Macroevolution Macroevolution - Patterns in the History of Life

Total Page:16

File Type:pdf, Size:1020Kb

Macroevolution Macroevolution - Patterns in the History of Life macroevolution Macroevolution - patterns in the history of life There are several patterns we see when we look at the fossil record over geologic time 1. STASIS A species’ morphology does not change over time. The classic example of this is the “living fossil” the Coelocanth…a fish taxa (genus) that evolved in the Mesozoic, but is still alive today. 2. Characteristics change over time morphologies change over time, for example, increases in shell thickness or number of ribs on a shell or length/width ratios. Constructing phylogenies shows how different species alive at different 3. Speciation time intervals are related to one another. These 3 phylogenies show 3 different patterns. Clade A shows that speciation happened at several times in the past. Clade B shows stability in species over long periods of time, and Clade C shows two periods of time when speciation was focused. One mode of speciation is termed “phyletic gradualism” which is shown in the red line of gradual morphologic change over long periods of time in small, incremental steps. This is the pattern that Darwin was thinking of when he described the ‘transmutation” or change in species over time. Another form of speciation is termed “punctuated equilibrium” which is exhibited in all species in this diagram. For example, in species B (green) we see stasis in morphology over long periods of time, with a short interval of time in which morphologic change occurs. What is happening in this interval of time is “invasion” from a geographically isolated population whose gene pool has diverged. How phyletic gradualism happens: Incremental morphologic change over time. results from changes in the gene pool over time. The graph represents an imaginary distribution of genes in a species (think of the human genome project for all humans!). If an environmental change applies a stress on a species, those having certain genes that enable them to adapt will successfully reproduce and individuals with more of those genes will appear in subsequent generations. Over time the entire gene pool will accumulate these changes and the distribution will change. This type of gradual change in the genotype will result in incremental changes in the phenotype. 4. extinction Extinction can be frequent or rare within a clade. It can occur simultaneously across several taxa, in which case we may call it a mass extinction (usually defined as 50% of species go extinct). Over 99% of all species that have inhabited the earth have gone extinct. Extinction doesn’t imply “failure” or non- adaptation. It can occur randomly. The average duration of a species is only 1 million years before it experiences extinction. The 5 major mass extinctions in the history of the earth. Know when these were! Other Major Issues to Touch On: 1. Intermediate forms: how do major new morphologies arise? ex, whale evolution…why did mammals return to the sea? How could there be intermediaries to this? http://www.pbs.org/wgbh/evolution/library/11/2/e_s_3.html 2. The origin of diversity The photo illustrates a Devonian insect similar to the modern “silverfish.” By the end of the Devonian, this ancestral insect had given rise to two descendents, who subsequently diversified very differently: one into many, many more species than the other. Why did they diversify so differently? 1. Intermediate forms…the search for “missing links” One strategy for identifying evolutionary relationships, especially of The higher taxonomic orders (= appearance of new traits) is through homology Evolution works primarily by modifying pre-existing structures “A structure is similar among related organisms because those organisms have all descended from a common ancestor that had an equivalent trait” Darwin Understanding homologous structures All tetrapods (= four legged) have limbs with five digits, at least at some stage in development. Certain tetrapods lose some of these digits during development, as in the bird wing shown here. But if the bird wing does not need five digits, why do five initially develop in the growing embryo? The most plausible explanation is that while the five digits are not functionally necessary, they represent a genetic artifact inherited from the ancestors of birds. Example: Evolution of whales Land mammal with whale-like teeth Had teeth like Mesonychids but an inner ear adapted for water, and nostrils on the top of its skull Limbs adapted to swimming and walking on land; shark-like teeth, pelvis like mammal Pelvis like whale (not fused to backbone); long snout with whale-like teeth Limbs were small flippers, whale-like teeth Tiny head, and pointed snout with teeth (modern whales have large heads and blunt snout) Diversification of baleen whales from toothed whales in the Oligocene;the first baleen whales also had teeth along with their new loose jaw Movie on whale evolution: http://www.pbs.org/wgbh/evolution/educators/teachstuds/images/s_videos/video3.gif The fossil record preserves several intermediary forms from land- dwelling mammals that forayed into water (for food? To escape predation?) and those with limb, teeth and skull structures which indicate progressively increasing amount of time in - and under- water. Did whales need to enter the water? Did the ability to stay in water become more well developed with successive generations? or Was there a range of variation in ancestral-whale mammals …various tooth structures developed that enabled them to catch and eat fish; nose openings higher on the skull appeared; a re-positioned forelimb appeared (what are the mechanisms by which this variation can occur?) How can complex structures like a limb develop? The first fossil that indicates a land-dwelling habitat is a Devonian organism called Ichthyostega. How did the structures for this extreme an environmental change (water to land) occur? It must have involved changes in respiration, limb structure, limb orientation and brain neuro-skeletal changes. How could this happen? Discrete stages: 1. The evolution of lungs happened in fish lineages (the lungfish) - this structure was already in place 2. The evolution of a limb that could bear weight 3. The evolution of limbs that could walk (Acanthostega) 4. The evolution of structural support for the skull All of these did not happen at once. Lungs developed early. How did limbs develop from fins? How did limb attachment to the body alter? How did the skull evolve? The development of bony fins in fish (the Crossopterygii). The bones shown are covered with scales on the fish. Note that the bones consist of the humerus, radius, ulna and only a few phalanges (in fish termed “rays”) The lung fish and mudskippers use bony fins for locomotion in muddy shallow water, in other words, a structure that could be used for walking was already formed and only needed to be modified to bear weight ( an example of “pre-adaptation”) How did the bony fin become more fully “digitized” for walking? genetic variation and natural selection: “fine-tuning” structures http://www.pbs.org/wgbh/evolution/library/03/4/l_034_03.html How can major structures like limbs develop? • Work on the genetics of Drosophila have documented the existence of a group of genes termed the “homeotic selector genes.” These genes produce proteins that “turn on” other genes by directly bonding to specific DNA sequences, causing these genes to produce proteins: molecular dominoes. Thru the action of these genes (termed “HOX genes) cells are “taught” what they are, where they are supposed to be relative to neighboring cells, and how to be “a team player.” Differences in body shape result from changes in the concentration of HOX genes. Mutation in HOX genes can cause a huge range of very major changes in body plan, for example, the appearance of appendages. Famous ex of Drosophila developing an extra set of legs by mutation of HOX genes Ex: Evolution of complex structures: the jaw The cartilaginous structures called “gill arches” in fish (blue) support the soft tissue of the gill. The first pair of gill arches(red) rotated forward as did the second pair (green) of gill arches How do we know this happened? We can study the genetics of modern lamprey. During embryonic development we actually can trace HOX gene activity that causes changes in the mandible (jaw) HOX gene behavior in modern lampreys How did a complex structure such as a wing develop? Was there ever a primitive, poorly-functioning wing (a “half-wing”) for some “missing link” organism that later evolved into a functioning wing for flight? Rotated scapula created a shoulder blade and allowed for increased limb rotation and the creation of the first “arm” Sinosauropteryx - 125 MYA Development of a small bone called the semi-lunate carpel allowed the phalanges to rotate, in other words, the creation of a “wrist” Velociraptor - 85-80 MYA All images are from www.dinosaur-world.com/feathered_dinosaurs/wing_evolution.htm Rotation of the position of the scapula in this ostrich-sized dinosaur increased up and down movement of the arm Unenlagia - 90 MYA Development of a small sternum (breastbone) provided a site of attachment to muscles that could allow the arm to move up and down rapidly (=flap). Archaeopteryx - 150-148 MYA the first digit, or “thumb” of this dinosaur developed the ability to attach the feathers (alula) that control flight; equivalent to the flaps on a plane wing they allow bank and turn manuvers. Eoalulavis - 125-130 MYA Modern birds have small, hollow bones, large wing surface, short tails, large sternum, sophisticated feathers Modern Birds - 65 MYA to present Note that this sequence is not linear! Some features developed early in organisms in response to some environmental stress, others developed later. Feathers, for example, evolved in dinosaurs that were entirely terrestrial (not as a precursor to flight).
Recommended publications
  • Introduction to Macroevolution
    Spring, 2012 Phylogenetics 200A Modes of Macroevolution Macroevolution is used to refer to any evolutionary change at or above the level of species. Darwin illustrated the combined action of descent with modification, the principle of divergence, and extinction in the only figure in On the Origin of Species (Fig. 1), showing the link between microevolution and macroevolution. The New Synthesis sought to distance itself from the ‘origin of species’ (= macroevolution) and concentrated instead on microevolution - variation within populations and reproductive isolation. “Darwin’s principle of divergence derives from what he thought to be one of the most potent components of the struggle for existence. He argued that the strongest interactions would be among individuals within a population or among closely related populations or species, because these organisms have the most similar requirements. Darwin’s principle of divergence predicts that the individuals, populations or species most likely to succeed in the struggle are those that differ most from their close relatives in the way they achieve their needs for survival and reproduction.” (Reznick & Ricklefs 2009. Nature 457) Macroevolution also fell into disfavor with its invocation for hopeful monsters in development as well as its implication in some Neo-Lamarckian theories. Interest in macroevolution revived by several paleontologists including Steven Stanley, Stephen Jay Gould and Niles Eldredge, the latter two in the context of punctuated equilibrium. They proposed that what happens in evolution beyond the species level is due to processes that operate beyond the level of populations – including species selection. Niles Eldredge, in particular, has written extensively on the macroevolutionary hierarchy.
    [Show full text]
  • Comparative Evolution: Latent Potentials for Anagenetic Advance (Adaptive Shifts/Constraints/Anagenesis) G
    Proc. Natl. Acad. Sci. USA Vol. 85, pp. 5141-5145, July 1988 Evolution Comparative evolution: Latent potentials for anagenetic advance (adaptive shifts/constraints/anagenesis) G. LEDYARD STEBBINS* AND DANIEL L. HARTLtt *Department of Genetics, University of California, Davis, CA 95616; and tDepartment of Genetics, Washington University School of Medicine, Box 8031, 660 South Euclid Avenue, Saint Louis, MO 63110 Contributed by G. Ledyard Stebbins, April 4, 1988 ABSTRACT One of the principles that has emerged from genetic variation available for evolutionary changes (2), a experimental evolutionary studies of microorganisms is that major concern of modem evolutionists is explaining how the polymorphic alleles or new mutations can sometimes possess a vast amount of genetic variation that actually exists can be latent potential to respond to selection in different environ- maintained. Given the fact that in complex higher organisms ments, although the alleles may be functionally equivalent or most new mutations with visible effects on phenotype are disfavored under typical conditions. We suggest that such deleterious, many biologists, particularly Kimura (3), have responses to selection in microorganisms serve as experimental sought to solve the problem by proposing that much genetic models of evolutionary advances that occur over much longer variation is selectively neutral or nearly so, at least at the periods of time in higher organisms. We propose as a general molecular level. Amidst a background of what may be largely evolutionary principle that anagenic advances often come from neutral or nearly neutral genetic variation, adaptive evolution capitalizing on preexisting latent selection potentials in the nevertheless occurs. While much of natural selection at the presence of novel ecological opportunity.
    [Show full text]
  • Microevolution and the Genetics of Populations ​ ​ Microevolution Refers to Varieties Within a Given Type
    Chapter 8: Evolution Lesson 8.3: Microevolution and the Genetics of Populations ​ ​ Microevolution refers to varieties within a given type. Change happens within a group, but the descendant is clearly of the same type as the ancestor. This might better be called variation, or adaptation, but the changes are "horizontal" in effect, not "vertical." Such changes might be accomplished by "natural selection," in which a trait ​ ​ ​ ​ within the present variety is selected as the best for a given set of conditions, or accomplished by "artificial selection," such as when dog breeders produce a new breed of dog. Lesson Objectives ● Distinguish what is microevolution and how it affects changes in populations. ● Define gene pool, and explain how to calculate allele frequencies. ● State the Hardy-Weinberg theorem ● Identify the five forces of evolution. Vocabulary ● adaptive radiation ● gene pool ● migration ● allele frequency ● genetic drift ● mutation ● artificial selection ● Hardy-Weinberg theorem ● natural selection ● directional selection ● macroevolution ● population genetics ● disruptive selection ● microevolution ● stabilizing selection ● gene flow Introduction Darwin knew that heritable variations are needed for evolution to occur. However, he knew nothing about Mendel’s laws of genetics. Mendel’s laws were rediscovered in the early 1900s. Only then could scientists fully understand the process of evolution. Microevolution is how individual traits within a population change over time. In order for a population to change, some things must be assumed to be true. In other words, there must be some sort of process happening that causes microevolution. The five ways alleles within a population change over time are natural selection, migration (gene flow), mating, mutations, or genetic drift.
    [Show full text]
  • What Is Macroevolution?
    [Palaeontology, 2020, pp. 1–11] FRONTIERS IN PALAEONTOLOGY WHAT IS MACROEVOLUTION? by MICHAEL HAUTMANN Pal€aontologisches Institut und Museum, Universit€at Zurich,€ Karl-Schmid Strasse 4, 8006 Zurich,€ Switzerland; [email protected] Typescript received 14 June 2019; accepted in revised form 15 October 2019 Abstract: Definitions of macroevolution fall into three cat- intraspecific competition as a mediator between selective egories: (1) evolution of taxa of supraspecific rank; (2) evolu- agents and evolutionary responses. This mediating role of tion on the grand time-scale; and (3) evolution that is guided intraspecific competition occurs in the presence of sexual by sorting of interspecific variation (as opposed to sorting of reproduction and has therefore no analogue at the macroevo- intraspecific variation in microevolution). Here, it is argued lutionary level where species are the evolutionary units. Com- that only definition 3 allows for a consistent separation of petition between species manifests both on the macroevolution and microevolution. Using this definition, spe- microevolutionary and macroevolutionary level, but with dif- ciation has both microevolutionary and macroevolutionary ferent effects. In microevolution, interspecific competition aspects: the process of morphological transformation is spurs evolutionary divergence, whereas it is a potential driver microevolutionary, but the variation among species that it pro- of extinction at the macroevolutionary level. Recasting the Red duces is macroevolutionary, as is the rate at which speciation Queen hypothesis in a macroevolutionary framework suggests occurs. Selective agents may have differential effects on that the effects of interspecific competition result in a positive intraspecific and interspecific variation, with three possible sit- correlation between origination and extinction rates, confirm- uations: effect at one level only, effect at both levels with the ing empirical observations herein referred to as Stanley’s rule.
    [Show full text]
  • Adaptive Radiation Driven by the Interplay of Eco-Evolutionary and Landscape Dynamics R
    Adaptive radiation driven by the interplay of eco-evolutionary and landscape dynamics R. Aguilée, D. Claessen, A. Lambert To cite this version: R. Aguilée, D. Claessen, A. Lambert. Adaptive radiation driven by the interplay of eco-evolutionary and landscape dynamics. Evolution - International Journal of Organic Evolution, Wiley, 2013, 67 (5), pp.1291-1306. 10.1111/evo.12008. hal-00838275 HAL Id: hal-00838275 https://hal.archives-ouvertes.fr/hal-00838275 Submitted on 13 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Adaptive radiation driven by the interplay of eco-evolutionary and landscape dynamics Robin Aguil´eea;b;∗, David Claessenb and Amaury Lambertc;d Published in Evolution, 2013, 67(5): 1291{1306 with doi: 10.1111/evo.12008 a Institut des Sciences de l'Evolution´ de Montpellier (UMR 5554), Univ Montpellier II, CNRS, Montpellier, France b Laboratoire Ecologie´ et Evolution´ (UMR 7625), UPMC Univ Paris 06, Ecole´ Normale Sup´erieure,CNRS, Paris, France c Laboratoire Probabilit´eset Mod`elesAl´eatoires(LPMA) CNRS UMR 7599, UPMC Univ Paris 06, Paris, France. d Center for Interdisciplinary Research in Biology (CIRB) CNRS UMR 7241, Coll`egede France, Paris, France ∗ Corresponding author.
    [Show full text]
  • Uniting Micro- with Macroevolution Into an Extended Synthesis: Reintegrating Life’S Natural History Into Evolution Studies
    Uniting Micro- with Macroevolution into an Extended Synthesis: Reintegrating Life’s Natural History into Evolution Studies Nathalie Gontier Abstract The Modern Synthesis explains the evolution of life at a mesolevel by identifying phenotype–environmental interactions as the locus of evolution and by identifying natural selection as the means by which evolution occurs. Both micro- and macroevolutionary schools of thought are post-synthetic attempts to evolution- ize phenomena above and below organisms that have traditionally been conceived as non-living. Microevolutionary thought associates with the study of how genetic selection explains higher-order phenomena such as speciation and extinction, while macroevolutionary research fields understand species and higher taxa as biological individuals and they attribute evolutionary causation to biotic and abiotic factors that transcend genetic selection. The microreductionist and macroholistic research schools are characterized as two distinct epistemic cultures where the former favor mechanical explanations, while the latter favor historical explanations of the evolu- tionary process by identifying recurring patterns and trends in the evolution of life. I demonstrate that both cultures endorse radically different notions on time and explain how both perspectives can be unified by endorsing epistemic pluralism. Keywords Microevolution · Macroevolution · Origin of life · Evolutionary biology · Sociocultural evolution · Natural history · Organicism · Biorealities · Units, levels and mechanisms of evolution · Major transitions · Hierarchy theory But how … shall we describe a process which nobody has seen performed, and of which no written history gives any account? This is only to be investigated, first, in examining the nature of those solid bodies, the history of which we want to know; and 2dly, in exam- ining the natural operations of the globe, in order to see if there now actually exist such operations, as, from the nature of the solid bodies, appear to have been necessary to their formation.
    [Show full text]
  • •How Does Microevolution Add up to Macroevolution? •What Are Species
    Microevolution and Macroevolution • How does Microevolution add up to macroevolution? • What are species? • How are species created? • What are anagenesis and cladogenesis? 1 Sunday, March 6, 2011 Species Concepts • Biological species concept: Defines species as interbreeding populations reproductively isolated from other such populations. • Evolutionary species concept: Defines species as evolutionary lineages with their own unique identity. • Ecological species concept: Defines species based on the uniqueness of their ecological niche. • Recognition species concept: Defines species based on unique traits or behaviors that allow members of one species to identify each other for mating. 2 Sunday, March 6, 2011 Reproductive Isolating Mechanisms • Premating RIMs Habitat isolation Temporal isolation Behavioral isolation Mechanical incompatibility • Postmating RIMs Sperm-egg incompatibility Zygote inviability Embryonic or fetal inviability 3 Sunday, March 6, 2011 Modes of Evolutionary Change 4 Sunday, March 6, 2011 Cladogenesis 5 Sunday, March 6, 2011 6 Sunday, March 6, 2011 7 Sunday, March 6, 2011 Evolution is “the simple way by which species (populations) become exquisitely adapted to various ends” 8 Sunday, March 6, 2011 All characteristics are due to the four forces • Mutation creates new alleles - new variation • Genetic drift moves these around by chance • Gene flow moves these from one population to the next creating clines • Natural selection increases and decreases them in frequency through adaptation 9 Sunday, March 6, 2011 Clines
    [Show full text]
  • Adaptive Radiation Adaptive Radiation by Prof
    Workshop on Population and Speciation Genomics 2020 W. Salzburger | Adaptive Radiation Adaptive Radiation by Prof. Walter Salzburger Zoological Institute, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland The diversity of life on Earth is governed, at the MACROEVOLUTIONARY scale, by two antagonistic ———————— MACROEVOLUTION processes: Evolutionary radiations increase and extinction events decrease the organismal diversity on our Evolution on the grand scale, that is, planet through time. Evolutionary radiations are termed adaptive radiations if new lifeforms emerge evolution at the level rapidly through the extensive ecological diversification of an organismal lineage. of species and above. Examples of adaptive radiations ECOLOGICAL NICHE The relational position of a species Adaptive radiation refers to the evolution of ecological and morphological disparity within a rapidly or population in an diversifying lineage. It is the diversification of an ancestral species into an array of new species that ecosystem. It includes the interactions of all occupy various ECOLOGICAL NICHES and that differ in traits used to exploit those niches. Adaptive biotic and abiotic radiation includes the origination of both new species (speciation) and phenotypic disparity. factors that determine how a species meets Archetypal examples of adaptive radiations include Darwin’s finches on the Galápagos archipelago; its needs for food and shelter, how it silversword plants on Hawaii; anole lizards on the islands of the Caribbean; threespine stickleback fish survives, and how it in north temperate waters; and cichlid fishes in the East Africa Great Lakes and in various tropical reproduces. crater lakes (see FIGURE 1). Adaptive radiations are also visible in the FOSSIL record. For example, the FOSSIL CAMBRIAN EXPLOSION is considered an adaptive radiation.
    [Show full text]
  • Adaptive Radiation Causes
    NEET (/neet/) > NEET Study Material (/neet/neet-study-material/) > NEET Biology (/neet/neet-biology/) > Adaptive Radiation (/neet/important-notes-of-biology-for-neet- adaptive-radiation/) What is adaptive radiation? Adaptive radiation is the evolutionary diversification of many related species from a common ancestral species in a relatively short period. Osborne (1902) coined the term “Adaptive Radiation”. He stated that each large and isolated region, with sufficiently varied topogr aphy, soil, vegetation, climate, will lead to organisms with diverse characteristics. Darwin had called it “Divergence”, i.e. the tendency in an organism descended from the same ancestor to diverge in character as they undergo changes. Adaptive radiation plays a significant role in macroevolution. Adaptive radiation gives rise to species diversity in a geographical area. Adaptiv e Radiation Causes: Adaptive radiation is more common during major environmental changes and physical disturbances. It also helps an organism to successfully spread into other environments. Furthermore, it leads to speciation. Moreover, it also leads to phenotypically dissimilar, but related species. Major causes of adaptive radiation are: Ecological opportunities: When an organism enters a new area with lots of ecological opportunities, species diversify to exploit these resources. When a group of organism enter a new adaptive zone then organisms tend to adapt themselves differently. It results in adaptive divergence An adaptive zone is an unexploited area with numerous ecological opportunities, e.g. nocturnal flying to catch small insects, grazing on the grass while migrating across Savana, and swimming at the ocean’s surface to filter out Plankton Vacant adaptive zones are more common on islands, as fewer species inhabit islands compared to mainland When adaptive zones are empty, they get filled by species, which diversify quickly, e.g.
    [Show full text]
  • Macroevolution Spring 2002 Reading List and Syllabus I. Introduction
    Biology 4182 - Macroevolution Spring 2002 Reading List and Syllabus I. Introduction - Darwinism and Macroevolution 1. Mayr, E. 1982. The Growth of Biological Thought. Harvard Univ. Press. (Pp. 21-78) 2. Mayr, E. 1985. Darwin's five theories of evolution. Pp. 755- 772 in D. Kohn (ed.) The Darwinian Heritage. Princeton Univ. Press, Princeton. 3. Gould, S. J. 1995. Tempo and mode in the macroevolutionary reconstruction of Darwinism. Pp. 125-144 in W. M. Fitch and F. J. Ayala (eds.) Tempo and Mode in Evolution: Genetics and Paleontology 50 Years after Simpson. National Academy Press, Washington. (Pp. 125-134) 4. Simpson, G. G. 1944. Tempo and Mode in Evolution. Columbia Univ. Press, New York. (Pp. 197-217) II. Systematics I - Concepts of the Higher Taxa A. Evolutionary Taxonomy 5. Simpson, G. G. 1953. The Major Features of Evolution. Columbia Univ. Press, New York. (Pp. 199-212; 338-359) 6. Mayr, E. 1982. The Growth of Biological Thought. Harvard Univ. Press, Cambridge. (Pp. 614-616; 233-235) 7. Miller, A. H. 1949. Some ecologic and morphologic considerations in the evolution of higher taxonomic categories. Pp. 84-88 in E. Mayr and E. Schuz (eds.) Ornithologie als Biologische Wissenschaft. Carl Winter/Universitätsverlag, Heidelberg. B. Phenetic Taxonomy 8. Sneath, P. H. A. and R. R. Sokal. 1973. Numerical Taxonomy. W. H. Freeman and Co., San Francisco. (Pp. 5, 9-10, 27-30, 37- 40, 55-67). C. Cladistic Taxonomy 9. de Queiroz, K. 1988. Systematics and the Darwinian Revolution. Philosophy of Science 55:238-259. 10. Eldredge, N. and J. Cracraft. 1980. Phylogenetic Patterns and the Evolutionary Process.
    [Show full text]
  • Adaptive Radiation Versus ‘
    Review Research review Adaptive radiation versus ‘radiation’ and ‘explosive diversification’: why conceptual distinctions are fundamental to understanding evolution Author for correspondence: Thomas J. Givnish Thomas J. Givnish Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA Tel: +1 608 262 5718 Email: [email protected] Received: 7 August 2014 Accepted: 1 May 2015 Summary New Phytologist (2015) 207: 297–303 Adaptive radiation is the rise of a diversity of ecological roles and role-specific adaptations within doi: 10.1111/nph.13482 a lineage. Recently, some researchers have begun to use ‘adaptive radiation’ or ‘radiation’ as synonymous with ‘explosive species diversification’. This essay aims to clarify distinctions Key words: adaptive radiation, ecological between these concepts, and the related ideas of geographic speciation, sexual selection, key keys, explosive diversification, geographic innovations, key landscapes and ecological keys. Several examples are given to demonstrate that speciation, key innovations, key landscapes, adaptive radiation and explosive diversification are not the same phenomenon, and that parallel adaptive radiations. focusing on explosive diversification and the analysis of phylogenetic topology ignores much of the rich biology associated with adaptive radiation, and risks generating confusion about the nature of the evolutionary forces driving species diversification. Some ‘radiations’ involve bursts of geographic speciation or sexual selection, rather than adaptive diversification; some adaptive radiations have little or no effect on speciation, or even a negative effect. Many classic examples of ‘adaptive radiation’ appear to involve effects driven partly by geographic speciation, species’ dispersal abilities, and the nature of extrinsic dispersal barriers; partly by sexual selection; and partly by adaptive radiation in the classical sense, including the origin of traits and invasion of adaptive zones that result in decreased diversification rates but add to overall diversity.
    [Show full text]
  • Connecting Micro and Macroevolution Using Genetic Incompatibilities and Natural Selection On
    bioRxiv preprint doi: https://doi.org/10.1101/520809; this version posted January 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Connecting micro and macroevolution using genetic incompatibilities and natural selection on 2 additive genetic variance 3 Greg M. Walter1*, J. David Aguirre2, Melanie J Wilkinson1, Mark W. Blows1, Thomas J. Richards3 and 4 Daniel Ortiz-Barrientos1 5 1University of Queensland, School of Biological Sciences, St. Lucia QLD 4072, Australia 6 2Massey University, Institute of Natural and Mathematical Sciences, Auckland 0745, New Zealand 7 3Swedish University of Agricultural Science, Department of plant Biology, Uppsala, 75007, Sweden 8 * Corresponding Author: Greg M. Walter 9 Email: [email protected] 10 Address: School of Biological Sciences, Life Sciences Building 11 University of Bristol, Bristol, UK BS8 1TQ 12 Phone: +44 7377 074 175 13 Running head: Divergent natural selection on additive genetic variance 14 Data archiving: Data will be deposited in Dryad on acceptance. 15 Keywords: natural selection, trade-offs, additive genetic variance, selection gradient, response to 16 selection, adaptive divergence, adaptive radiation, genetic incompatibilities, reproductive isolation, 17 macroevolution 18 1 bioRxiv preprint doi: https://doi.org/10.1101/520809; this version posted January 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 19 Abstract 20 Evolutionary biologists have long sought to identify the links between micro and macroevolution to better 21 understand how biodiversity is created.
    [Show full text]