Comparative Evolution: Latent Potentials for Anagenetic Advance (Adaptive Shifts/Constraints/Anagenesis) G

Total Page:16

File Type:pdf, Size:1020Kb

Comparative Evolution: Latent Potentials for Anagenetic Advance (Adaptive Shifts/Constraints/Anagenesis) G Proc. Natl. Acad. Sci. USA Vol. 85, pp. 5141-5145, July 1988 Evolution Comparative evolution: Latent potentials for anagenetic advance (adaptive shifts/constraints/anagenesis) G. LEDYARD STEBBINS* AND DANIEL L. HARTLtt *Department of Genetics, University of California, Davis, CA 95616; and tDepartment of Genetics, Washington University School of Medicine, Box 8031, 660 South Euclid Avenue, Saint Louis, MO 63110 Contributed by G. Ledyard Stebbins, April 4, 1988 ABSTRACT One of the principles that has emerged from genetic variation available for evolutionary changes (2), a experimental evolutionary studies of microorganisms is that major concern of modem evolutionists is explaining how the polymorphic alleles or new mutations can sometimes possess a vast amount of genetic variation that actually exists can be latent potential to respond to selection in different environ- maintained. Given the fact that in complex higher organisms ments, although the alleles may be functionally equivalent or most new mutations with visible effects on phenotype are disfavored under typical conditions. We suggest that such deleterious, many biologists, particularly Kimura (3), have responses to selection in microorganisms serve as experimental sought to solve the problem by proposing that much genetic models of evolutionary advances that occur over much longer variation is selectively neutral or nearly so, at least at the periods of time in higher organisms. We propose as a general molecular level. Amidst a background of what may be largely evolutionary principle that anagenic advances often come from neutral or nearly neutral genetic variation, adaptive evolution capitalizing on preexisting latent selection potentials in the nevertheless occurs. While much of natural selection at the presence of novel ecological opportunity. molecular level must involve minor improvements in fitness, major adaptive advances in the complexity oforganisms-for One of the research strategies that has been most useful in example, the origin of aerobic respiration; of the sexual generating progress in molecular biology is based on the cycle; of multicellularity; ofjaws, teeth, and limbs of verte- notion that simple model systems illustrate mechanisms and brates, etc.-must ultimately emanate from the molecular principles that are found to be generally applicable. This level through genes that provide new functions and that strategy has been particularly successful in the study of the regulate and integrate these functions. molecular genetics of bacteria and bacterial viruses. As the The challenge ofunderstanding morphological evolution at field of evolutionary genetics becomes increasingly molecu- the molecular level cannot be met straightaway with attempts lar, a similar strategy is also becoming productive in this area to analyze major shifts that occur in complex multicellular (1). Microbial organisms may prove to be useful as model organisms, because of the presently inadequate understand- systems in studies of population and evolutionary biology. ing of the relevant molecular principles of development. An In point of fact, a good deal of evolutionary work with alternative place to start is via analysis of adaptive reactions microbial organisms has already been carried out, and the in microorganisms, in which the relationship between mo- results are only just beginning to be integrated into evolu- lecular change and adaptation to the environment is often tionary thinking. The present paper attempts to add to this relatively direct. Microorganisms have additional practical synthesis by showing that certain evolutionary principles that advantages for this purpose. Populations of 1010 or greater have emerged from microbial experiments can be applied as can be studied in chemostats or Petri dishes in experiments paradigms to higher levels ofthe evolutionary hierarchy. The lasting only a few days or weeks, and progressive genetic following sections provide the background of the principles changes can be followed for hundreds of generations. The and examples of their application to complex evolving sys- success of such experiments in analyzing the genetic and tems, including both microevolution and macroevolution. molecular basis of adaptive shifts is well documented (4-7). Current evolutionary biology continues to debate whether Given the demonstration that adaptive shifts can be ana- major adaptive shifts and anagenetic advances in evolution lyzed in microorganisms, can the results be extrapolated to result from one or two macromutations that bring about the help explain the much more complex situation in multicellular changes relatively suddenly or from the slow accumulation of highly differentiated organisms? We believe that it can, for many small differences gradually acquired during millions of the following reasons: years. We believe that the classification of evolutionary (i) Chemostat experiments with unicellular lower eukary- advance based on the number of favorable mutations is arbi- otes, such as yeast, suggest that adaptations to different trary and artificial. Rather, the arguments that follow lead us to environments involve molecular mechanisms and principles believe that evolutionary advances result from occasions in similar to those observed in prokaryotes (8-10). which populations fortuitously exposed to various selection (ii) Comparisons among unicellular lower eukaryotes that pressures are coincidentally able to respond to them-no matter differ greatly in size and in methods of nutrition reveal a whether the genetic basis ofthe response resides in one or a few wealth of intermediate situations in which the origin of such lucky mutations or a larger number gradually accumulated. major advances as ingestion of food particles, filter feeding, gametic conjugation, etc., may be analyzed at the molecular Background level (see reviews in ref. 11). (iii) Major adaptive shifts in higher organisms consist of a During the past 25 years, knowledge ofthe nature and extent complex sequence of genetic and morphological alterations, ofgenetic variation has increased dramatically. While in 1960 the individual elements of which may be analogous to many geneticists were concerned with the seeming paucity of metabolic shifts in simpler organisms. For instance, trophic shifts in a vertebrate animal, such as from filter or suspension feeding to the ingestion of larger organisms, entail several The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact. tTo whom reprint requests should be addressed. 5141 Downloaded by guest on September 26, 2021 5142 Evolution: Stebbins and HartPProc. Natl. Acad. Sci. USA 85 (1988) biochemical events of breakdown and digestion that may be enzyme kinetics (whence the term), in which many reactions comparable to metabolic shifts in bacteria, plus alterations in exhibit a hyperbolic relationship between the activity of a external morphology. Because understanding any series of particular enzyme in a metabolic pathway and metabolic flux biological processes, including evolution, requires that re- through the pathway. At low activities, the flux increases ductional analyses precede final syntheses, reductional anal- almost linearly with enzyme activity, but at higher activities ysis of adaptive shifts may be made more precise by analogy the system becomes saturated and the relationship between with results of experiments on simpler organisms. flux and activity becomes almost flat. (iv) In many instances, the evolutionary consequences of Organizational constraints result from physical structures adaptive shifts lie not in their degree of complexity, but in the or the manner in which they are organized. For example, one ecologic or phylogenetic context in which they occur. For of the cardinal discoveries of molecular evolution is that example, the evolutionary progression from a flying bird that different structural domains of the same protein molecule nests on solid ground on an island to a swimming penguin that often evolve at different rates. Domains requiring precise hatches its eggs and raises its young on glacial ice was fully physical interactions with other molecules, such as the active as profound and complex as the evolution of a primitive and binding sites of enzymes, or that associate with ligands labyrinthodont amphibian from a rhipidistian fish. Yet, the such as heme, are often constrained so that their rate of penguin has never been and probably will never be the evolution is slower than that of other domains with less ancestor of an evolutionary lineage, because the sparse stringent requirements for interaction. niches of its antarctic marine habitat are already filled, while the labyrinthodont was in the fortunate position of pioneering Types of Constraints in a terrestrial habitat that offered a wealth of vacant niches to receive its evolving descendants. Similarly, the shift in Saturational constraints resulting from diminishing-return modern genera of flowering plants from insect to bird effects have been observed at many levels of biological pollination may seem trivial to nonbotanists, because the organization. The following sections outline examples rang- effects are relatively slight with reference to most floras. Yet, ing from the molecular level to that of the whole organism. from the genetic and morphological point of view, the various As noted, many biochemical pathways
Recommended publications
  • Introduction to Macroevolution
    Spring, 2012 Phylogenetics 200A Modes of Macroevolution Macroevolution is used to refer to any evolutionary change at or above the level of species. Darwin illustrated the combined action of descent with modification, the principle of divergence, and extinction in the only figure in On the Origin of Species (Fig. 1), showing the link between microevolution and macroevolution. The New Synthesis sought to distance itself from the ‘origin of species’ (= macroevolution) and concentrated instead on microevolution - variation within populations and reproductive isolation. “Darwin’s principle of divergence derives from what he thought to be one of the most potent components of the struggle for existence. He argued that the strongest interactions would be among individuals within a population or among closely related populations or species, because these organisms have the most similar requirements. Darwin’s principle of divergence predicts that the individuals, populations or species most likely to succeed in the struggle are those that differ most from their close relatives in the way they achieve their needs for survival and reproduction.” (Reznick & Ricklefs 2009. Nature 457) Macroevolution also fell into disfavor with its invocation for hopeful monsters in development as well as its implication in some Neo-Lamarckian theories. Interest in macroevolution revived by several paleontologists including Steven Stanley, Stephen Jay Gould and Niles Eldredge, the latter two in the context of punctuated equilibrium. They proposed that what happens in evolution beyond the species level is due to processes that operate beyond the level of populations – including species selection. Niles Eldredge, in particular, has written extensively on the macroevolutionary hierarchy.
    [Show full text]
  • Microevolution and the Genetics of Populations ​ ​ Microevolution Refers to Varieties Within a Given Type
    Chapter 8: Evolution Lesson 8.3: Microevolution and the Genetics of Populations ​ ​ Microevolution refers to varieties within a given type. Change happens within a group, but the descendant is clearly of the same type as the ancestor. This might better be called variation, or adaptation, but the changes are "horizontal" in effect, not "vertical." Such changes might be accomplished by "natural selection," in which a trait ​ ​ ​ ​ within the present variety is selected as the best for a given set of conditions, or accomplished by "artificial selection," such as when dog breeders produce a new breed of dog. Lesson Objectives ● Distinguish what is microevolution and how it affects changes in populations. ● Define gene pool, and explain how to calculate allele frequencies. ● State the Hardy-Weinberg theorem ● Identify the five forces of evolution. Vocabulary ● adaptive radiation ● gene pool ● migration ● allele frequency ● genetic drift ● mutation ● artificial selection ● Hardy-Weinberg theorem ● natural selection ● directional selection ● macroevolution ● population genetics ● disruptive selection ● microevolution ● stabilizing selection ● gene flow Introduction Darwin knew that heritable variations are needed for evolution to occur. However, he knew nothing about Mendel’s laws of genetics. Mendel’s laws were rediscovered in the early 1900s. Only then could scientists fully understand the process of evolution. Microevolution is how individual traits within a population change over time. In order for a population to change, some things must be assumed to be true. In other words, there must be some sort of process happening that causes microevolution. The five ways alleles within a population change over time are natural selection, migration (gene flow), mating, mutations, or genetic drift.
    [Show full text]
  • What Is Macroevolution?
    [Palaeontology, 2020, pp. 1–11] FRONTIERS IN PALAEONTOLOGY WHAT IS MACROEVOLUTION? by MICHAEL HAUTMANN Pal€aontologisches Institut und Museum, Universit€at Zurich,€ Karl-Schmid Strasse 4, 8006 Zurich,€ Switzerland; [email protected] Typescript received 14 June 2019; accepted in revised form 15 October 2019 Abstract: Definitions of macroevolution fall into three cat- intraspecific competition as a mediator between selective egories: (1) evolution of taxa of supraspecific rank; (2) evolu- agents and evolutionary responses. This mediating role of tion on the grand time-scale; and (3) evolution that is guided intraspecific competition occurs in the presence of sexual by sorting of interspecific variation (as opposed to sorting of reproduction and has therefore no analogue at the macroevo- intraspecific variation in microevolution). Here, it is argued lutionary level where species are the evolutionary units. Com- that only definition 3 allows for a consistent separation of petition between species manifests both on the macroevolution and microevolution. Using this definition, spe- microevolutionary and macroevolutionary level, but with dif- ciation has both microevolutionary and macroevolutionary ferent effects. In microevolution, interspecific competition aspects: the process of morphological transformation is spurs evolutionary divergence, whereas it is a potential driver microevolutionary, but the variation among species that it pro- of extinction at the macroevolutionary level. Recasting the Red duces is macroevolutionary, as is the rate at which speciation Queen hypothesis in a macroevolutionary framework suggests occurs. Selective agents may have differential effects on that the effects of interspecific competition result in a positive intraspecific and interspecific variation, with three possible sit- correlation between origination and extinction rates, confirm- uations: effect at one level only, effect at both levels with the ing empirical observations herein referred to as Stanley’s rule.
    [Show full text]
  • Uniting Micro- with Macroevolution Into an Extended Synthesis: Reintegrating Life’S Natural History Into Evolution Studies
    Uniting Micro- with Macroevolution into an Extended Synthesis: Reintegrating Life’s Natural History into Evolution Studies Nathalie Gontier Abstract The Modern Synthesis explains the evolution of life at a mesolevel by identifying phenotype–environmental interactions as the locus of evolution and by identifying natural selection as the means by which evolution occurs. Both micro- and macroevolutionary schools of thought are post-synthetic attempts to evolution- ize phenomena above and below organisms that have traditionally been conceived as non-living. Microevolutionary thought associates with the study of how genetic selection explains higher-order phenomena such as speciation and extinction, while macroevolutionary research fields understand species and higher taxa as biological individuals and they attribute evolutionary causation to biotic and abiotic factors that transcend genetic selection. The microreductionist and macroholistic research schools are characterized as two distinct epistemic cultures where the former favor mechanical explanations, while the latter favor historical explanations of the evolu- tionary process by identifying recurring patterns and trends in the evolution of life. I demonstrate that both cultures endorse radically different notions on time and explain how both perspectives can be unified by endorsing epistemic pluralism. Keywords Microevolution · Macroevolution · Origin of life · Evolutionary biology · Sociocultural evolution · Natural history · Organicism · Biorealities · Units, levels and mechanisms of evolution · Major transitions · Hierarchy theory But how … shall we describe a process which nobody has seen performed, and of which no written history gives any account? This is only to be investigated, first, in examining the nature of those solid bodies, the history of which we want to know; and 2dly, in exam- ining the natural operations of the globe, in order to see if there now actually exist such operations, as, from the nature of the solid bodies, appear to have been necessary to their formation.
    [Show full text]
  • Molecular Evolution
    An Introduction to Bioinformatics Algorithms www.bioalgorithms.info Molecular Evolution An Introduction to Bioinformatics Algorithms www.bioalgorithms.info Outline • Evolutionary Tree Reconstruction • “Out of Africa” hypothesis • Did we evolve from Neanderthals? • Distance Based Phylogeny • Neighbor Joining Algorithm • Additive Phylogeny • Least Squares Distance Phylogeny • UPGMA • Character Based Phylogeny • Small Parsimony Problem • Fitch and Sankoff Algorithms • Large Parsimony Problem • Evolution of Wings • HIV Evolution • Evolution of Human Repeats An Introduction to Bioinformatics Algorithms www.bioalgorithms.info Early Evolutionary Studies • Anatomical features were the dominant criteria used to derive evolutionary relationships between species since Darwin till early 1960s • The evolutionary relationships derived from these relatively subjective observations were often inconclusive. Some of them were later proved incorrect An Introduction to Bioinformatics Algorithms www.bioalgorithms.info Evolution and DNA Analysis: the Giant Panda Riddle • For roughly 100 years scientists were unable to figure out which family the giant panda belongs to • Giant pandas look like bears but have features that are unusual for bears and typical for raccoons, e.g., they do not hibernate • In 1985, Steven O’Brien and colleagues solved the giant panda classification problem using DNA sequences and algorithms An Introduction to Bioinformatics Algorithms www.bioalgorithms.info Evolutionary Tree of Bears and Raccoons An Introduction to Bioinformatics Algorithms www.bioalgorithms.info Evolutionary Trees: DNA-based Approach • 40 years ago: Emile Zuckerkandl and Linus Pauling brought reconstructing evolutionary relationships with DNA into the spotlight • In the first few years after Zuckerkandl and Pauling proposed using DNA for evolutionary studies, the possibility of reconstructing evolutionary trees by DNA analysis was hotly debated • Now it is a dominant approach to study evolution.
    [Show full text]
  • •How Does Microevolution Add up to Macroevolution? •What Are Species
    Microevolution and Macroevolution • How does Microevolution add up to macroevolution? • What are species? • How are species created? • What are anagenesis and cladogenesis? 1 Sunday, March 6, 2011 Species Concepts • Biological species concept: Defines species as interbreeding populations reproductively isolated from other such populations. • Evolutionary species concept: Defines species as evolutionary lineages with their own unique identity. • Ecological species concept: Defines species based on the uniqueness of their ecological niche. • Recognition species concept: Defines species based on unique traits or behaviors that allow members of one species to identify each other for mating. 2 Sunday, March 6, 2011 Reproductive Isolating Mechanisms • Premating RIMs Habitat isolation Temporal isolation Behavioral isolation Mechanical incompatibility • Postmating RIMs Sperm-egg incompatibility Zygote inviability Embryonic or fetal inviability 3 Sunday, March 6, 2011 Modes of Evolutionary Change 4 Sunday, March 6, 2011 Cladogenesis 5 Sunday, March 6, 2011 6 Sunday, March 6, 2011 7 Sunday, March 6, 2011 Evolution is “the simple way by which species (populations) become exquisitely adapted to various ends” 8 Sunday, March 6, 2011 All characteristics are due to the four forces • Mutation creates new alleles - new variation • Genetic drift moves these around by chance • Gene flow moves these from one population to the next creating clines • Natural selection increases and decreases them in frequency through adaptation 9 Sunday, March 6, 2011 Clines
    [Show full text]
  • Macroevolution Spring 2002 Reading List and Syllabus I. Introduction
    Biology 4182 - Macroevolution Spring 2002 Reading List and Syllabus I. Introduction - Darwinism and Macroevolution 1. Mayr, E. 1982. The Growth of Biological Thought. Harvard Univ. Press. (Pp. 21-78) 2. Mayr, E. 1985. Darwin's five theories of evolution. Pp. 755- 772 in D. Kohn (ed.) The Darwinian Heritage. Princeton Univ. Press, Princeton. 3. Gould, S. J. 1995. Tempo and mode in the macroevolutionary reconstruction of Darwinism. Pp. 125-144 in W. M. Fitch and F. J. Ayala (eds.) Tempo and Mode in Evolution: Genetics and Paleontology 50 Years after Simpson. National Academy Press, Washington. (Pp. 125-134) 4. Simpson, G. G. 1944. Tempo and Mode in Evolution. Columbia Univ. Press, New York. (Pp. 197-217) II. Systematics I - Concepts of the Higher Taxa A. Evolutionary Taxonomy 5. Simpson, G. G. 1953. The Major Features of Evolution. Columbia Univ. Press, New York. (Pp. 199-212; 338-359) 6. Mayr, E. 1982. The Growth of Biological Thought. Harvard Univ. Press, Cambridge. (Pp. 614-616; 233-235) 7. Miller, A. H. 1949. Some ecologic and morphologic considerations in the evolution of higher taxonomic categories. Pp. 84-88 in E. Mayr and E. Schuz (eds.) Ornithologie als Biologische Wissenschaft. Carl Winter/Universitätsverlag, Heidelberg. B. Phenetic Taxonomy 8. Sneath, P. H. A. and R. R. Sokal. 1973. Numerical Taxonomy. W. H. Freeman and Co., San Francisco. (Pp. 5, 9-10, 27-30, 37- 40, 55-67). C. Cladistic Taxonomy 9. de Queiroz, K. 1988. Systematics and the Darwinian Revolution. Philosophy of Science 55:238-259. 10. Eldredge, N. and J. Cracraft. 1980. Phylogenetic Patterns and the Evolutionary Process.
    [Show full text]
  • 5. EVOLUTION AS a POPULATION-GENETIC PROCESS 5 April 2020
    æ 5. EVOLUTION AS A POPULATION-GENETIC PROCESS 5 April 2020 With knowledge on rates of mutation, recombination, and random genetic drift in hand, we now consider how the magnitudes of these population-genetic features dictate the paths that are open vs. closed to evolutionary exploitation in various phylogenetic lineages. Because historical contingencies exist throughout the Tree of Life, we cannot expect to derive from first principles the source of every molecular detail of cellular diversification. We can, however, use established theory to address more general issues, such as the degree of attainable molecular refinement, rates of transition from one state to another, and the degree to which nonadaptive processes (mutation and random genetic drift) contribute to phylogenetic diversification. Substantial reviews of the field of evolutionary theory appear in Charlesworth and Charlesworth (2010) and Walsh and Lynch (2018). Much of the field is con- cerned with the mechanisms maintaining genetic variation within populations, as this ultimately dictates various aspects of the short-term response to selection. Here, however, we are primarily concerned with long-term patterns of phylogenetic diver- sification, so the focus is on the divergence of mean phenotypes. This still requires some knowledge of the principles of population genetics, as evolutionary divergence is ultimately a consequence of the accrual of genetic modifications at the population level. All evolutionary change initiates as a transient phase of genetic polymor- phism, during which mutant alleles navigate the rough sea of random genetic drift, often being evaluated on various genetic backgrounds, with some paths being more accessible to natural selection than others.
    [Show full text]
  • Connecting Micro and Macroevolution Using Genetic Incompatibilities and Natural Selection On
    bioRxiv preprint doi: https://doi.org/10.1101/520809; this version posted January 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Connecting micro and macroevolution using genetic incompatibilities and natural selection on 2 additive genetic variance 3 Greg M. Walter1*, J. David Aguirre2, Melanie J Wilkinson1, Mark W. Blows1, Thomas J. Richards3 and 4 Daniel Ortiz-Barrientos1 5 1University of Queensland, School of Biological Sciences, St. Lucia QLD 4072, Australia 6 2Massey University, Institute of Natural and Mathematical Sciences, Auckland 0745, New Zealand 7 3Swedish University of Agricultural Science, Department of plant Biology, Uppsala, 75007, Sweden 8 * Corresponding Author: Greg M. Walter 9 Email: [email protected] 10 Address: School of Biological Sciences, Life Sciences Building 11 University of Bristol, Bristol, UK BS8 1TQ 12 Phone: +44 7377 074 175 13 Running head: Divergent natural selection on additive genetic variance 14 Data archiving: Data will be deposited in Dryad on acceptance. 15 Keywords: natural selection, trade-offs, additive genetic variance, selection gradient, response to 16 selection, adaptive divergence, adaptive radiation, genetic incompatibilities, reproductive isolation, 17 macroevolution 18 1 bioRxiv preprint doi: https://doi.org/10.1101/520809; this version posted January 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 19 Abstract 20 Evolutionary biologists have long sought to identify the links between micro and macroevolution to better 21 understand how biodiversity is created.
    [Show full text]
  • Speciation in Parasites: a Population Genetics Approach
    Review TRENDS in Parasitology Vol.21 No.10 October 2005 Speciation in parasites: a population genetics approach Tine Huyse1, Robert Poulin2 and Andre´ The´ ron3 1Parasitic Worms Division, Department of Zoology, The Natural History Museum, Cromwell Road, London, UK, SW7 5BD 2Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand 3Parasitologie Fonctionnelle et Evolutive, UMR 5555 CNRS-UP, CBETM, Universite´ de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France Parasite speciation and host–parasite coevolution dynamics and their influence on population genetics. The should be studied at both macroevolutionary and first step toward identifying the evolutionary processes microevolutionary levels. Studies on a macroevolutionary that promote parasite speciation is to compare existing scale provide an essential framework for understanding studies on parasite populations. Crucial, and novel, to this the origins of parasite lineages and the patterns of approach is consideration of the various processes that diversification. However, because coevolutionary inter- function on each parasite population level separately actions can be highly divergent across time and space, (from infrapopulation to metapopulation). Patterns of it is important to quantify and compare the phylogeo- genetic differentiation over small spatial scales provide graphic variation in both the host and the parasite information about the mode of parasite dispersal and their throughout their geographical range. Furthermore, to evolutionary dynamics. Parasite population parameters evaluate demographic parameters that are relevant to inform us about the evolutionary potential of parasites, population genetics structure, such as effective popu- which affects macroevolutionary events. For example, lation size and parasite transmission, parasite popu- small effective population size (Ne) and vertical trans- lations must be studied using neutral genetic markers.
    [Show full text]
  • Lecture 11 Molecular Evolution
    Lecture 11 Molecular evolution Jim Watson, Francis Crick, and DNA Molecular Evolution 4 characteristics 1. c-value paradox 2. Molecular evolution is sometimes decoupled from morphological evolution 3. Molecular clock 4. Neutral theory of Evolution Molecular Evolution 1. c-value!!!!!! paradox Kb! ! Navicola (diatom) ! !! 35,000! Drosophila (fruitfly) ! !180,000! Gallus (chicken) ! ! 1,200,000! Cyprinus (carp) 1,700,000! Boa (snake) 2,100,000! Rattus (rat) 2,900,000! Homo (human) 3,400,000! Schistocerca (locust) 9,300,000! Allium (onion) 18,000,000! Lilium (lily) 36,000,000! Ophioglossum (fern) 160,000,000! Amoeba (amoeba) 290,000,000! Isochores Cold-blooded vertebrates L (low GC) Warm-blooded vertebrates L H1 L H2 L H3 (low GC) (high GC) Isochores - Chromatin structure - Time of replication - Gene types - Gene concentration - Retroviruses Warm-blooded vertebrates L H1 L H2 L H3 (low GC) (high GC) (Mb) GC, % GC, % Isochores of human chromosome 21 (Macaya et al., 1976) Costantini et al., 2006 Molecular Evolution 2. Molecular evolution is sometimes decoupled from morphological evolution Morphological Genetic Similarity Similarity 1. low low 2. high high 3. high low 4. low high Molecular Evolution Morphological Genetic Similarity Similarity 3. high low Living fossils Latimeria, Coelacanth Limulus, Horseshoe crab Molecular Evolution Morphological Genetic Similarity Similarity - distance between humans and chimpanzees is less than 4. low high between sibling species of Drosophila. - for example, from a sample of 11 proteins representing 1271 amino acids, only 5 differ between humans and chimps. - the other six proteins are identical in primary structure. - most proteins that have been sequenced exhibit no amino acid differences - e.g., alphaglobin Pan, Chimp Homo, Human Molecular clock - when the rates of silent substitution at a gene are compared to its rate of replacement substitution, the former typically exceeds the latter by a factor of 5-10.
    [Show full text]
  • Molecular Evolution and Phylogenetic Tree Reconstruction
    1 4 Molecular Evolution and 3 2 5 Phylogenetic Tree Reconstruction 1 4 2 3 5 Orthology, Paralogy, Inparalogs, Outparalogs Phylogenetic Trees • Nodes: species • Edges: time of independent evolution • Edge length represents evolution time § AKA genetic distance § Not necessarily chronological time Inferring Phylogenetic Trees Trees can be inferred by several criteria: § Morphology of the organisms • Can lead to mistakes § Sequence comparison Example: Mouse: ACAGTGACGCCCCAAACGT Rat: ACAGTGACGCTACAAACGT Baboon: CCTGTGACGTAACAAACGA Chimp: CCTGTGACGTAGCAAACGA Human: CCTGTGACGTAGCAAACGA Distance Between Two Sequences Basic principle: • Distance proportional to degree of independent sequence evolution Given sequences xi, xj, dij = distance between the two sequences One possible definition: i j dij = fraction f of sites u where x [u] ≠ x [u] Better scores are derived by modeling evolution as a continuous change process Molecular Evolution Modeling sequence substitution: Consider what happens at a position for time Δt, • P(t) = vector of probabilities of {A,C,G,T} at time t • µAC = rate of transition from A to C per unit time • µA = µAC + µAG + µAT rate of transition out of A • pA(t+Δt) = pA(t) – pA(t) µA Δt + pC(t) µCA Δt + pG(t) µGA Δt + pT(t) µTA Δt Molecular Evolution In matrix/vector notation, we get P(t+Δt) = P(t) + Q P(t) Δt where Q is the substitution rate matrix Molecular Evolution • This is a differential equation: P’(t) = Q P(t) • Q => prob. distribution over {A,C,G,T} at each position, stationary (equilibrium) frequencies πA, πC, πG,
    [Show full text]