stickney and J.P.
    [Show full text]
  • Aquaculture Strategy for Jersey
    Aquafish Solutions Limited Aquaculture and Fisheries Research, Consultancy & Training DEVELOPMENT OF AN AQUACULTURE STRATEGY FOR JERSEY VERSION 1.0 For: Fisheries and Marine Resources, Environment Division, Planning and Environment Department Aquafish Solutions Ltd. Jersey Aquaculture Strategy _____________________________________________________________________________________________________ DEVELOPMENT OF AN AQUACULTURE STRATEGY FOR JERSEY FOR: FISHERIES AND MARINE RESOURCES, ENVIRONMENT DIVISION, PLANNING AND ENVIRONMENT DEPARTMENT, STATES OF JERSEY VERSION: 1.0-FD-B AUTHORS: MARTIN SYVRET 1 AND ANDREW FITZGERALD 2 1. Aquafish Solutions Limited, 62 Harrington Lane, Exeter, Devon EX4 8NS E-mail: [email protected] 2. 77 St. Maurice Road, Plympton, Plymouth, Devon PL7 1NU E-mail: [email protected] DECEMBER 2010 AUTHORS NOTE This study has been undertaken on behalf of and is funded by the States of Jersey. This Strategy is intended as a guidance document to assist with the development of an agreed Strategy for all marine stakeholders and users in the Island of Jersey. The views and suggestions expressed in this report are those of the Authors and are not therefore necessarily representative of Fisheries and Marine Resources. All references to and descriptions of Strategy Options are included in order to stimulate dialogue between the marine stakeholders and users during further development work. The Strategy Options should not therefore be viewed, either explicitly or by implication, as a policy statement in this
    [Show full text]
  • Strategies for Successful Scallops Spat Collection on Artificial
    water Article Strategies for Successful Scallops Spat Collection on Artificial Collectors in the Taranto Gulf (Mediterranean Sea) Loredana Papa †, Ermelinda Prato *,† , Francesca Biandolino, Isabella Parlapiano and Giovanni Fanelli National Research Council, Water Research Institute (CNR-IRSA), Via Roma 3, 74123 Taranto, Italy; [email protected] (L.P.); [email protected] (F.B.); [email protected] (I.P.); [email protected] (G.F.) * Correspondence: [email protected] † These authors have equally contributed to this work. Abstract: The high variability in natural recruitment of Pectinidae is a common feature of many marine invertebrates with a pelagic larval stage, but may negatively affect aquaculture activities. Detailed information on settlement patterns and spat availability is required to reduce costs and labor. In this regard, we attempted to establish the precise immersion time and the deployment dates for spat collectors in the Taranto Gulf (Mediterranean Sea, Italy). The first experiment was carried out from June to October 2013, deploying collectors every 15 days and retrieving them after 4, 6, 8, and 10 weeks. Results from the first experiment allowed us to select 8 weeks as the best immersion time for spat collection. The second experiment was carried out from June 2013 to July 2014 when we deployed spat collectors every 15 days and recovered them after 8 weeks to detect the favorable Mimachlamys periods to place the collectors in water to obtain the highest scallop spat harvest rate. varia was the most abundant pectinid (greater than 90%), whose recruits were collected during most of the year studied, followed by Flexopecten glaber with the highest rates in July (87%) and Pecten Citation: Papa, L.; Prato, E.; Biandolino, F.; Parlapiano, I.; Fanelli, jacobaeus, which never exceeded 17% of collected spat.
    [Show full text]
  • Effects and Mitigations of Ocean Acidification on Wild and Aquaculture Scallop and Prawn Fisheries in Queensland, Australia
    Fisheries Research 161 (2015) 42–56 Contents lists available at ScienceDirect Fisheries Research j ournal homepage: www.elsevier.com/locate/fishres Review Effects and mitigations of ocean acidification on wild and aquaculture scallop and prawn fisheries in Queensland, Australia a,b,∗ c,d a,e f Russell G. Richards , Andrew T. Davidson , Jan-Olaf Meynecke , Kerrod Beattie , g h i Vanessa Hernaman , Tim Lynam , Ingrid E. van Putten a Griffith Centre for Coastal Management, Griffith University, Brisbane, Queensland 4111, Australia b Griffith Climate Change Response Program, Griffith University, Gold Coast, Queensland 4222, Australia c Australian Antarctic Division, 203 Channel Hwy, Kingston, Tasmania 7050, Australia d Antarctic Climate and Ecosystems Cooperative Research Centre, Private Bag 80, Hobart, Tasmania 7001, Australia e Australian Rivers Institute – Coast and Estuaries, Griffith University, Gold Coast Campus, Queensland 4222, Australia f Department of Agriculture, Fisheries and Forestry, Brisbane, Queensland, Australia g Queensland Climate Change Centre of Excellence, Queensland, Australia h Reflecting Society, Townsville, Queensland, Australia i CSIRO Wealth from Oceans National Research Flagship, CSIRO Marine and Atmospheric Research, GPO Box 1538, Hobart, Tasmania 7001, Australia a r a t i c l e i n f o b s t r a c t Article history: Ocean acidification (OA) is caused by increasing levels of atmospheric CO2 dissolving into the world’s Received 20 December 2013 oceans. These changes are predicted to have detrimental effects on commercial and aquaculture fisheries. Received in revised form 26 June 2014 Here we examine the implications of OA on the prawn and scallop fisheries in Queensland, Australia, Accepted 27 June 2014 and compare the adaptive capacity of wild and aquaculture fisheries to address and mitigate its effects.
    [Show full text]
  • Economic Opportunities for Aboriginal Aquaculture in Canada
    Economic Opportunities for Aboriginal Aquaculture in Canada Prepared for: Fisheries and Oceans Canada March 31, 2015 (revised) Economic Opportunities for Aboriginal Aquaculture in Canada March 31, 2015 Table of Contents Executive Summary ........................................................................................................................ 4 1. Introduction .............................................................................................................................. 7 1.1. Purpose and Scope.......................................................................................................... 7 1.2. Background .................................................................................................................... 7 2. Current Economic Opportunities in Aquaculture .................................................................... 9 2.1. Global Demand for Aquaculture .................................................................................... 9 2.2. Challenges and Opportunities for Aquaculture in Canada ........................................... 10 2.3. Characteristics of Aquaculture Production in Canada: Models and Techniques ........ 11 2.4. Established Species ...................................................................................................... 13 2.5. New/Alternative Species .............................................................................................. 15 2.6. Overview of Aquaculture Production Costs by Farm Model ......................................
    [Show full text]
  • Grow-Out Culture of the Bay Scallop Dale Leavitt, Roger Williams University, RI Amandine Surier and Rick Karney, Martha's Vineyard Shellfish Group, Inc., MA
    NRAC Publication No. 216-2010 University of Maryland, 2113 Animal Science Building College Park, Maryland 20742-2317 Telephone: 301-405-6085, FAX: 301-314-9412 E-mail: [email protected] Web: http://www.nrac.umd.edu Grow-out Culture of the Bay Scallop Dale Leavitt, Roger Williams University, RI Amandine Surier and Rick Karney, Martha's Vineyard Shellfish Group, Inc., MA The rapid growth rate, high market value, and scallop aquaculture yielded 300,000 metric tons of prod- declining wild stocks of the bay scallop Argopecten irra- uct in 1998, grown on 7,000 hectares of embayment. The dians easily explain private growers’ rising interest to Chinese bay scallop has since been readily available in culture the species to market size (Figure 1). U.S. markets at a much lower price than the wild domes- tic product (Figure 2). In the U.S., the first and only suc- cessful bay scallop culture enterprise is run by Taylor Seafood of Fairhaven, Massachusetts. The limited success of scallop aquaculture in the US has been attributed to high labor costs and winter mor- talities associated with the “grow-out” phase of the cul- ture cycle. Once the bay scallop has achieved a juvenile Figure 1. The highly-priced bay scallop, Argopecten irradians. Attempts at private aquaculture enterprises resulted in few success stories until 1983, when twenty-six scal- Figure 2. The Chinese cultured bay scallop is available in U.S. lops survived a shipment to China and were spawned markets. successfully. From this humble beginning, Chinese bay size of 5 to 10 mm within the nursery system, it needs to scallop growth may be countered by the need for be reared in the field to a size that is sufficient for mar- increased labor to control fouling.
    [Show full text]
  • Social Constraints and Solutions to Progressive Development of the Nation’S Offshore Aquaculture Industry - Final Technical Report
    Social Constraints and Solutions to Progressive Development of the Nation’s Offshore Aquaculture Industry - Final Technical Report - Prepared for The U.S. Department of Commerce National Oceanic and Atmospheric Administration Office of Oceanic and Atmospheric Research and The National Sea Grant College Program California Sea Grant By Impact Assessment, Inc. 2166 Avenida de la Playa, Suite F La Jolla, California 92037 January 2015 Authorship: Madge, L., J. Petterson, R. Scalf, and L. Stanley Cover Photo: Hawaiian Kampachi (credit: Bryce Groark; provided by: Blue Ocean Mariculture) Table of Contents i. Glossary of Species ............................................................................................................. iii ii. Glossary of Terms ............................................................................................................... iv iii. Glossary of Acronyms ......................................................................................................... v 1.0 Introduction ........................................................................................................................ 1 1.1 Understanding the Research Problem ............................................................................ 2 1.2 Overarching Research Goal and Underlying Rationale ................................................. 4 1.3 Pertinent Research Questions and Associated Research Methods ................................. 5 1.4 Organization of the Document ......................................................................................
    [Show full text]