Download the NACE/MAS Program and Abstract Book Here
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Os Nomes Galegos Dos Moluscos
A Chave Os nomes galegos dos moluscos 2017 Citación recomendada / Recommended citation: A Chave (2017): Nomes galegos dos moluscos recomendados pola Chave. http://www.achave.gal/wp-content/uploads/achave_osnomesgalegosdos_moluscos.pdf 1 Notas introdutorias O que contén este documento Neste documento fornécense denominacións para as especies de moluscos galegos (e) ou europeos, e tamén para algunhas das especies exóticas máis coñecidas (xeralmente no ámbito divulgativo, por causa do seu interese científico ou económico, ou por seren moi comúns noutras áreas xeográficas). En total, achéganse nomes galegos para 534 especies de moluscos. A estrutura En primeiro lugar preséntase unha clasificación taxonómica que considera as clases, ordes, superfamilias e familias de moluscos. Aquí apúntase, de maneira xeral, os nomes dos moluscos que hai en cada familia. A seguir vén o corpo do documento, onde se indica, especie por especie, alén do nome científico, os nomes galegos e ingleses de cada molusco (nalgún caso, tamén, o nome xenérico para un grupo deles). Ao final inclúese unha listaxe de referencias bibliográficas que foron utilizadas para a elaboración do presente documento. Nalgunhas desas referencias recolléronse ou propuxéronse nomes galegos para os moluscos, quer xenéricos quer específicos. Outras referencias achegan nomes para os moluscos noutras linguas, que tamén foron tidos en conta. Alén diso, inclúense algunhas fontes básicas a respecto da metodoloxía e dos criterios terminolóxicos empregados. 2 Tratamento terminolóxico De modo moi resumido, traballouse nas seguintes liñas e cos seguintes criterios: En primeiro lugar, aprofundouse no acervo lingüístico galego. A respecto dos nomes dos moluscos, a lingua galega é riquísima e dispomos dunha chea de nomes, tanto específicos (que designan un único animal) como xenéricos (que designan varios animais parecidos). -
Aquaculture and Marketing of the Florida Bay Scallop in Crystal River, Florida
Aquaculture and marketing of the Florida Bay Scallop in Crystal River, Florida Item Type monograph Authors Blake, Norman J.; Adams, Charles; Degner, Robert; Sweat, Don; Moss, Susan D.; Sturmer, Leslie Publisher Florida Sea Grant College Program Download date 10/10/2021 07:29:03 Link to Item http://hdl.handle.net/1834/20351 FLORIDA SEA GRANT COLLEGE PROGRAM FLSGP-T-00-002 C2 R/LRcAc20 Aquaculture and Marketing of the Florida Bay Scallop in Crystal River, Florida by Norman J. Blake, Charles Adams, Robert Degner, and Don Sweat with special reports on Marketing Analysis by Susan D. Moss, Robert Degner, and Charles Adams and Economic Analysis by Charles Adams and Leslie Sturmer TP-106 October 2000 l_ UNIVERSITY OF ~.·JFLORID·A Sm~ "..:',..!.!!!.;/ ~ EXTENSION Florida Institute of Food and Agricultural Sciences This technical paper was supported by the National Sea Grant College Program of the U.S. Department of Commerce's National Oceanicand Atmosheric Administration under NOAA Grant # NA 76RG-0120. The views expressed herein do not necessarily reflect the views of any of these organizations. Aquaculture and Marketing ofthe ~lorida Bay Scallop in Crystal River, Florida By Norman 1. Blake, Department ofMarine Sciences, University ofSouth Florida, St. Petersburg Charles Adams, Food & Resource Economics, University ofFlorida, Gainesville Robert Degner, Florida Agricultural Market Research Center, University ofFlorida, Gainesville Don Sweat Florida Sea Grant Marine Agent University of Florida St. Petersburg Submitted to·Florida Sea Grant Final -
Overcoming Barriers in the Scallop Aquaculture Industry a First Nations Perspective Spring 2013
Fall 08 0 OVERCOMING BARRIERS IN THE SCALLOP AQUACULTURE INDUSTRY A FIRST NATIONS PERSPECTIVE SPRING 2013 Photo Credit: Jeff Svanhill JEFF SVANHILL ISIS, Sauder School of Business, University of British Columbia Published in partnership with the Nanwakolas Council ISIS | Overcoming Barriers in the Scallop Aquaculture Industry | Jeff Svanhill | 1 TABLE OF CONTENTS ACKNOWLEDGEMENTS 3 EXECUTIVE SUMMARY 4 INTRODUCTION 5 Layout of this Report 5 1.0 WHY SCALLOPS? 6 2.0 COLLABORATION 8 2.1 Collaboration 8 2.1.1 Why Collaborate? 8 2.1.2 Notes on Collaboration 9 3.0 FUNDING OPTIONS 10 3.1 Funding and Financing options 10 3.1.1 Funding 10 3.1.2 Financing 11 4.0 SCALLOP SEED SUPPLY OPTIONS 12 4.1 Scallop Seed Procurement Overview 12 4.1.1 Domestic Procurement 12 4.1.2 International Procurement 13 4.2 Local Supply Options 14 4.2.1 Island Scallops 14 4.2.2 Wenlian Aquaculture Company 15 4.3 Future Supply Options 15 4.3.1 Coastal Shellfish Corporation 15 ISIS | Overcoming Barriers in the Scallop Aquaculture Industry | Jeff Svanhill | 2 LIST OF FIGURES FIGURE 1 – MAJOR SHELLFISH SPECIES HARVESTED IN BRITISH COLUMBIA (2011) 6 FIGURE 2 – CHANGE IN ATMOSPHERIC CO2, SEAWATER PCO2 AND SEAWATER PH OVER TIME IN THE NORTH PACIFIC 7 FIGURE 3 – FUNDING FOR SKILLS DEVELOPMENT 10 FIGURE 4 – FUNDING FOR BUSINESS PLANNING 10 FIGURE 9 – VANCITY FINANCING PROGRAMS 11 FIGURE 10 – LOCATION OF SCALLOP AQUACULTURE INDUSTRY IN CHINA 13 ISIS | Overcoming Barriers in the Scallop Aquaculture Industry | Jeff Svanhill | 3 ACKNOWLEDGEMENTS This report was prepared by Jeff Svanhill at the ISIS Research Centre, Sauder School of Business, University of British Columbia. -
Lesson (PDF 76
Common Life in the Marine Biome Instructions: Scientists use dichotomous keys to organize and identify specimens. Dichotomous means dividing into two parts – a dichotomous key provides two choices in each step. For example: to divide a package of multi-coloured pens into two groups, you might decide to divide the pens by “has blue ink” and “does not have blue ink”. Work together at each station and use the available tools and key information to identify the different specimens. Record your answers on your results page. Station 1 – Echinoderms 1. a. Specimen has arms…………………………………………………………………….………..go to 2 b. Specimen does not have arms………………………………………………..………….go to 4 2. a. Specimen usually has 5 arms………………………..……………………………..…...go to 3 b. Specimen usually has more than 5 arms (when intact)………………………………………………………………………………………Common sun star 3. a. Specimen has a central, armoured disc with long, thin arms…………………………………………………………………………………………...Daisy brittle star b. Specimen does not armoured disc, and has large, thicker arms………………………………………………………………………………………………………….Sea star There are different species of sea star in Nova Scotian waters. Often, the easiest identification relates to colour. For example, the northern sea star and Forbes’ sea star can both have colorful bodies (purple, tan, red, etc.), however the northern sea star has a pale yellow madreporite and the Forbes’ sea star has a bright orange madreporite. 4. a. Specimen is round and flat with short, fuzz-like spines (live) or smooth without spines (dead)…..………………………………………………………………....Sand dollar b. Specimen has a dome shape with long, thicker spines (live) or lacks spines (dead).…………………………………………………………………………..Green sea urchin Common Life in the Marine Biome Page 2 of 4 Station 2 – Gastropods 1. -
Cook's Basics Cook's Basics Cook's Basics
cook'scook's basics basics Helen of Troy bathed in it, biblical figures drank it, Hippocrates prescribed it as medicine, soldiers cleaned their wounds with it during World War I, and today, it is one of the most healthful and widely used condiments. What is this miraculous substance you ask? It's simply vinegar, the product of the fermentation of acetic acid and water. Its beginnings have been traced back 7,000 years ago to the Sumerian civilization, where it was utilized for it cleaning. ALL Today, vinegar is used for innumerable ABOUT BIVALVES To give you the lowdown on bivalves, we shuck these hard-shelled aquatic creatures Words Marisse Gabrielle reyes styling yOyO ZHOU photographs CHarles Chua rECIPE MUriel OpianO Amable RecipE imagE 123rF Brain-less and mostly eye-less and sedentary, these strange creatures are actually living relics of ancient aquatic life. Although their roots trace back to over 500 million years ago, there are currently over 9,000 species of bivalves, with many of them edible. These filter feeders have evolved to include a hard and heavy hinged shell to protect them from predators and other elements. This armor makes them slow-moving and, unfortunately for them, easy to catch. In the case of venus clams, la-la, and cockles, bivalves can be cheap and plentiful. But in the case of oysters, scallops, and abalone, bivalves can be among the most luxurious and expensive foods. These interesting animals can be found in virtually every body of water (such as salty oceans, brackish lakes, and freshwater canals); can be farmed or wild caught; can be eaten raw or cooked; and can be found all over the world. -
An Invitation to Monitor Georgia's Coastal Wetlands
An Invitation to Monitor Georgia’s Coastal Wetlands www.shellfish.uga.edu By Mary Sweeney-Reeves, Dr. Alan Power, & Ellie Covington First Printing 2003, Second Printing 2006, Copyright University of Georgia “This book was prepared by Mary Sweeney-Reeves, Dr. Alan Power, and Ellie Covington under an award from the Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration. The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of OCRM and NOAA.” 2 Acknowledgements Funding for the development of the Coastal Georgia Adopt-A-Wetland Program was provided by a NOAA Coastal Incentive Grant, awarded under the Georgia Department of Natural Resources Coastal Zone Management Program (UGA Grant # 27 31 RE 337130). The Coastal Georgia Adopt-A-Wetland Program owes much of its success to the support, experience, and contributions of the following individuals: Dr. Randal Walker, Marie Scoggins, Dodie Thompson, Edith Schmidt, John Crawford, Dr. Mare Timmons, Marcy Mitchell, Pete Schlein, Sue Finkle, Jenny Makosky, Natasha Wampler, Molly Russell, Rebecca Green, and Jeanette Henderson (University of Georgia Marine Extension Service); Courtney Power (Chatham County Savannah Metropolitan Planning Commission); Dr. Joe Richardson (Savannah State University); Dr. Chandra Franklin (Savannah State University); Dr. Dionne Hoskins (NOAA); Dr. Charles Belin (Armstrong Atlantic University); Dr. Merryl Alber (University of Georgia); (Dr. Mac Rawson (Georgia Sea Grant College Program); Harold Harbert, Kim Morris-Zarneke, and Michele Droszcz (Georgia Adopt-A-Stream); Dorset Hurley and Aimee Gaddis (Sapelo Island National Estuarine Research Reserve); Dr. Charra Sweeney-Reeves (All About Pets); Captain Judy Helmey (Miss Judy Charters); Jan Mackinnon and Jill Huntington (Georgia Department of Natural Resources). -
Reproduction and Larval Development of the New Zealand Scallop, Pecten Novaezelandiae
Reproduction and larval development of the New Zealand scallop, Pecten novaezelandiae. Neil E. de Jong A thesis submitted to Auckland University of Technology in partial fulfilment of the requirements for the degree of Master of Science (MSc) 2013 School of Applied Science Table of Contents TABLE OF CONTENTS ...................................................................................... I TABLE OF FIGURES ....................................................................................... IV TABLE OF TABLES ......................................................................................... VI ATTESTATION OF AUTHORSHIP ................................................................. VII ACKNOWLEDGMENTS ................................................................................. VIII ABSTRACT ....................................................................................................... X 1 CHAPTER ONE: INTRODUCTION AND LITERATURE REVIEW .............. 1 1.1 Scallop Biology and Ecology ........................................................................................ 2 1.1.1 Diet ............................................................................................................................... 4 1.2 Fisheries and Aquaculture ............................................................................................ 5 1.2.1 Scallop Enhancement .................................................................................................. 8 1.2.2 Hatcheries ................................................................................................................. -
Marine Cage Culture and the Environment: Effects on Water Quality and Primary Production
Vol. 6: 151–174, 2015 AQUACULTURE ENVIRONMENT INTERACTIONS Published online February 4 doi: 10.3354/aei00122 Aquacult Environ Interact OPENPEN ACCESSCCESS REVIEW Marine cage culture and the environment: effects on water quality and primary production Carol Price1,*, Kenneth D. Black2, Barry T. Hargrave3, James A. Morris Jr.1 1Center for Coastal Fisheries and Habitat Research, National Centers for Coastal Ocean Science, National Ocean Service, NOAA, 101 Pivers Island Rd., Beaufort, North Carolina 28516, USA 2SAMS, Scottish Marine Institute, Oban, Argyll, PA37 1QA, UK 3561 Balmy Beach Road, Owen Sound, Ontario N4K 5N4, Canada ABSTRACT: Increasing human population and reliance on aquaculture for seafood will lead to expansion of the industry in the open ocean. To guide environmentally sustainable expansion, coastal stakeholders require tools to evaluate the risks that marine aquaculture poses and to craft science-based policies and practices which safeguard marine ecosystems. We summarized cur- rent knowledge regarding dissolved nutrient loading from marine fish farms around the world, direct impacts on water quality and secondary impacts on primary production, including forma- tion of harmful algal blooms. We found that modern operating conditions have minimized impacts of individual fish farms on marine water quality. Effects on dissolved oxygen and turbidity are largely eliminated through better management. Nutrient enrichment of the near-field water col- umn is not detectable beyond 100 m of a farm when formulated feeds are used, and feed waste is minimized. We highlight the role of siting fish farms in deep waters with sufficient current to dis- perse nutrients and prevent water quality impacts. We extensively discuss the potential for advances in integrated multi-trophic aquaculture (IMTA) to assimilate waste nutrients. -
Invertebrate ID Guide
11/13/13 1 This book is a compilation of identification resources for invertebrates found in stomach samples. By no means is it a complete list of all possible prey types. It is simply what has been found in past ChesMMAP and NEAMAP diet studies. A copy of this document is stored in both the ChesMMAP and NEAMAP lab network drives in a folder called ID Guides, along with other useful identification keys, articles, documents, and photos. If you want to see a larger version of any of the images in this document you can simply open the file and zoom in on the picture, or you can open the original file for the photo by navigating to the appropriate subfolder within the Fisheries Gut Lab folder. Other useful links for identification: Isopods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-33/htm/doc.html http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-48/htm/doc.html Polychaetes http://web.vims.edu/bio/benthic/polychaete.html http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-34/htm/doc.html Cephalopods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-44/htm/doc.html Amphipods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-67/htm/doc.html Molluscs http://www.oceanica.cofc.edu/shellguide/ http://www.jaxshells.org/slife4.htm Bivalves http://www.jaxshells.org/atlanticb.htm Gastropods http://www.jaxshells.org/atlantic.htm Crustaceans http://www.jaxshells.org/slifex26.htm Echinoderms http://www.jaxshells.org/eich26.htm 2 PROTOZOA (FORAMINIFERA) ................................................................................................................................ 4 PORIFERA (SPONGES) ............................................................................................................................................... 4 CNIDARIA (JELLYFISHES, HYDROIDS, SEA ANEMONES) ............................................................................... 4 CTENOPHORA (COMB JELLIES)............................................................................................................................ -
Aquaculture Notes
AKU-L-87-002 C2 aquaculture notes WHERE TO GET MORE INFORMATION ON SCALLOP AQUACULTURE Curt Kerns Aquaculture Specialist Marine Advisory Program University of Alaska Juneau, AK 99801 University of Alaska AlaskaSea Grant College Program January 1987 Aquaculture Note ¹10 Alaska Sea Grant College Program 590 University Avenue, Suite 102 Fairbanks, AK 99709-1046 WHERE TO GET NORE INFORMATION ON SCALLOP AQUACULTURE Curt Kerns Aquaculture Specialist, Marine Advisory Program University of Alaska Juneau, AK 99801 University of Alaska Alaska Sea Grant January 1987 Aquaculture Note f10 ACKNOWLEDGEMENTS This publication is the result of work sponsored by the Alaska Sea Grant College Program, which is cooperatively sponsored by the U.S. Department of Commerce, NOAA Office of Sea Grant and Extra-Mural Programs, under grant number NA86AA-D-SG041, project numbers A/71-01 and A/75-01; and by the University of Alaska with funds appropriated by the state. 11 TABLE OF CONTENTS ntroduction...............................................l Regulations................................................l Fish Transport Permit.............. ~ ~. ~ .,............ ~ 1 Paralytic Shellfish Poison... ~ ......... ~ ~.............1 Research Assistance...... ~ ........... ~ .....................l Interlibrary loan.....................................l Computer Searches' ........ ~ ....................... ~ ...l Organizations... ~ ............ ~ ........................2 P eriodicals................................................3 General References.........................................4 -
The Molluscan Fisheries of Germany* P
The Molluscan Fisheries of Germany* p MATIHIASN. L SEAMAN FisheriesBiology Department Institute for MarineResearch 24105 Kiel, Germany MAARTENRUTH FisheriesAgency State of Schleswig-Holstein 24148 Kiel, Germany ABSTRACT The German molluscan fishery has always concentrated on the North Sea. Mollusks occur in the Baltic Sea, but are not as marketable. In prehistory and the Middle Ages, coastal inhabitants gathered mussels, Mytilus edulis, cockles, Cerastoderma edule, and flat oysters, Ostrea edulis, for food and also used mussels as agricultural fertilizer. An organized oyster fisherydeveloped in the 16th century and had considerable economic importance for 300 years. Oysters were dredged with sailing vessels near the coast, as well as far offshore. Catches peaked in the second half of the l 9th century at 3-5 million oysters per year. They declined dramatically in the following decades due to permanent recruitment failures, and the flat oyster finally disappeared from the German coast in the l 950's. An organized fishery for freshwater pearl mussels, Margaritifera margaritifera, also developed at the end of the Middle Ages, but mismanagement and environmental degradation since the late 19th century have brought this species to the brink of extinction as well. Other mollusks harvested on a smaller scale in the past have been softshell clams, Mya arenaria, and whelks, Buccinum undatum. The modern mussel fishery for human food began in 1929 with the introduction of novel dredging methods. Annual catches were in the order of a few thousand tons during the first half of this century and have attained 20,000-60,000 tons since the early l 980's; concomitantly, prices have increased five-fold in recent decades. -
Razor Clams to Historic Neighborhoods Make Jacksonville a Unique Conference Venue
2013 (3) President’s Message Missing George As this summer winds down, I hope you have had an en- There is no Audit-Budget-Finance Report in this issue of the joyable and productive time whether it be sampling clams Newsletter. That’s the tangible recognition that George Abbe out on the mud flats, fine-tuning that lab experiment, writing is no longer with us. It’s the intangibles that count and the up a manuscript, or simply enjoying some R&R out on the most difficult to capture. George was first and foremost my beach. Regardless, NSA staff and committee member volun- friend. Sometimes a big brother, other times a level-headed teers have been busy this summer and thoughtful colleague and source of sound advice on mat- planning the next annual meeting, ters NSA and not. improving the website, editing our Journal, and generally keeping George’s contributions the NSA moving forward. With to the NSA span 40 years this issue of the Newsletter, edito- and left the organization rial responsibilities have passed and its members much from Paul Rawson to LeRoy Cre- better off for it! For swell and Joth Davis. Thank you about 25 of those years, Paul for five years of hard work bringing the news of the George and I shared Association to our membership. Thanks are due to LeRoy much, not the least of and Joth for taking on this important role. With this change which was the NSA an- in Editors comes a new masthead for this newsletter and we nual meeting - sitting at hope you’ll like it.