Marine Cage Culture and the Environment: Effects on Water Quality and Primary Production
Vol. 6: 151–174, 2015 AQUACULTURE ENVIRONMENT INTERACTIONS Published online February 4 doi: 10.3354/aei00122 Aquacult Environ Interact OPENPEN ACCESSCCESS REVIEW Marine cage culture and the environment: effects on water quality and primary production Carol Price1,*, Kenneth D. Black2, Barry T. Hargrave3, James A. Morris Jr.1 1Center for Coastal Fisheries and Habitat Research, National Centers for Coastal Ocean Science, National Ocean Service, NOAA, 101 Pivers Island Rd., Beaufort, North Carolina 28516, USA 2SAMS, Scottish Marine Institute, Oban, Argyll, PA37 1QA, UK 3561 Balmy Beach Road, Owen Sound, Ontario N4K 5N4, Canada ABSTRACT: Increasing human population and reliance on aquaculture for seafood will lead to expansion of the industry in the open ocean. To guide environmentally sustainable expansion, coastal stakeholders require tools to evaluate the risks that marine aquaculture poses and to craft science-based policies and practices which safeguard marine ecosystems. We summarized cur- rent knowledge regarding dissolved nutrient loading from marine fish farms around the world, direct impacts on water quality and secondary impacts on primary production, including forma- tion of harmful algal blooms. We found that modern operating conditions have minimized impacts of individual fish farms on marine water quality. Effects on dissolved oxygen and turbidity are largely eliminated through better management. Nutrient enrichment of the near-field water col- umn is not detectable beyond 100 m of a farm when formulated feeds are used, and feed waste is minimized. We highlight the role of siting fish farms in deep waters with sufficient current to dis- perse nutrients and prevent water quality impacts. We extensively discuss the potential for advances in integrated multi-trophic aquaculture (IMTA) to assimilate waste nutrients.
[Show full text]