HANDBOOK on NUCLEAR DATA for BOREHOLE LOGGING and MINERAL ANALYSIS the Following States Are Members of the International Atomic Energy Agency

Total Page:16

File Type:pdf, Size:1020Kb

HANDBOOK on NUCLEAR DATA for BOREHOLE LOGGING and MINERAL ANALYSIS the Following States Are Members of the International Atomic Energy Agency E = 14.00 MeV Sin SIGTOT = 1.81 b MFP = 11.08 cm I TOTAL INELASTIC {n, 2n) {n, no) (n, n'p) (n, d) 2.6% 0.4% 4.3% 1.0% TECHNICAL REPORTS SERIES No. 357 Handbook on ^ l INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1993 HANDBOOK ON NUCLEAR DATA FOR BOREHOLE LOGGING AND MINERAL ANALYSIS The following States are Members of the International Atomic Energy Agency: AFGHANISTAN HAITI PANAMA ALBANIA HOLY SEE PARAGUAY ALGERIA HUNGARY PERU ARGENTINA ICELAND PHILIPPINES AUSTRALIA INDIA POLAND AUSTRIA INDONESIA PORTUGAL BANGLADESH IRAN, ISLAMIC REPUBLIC OF QATAR BELARUS IRAQ ROMANIA BELGIUM IRELAND RUSSIAN FEDERATION BOLIVIA ISRAEL SAUDI ARABIA BRAZIL ITALY SENEGAL BULGARIA JAMAICA SIERRA LEONE CAMBODIA JAPAN SINGAPORE CAMEROON JORDAN SLOVENIA CANADA KENYA SOUTH AFRICA CHILE KOREA, REPUBLIC OF SPAIN CHINA KUWAIT SRI LANKA COLOMBIA LEBANON SUDAN COSTA RICA LIBERIA SWEDEN COTE D'lVOIRE LIBYAN ARAB JAMAHIRTYA SWITZERLAND CROATIA LIECHTENSTEIN SYRIAN ARAB REPUBLIC CUBA LUXEMBOURG THAILAND CYPRUS MADAGASCAR TUNISIA DEMOCRATIC PEOPLE'S MALAYSIA TURKEY REPUBLIC OF KOREA MALI UGANDA DENMARK MAURITIUS UKRAINE DOMINICAN REPUBLIC MEXICO UNITED ARAB EMIRATES ECUADOR MONACO UNITED KINGDOM OF GREAT EGYPT MONGOLIA BRITAIN AND NORTHERN EL SALVADOR MOROCCO IRELAND ESTONIA MYANMAR UNITED REPUBLIC OF TANZANIA ETHIOPIA NAMIBIA UNITED STATES OF AMERICA FINLAND NETHERLANDS URUGUAY FRANCE NEW ZEALAND VENEZUELA GABON NICARAGUA VIET NAM GERMANY NIGER YUGOSLAVIA GHANA NIGERIA ZAIRE GREECE NORWAY ZAMBIA GUATEMALA PAKISTAN ZIMBABWE The Agency's Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Head- quarters of the. Agency are situated in Vienna. Its principal objective is "to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world". © IAEA, 1993 Permission to reproduce or translate the information contained in this publication may be obtained by writing to the International Atomic Energy Agency, Wagramerstrasse 5, P.O. Box 100, A-1400 Vienna, Austria. Printed by the IAEA in Austria August 1993 STI/DOC/010/357 TECHNICAL REPORTS SERIES No. 357 HANDBOOK ON NUCLEAR DATA FOR BOREHOLE LOGGING AND MINERAL ANALYSIS INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 1993 VIC Library Cataloguing in Publication Data Handbook on nuclear data for borehole logging and mineral analysis. — Vienna : International Atomic Energy Agency, 1993. p. ; 24 cm. — (Technical reports series, ISSN 0074-1914 ; 357) STI/DOC/10/357 ISBN 92-0-102393-6 Includes bibliographical references. 1. Radiation well logging — Handbooks, manuals, etc. 2. Mineralogy, Determinative — Handbooks, manuals, etc. 3. Isotope geology — Techniques. I. International Atomic Energy Agency. II. Series: Technical reports series (International Atomic Energy Agency) ; 357. VICL 93-00063 FOREWORD In April 1986 the International Atomic Energy Agency convened a meeting on Nuclear Data for Applied Nuclear Geophysics at its Headquarters in Vienna. The meeting was attended by specialists in nuclear geochemistry and nuclear geophysics, and by other nuclear data experts from seven countries. From discussions at this meeting it became evident that a major effort was needed to produce a Handbook and an associated database to fulfil the nuclear data requirements of the nuclear geophysics and geochemistry community. The participants identified the most pressing requirements in microscopic cross-section and decay data (the Proceedings of this meeting were published by the IAEA as Report INDC(NDS)-184, issued in 1987). The contents of this Handbook follows the recommendations of this meeting. The Handbook is divided into seven chapters. Chapter 1 is the introduction, Chapters 2 to 4 contain decay data and Chapters 5 to 7 contain neutron source spectra and neutron cross-section data. The preparation of such a Handbook requires a number of compromises that may not be universally acceptable. To ensure that the length of the Handbook remained within acceptable limits, it was necessary to omit some material from the original nuclear decay data tables. Owing to such omissions, in the table of prompt 7 rays from thermal neutron capture (Chapter 3) only y rays with intensities higher than 2% are cited. In Chapter 4 (nuclear decay y rays) only y rays with intensities higher than 5 % are cited. It is believed that y rays with intensities below these limits are rarely usable for practical purposes and therefore these omissions will not usually cause any inconvenience to users. It should also be mentioned that it was not possible to include all the existing references in the figures in Chapter 6, and, in many cases, only the most recent results were quoted. While every effort has been made to ensure consistency and uniformity of presentation between the different parts of this Handbook, there may still remain some inconsistencies concerning the standard reference values of some half-life, abundance or branching ratio data. The user is therefore requested to refer to Chapter 2 for the recommended values of these quantities. It should be emphasized that the data contained in Chapters 5 and 6 of this Handbook have been assembled in a special computer file, the International Nuclear Geophysics Database-90 (INGD-90), in order to present the data in greater detail and facilitate their updating in the future. This computer database can be obtained from the IAEA Nuclear Data Section upon request, together with the documenting Report INDC(NDS)-127. This database is recommended for the computer treatment of experimentally measured results. The Agency wishes to thank all the contributors and also those who have critically reviewed the original manuscript, especially J. Schweitzer, C. Clayton, P. Ekstroem, J.K. Tuli and M.A. Lone. The IAEA officer responsible for the overall co-ordination and compilation of this Handbook was N.P. Kocherov (Division of Physical and Chemical Sciences). EDITORIAL NOTE Although great care has been taken to maintain the accuracy of information contained in this publication, neither the IAEA nor its Member States assume any responsibility for consequences which may arise from its use. The use of particular designations of countries or territories does not imply any judge- ment by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA. CONTENTS CHAPTER 1. INTRODUCTION 1 1.1. General remarks 1 1.2. Radiation sources in nuclear geophysics 3 1.3. Important techniques and applications in nuclear geophysics and their relevance to nuclear data requirements 5 1.3.1. Neutron interaction methods 5 1.3.1.1. Neutron activation y ray analysis 5 1.3.1.2. Neutron induced prompt y ray analysis 6 1.3.1.3. Neutron inelastic and elastic scattering 6 1.3.1.4. Detection of neutron induced fission neutrons 7 1.3.1.5. Thermal neutron decay time 8 1.3.1.6. Epithermal neutron decay time 9 1.3.1.7. Gamma-gamma scattering and energy dispersive X ray fluorescence 10 1.4. Conclusions 10 CHAPTER 2. TABLE OF NUCLIDES 11 2.1. Introduction 11 2.2. Explanation of the table 11 References 12 CHAPTER 3. PROMPT GAMMA RAYS FROM THERMAL NEUTRON CAPTURE — Extracted from the database 39 Reference 39 CHAPTER 4. NUCLEAR DECAY GAMMA RAYS WITH INTENSITIES HIGHER THAN 5% — An extract from the ENSDF radioactivity database 41 Reference 42 CHAPTER 5. SPECTRA OF NEUTRON SOURCES 43 5.1. Isotopic (a,n) sources 43 5.2. Neutron spectrum of spontaneous fission of 252Cf 48 5.3. 14 MeV D-T neutron generators 49 References 53 CHAPTER 6. NEUTRON INDUCED REACTION CROSS-SECTION DATA FOR NUCLIDES REQUIRED FOR BOREHOLE LOGGING AND MINERAL ANALYSIS 55 6.1. Data types and formats 55 6.2. Detailed data for elements 58 6.2.1. Hydrogen 58 6.2.2. Boron 58 6.2.3. Carbon 59 6.2.4. Oxygen 60 6.2.5. Sodium 61 6.2.6. Magnesium 62 6.2.7. Aluminium 63 6.2.8. Silicon 65 6.2.9. Sulphur 66 6.2.10. Chlorine 67 6.2.11. Potassium 68 6.2.12. Calcium 69 6.2.13. Titanium 71 6.2.14. Vanadium 73 6.2.15. Chromium 74 6.2.16. Manganese 76 6.2.17. Iron 77 6.2.18. Nickel 78 6.2.19. Copper 80 6.2.20. Tungsten 82 6.2.21. Gold 84 References 212 CHAPTER 7. NEUTRON SOURCE AVERAGED CROSS-SECTIONS ... 223 LIST OF AUTHORS 231 Chapter 1 INTRODUCTION 1.1. GENERAL REMARKS The use of nuclear data in the design of nuclear reactors and reactor shielding is well understood and well established. In general, the problems encountered are characterized by man-made materials of precise composition and by well defined geometrical configurations. The relevant nuclear data are widely available, although there are many examples of requirements for more accurate and detailed information. In nuclear geophysics, an extension of the nuclear data available for reactor and shielding calculations is required. In general, the problems and the methods of attack are the same, but in nuclear geophysics the environment is earth materials, with virtually all the natural elements in the Periodic Table involved, although not at the same time. In addition, the geometrical configurations encountered in nuclear geophysics are very different from those associated with reactor and shielding design, and they can impose a different demand on the required accuracy of the nuclear data and on the dependence on the calculational approach. Borehole logging is a very good example, since an experimental investigation aimed at varying only one parameter (e.g. moisture content) whilst keeping all the others constant in a geologically complex system that effectively exhibits 'infinite geometry' for neutrons and y rays is virtually impossible.
Recommended publications
  • 22.101 Applied Nuclear Physics (Fall 2006) Problem Set No. 1 Due: Sept
    22.101 Applied Nuclear Physics (Fall 2006) Problem Set No. 1 Due: Sept. 13, 2006 Problem 1 Before getting into the concepts of nuclear physics, every student should have some feeling for the numerical values of properties of nuclear radiations, such as energy and speed, wavelength, and frequency, etc. This involves some back of the envelope calculations using appropriate universal constants. (i) A thermal neutron in a nuclear reactor is a neutron with kinetic energy equal to kBT, where kB is the Boltzmann’s constant and T is the temperature of the reactor. Explain briefly the physical basis of this statement. Taking T to be the room temperature, 20C, calculate the energy of the thermal neutron (in units of ev), and then find its speed v (in cm/sec), the de Broglie wavelength λ (in A) and circular frequency ω (radian/sec). Compare these values with the energy, speed, and interatomic distance of atoms that make up the materials in the reactor. What is the point of comparing the neutron wavelength with typical atomic separations in a solid? (ii) Consider a 2 Kev x-ray, calculate the frequency and wavelength of this photon. What would be the point of comparing the x-ray wavelength with that of the thermal neutron? For an electron with wavelength equal to that of the thermal neutron, what energy would it have? 2 2 (iii) The classical radius of the electron, defined as e / mec , with e being the electron charge, me the electron rest mass, and c the speed of light, has the value of 2.818 x 10-13 cm.
    [Show full text]
  • Problem Set 3 Solutions
    22.01 Fall 2016, Problem Set 3 Solutions October 9, 2016 Complete all the assigned problems, and do make sure to show your intermediate work. 1 Activity and Half Lives 1. Given the half lives and modern-day abundances of the three natural isotopes of uranium, calculate the isotopic fractions of uranium when the Earth first formed 4.5 billion years ago. Today, uranium consists of 0.72% 235U, 99.2745% 238U, and 0.0055% 234U. However, it is clear that the half life of 234U (245,500 years) is so short compared to the lifetime of the Earth (4,500,000,000 years) that it would have all decayed away had there been some during the birth of the Earth. Therefore, we look a little closer, and find that 234U is an indirect decay product of 238U, by tracing it back from its parent nuclides on the KAERI table: α β− β− 238U −! 234T h −! 234P a −! 234U (1) Therefore we won’t consider there being any more 234U than would normally be in equi­ librium with the 238U around at the time. We set up the two remaining equations as follows: −t t ;235 −t t ;238 = 1=2 = 1=2 N235 = N0235 e N238 = N0238 e (2) Using the current isotopic abundances from above as N235 and N238 , the half lives from n 9 t 1 1 the KAERI Table of Nuclides t =2;235 = 703800000 y; t =2;238 = 4:468 · 10 y , and the lifetime of the earth in years (keeping everything in the same units), we arrive at the following expressions for N0235 and N0238 : N235 0:0072 N238 0:992745 N0235 =−t = 9 = 4:307N0238 =−t = 9 = 2:718 (3) =t1 ;235 −4:5·10 =7:038·108 =t1 ;238 −4:5·10 =4:468·109 e =2 e e =2 e Finally, taking the ratios of these two relative abundances gives us absolute abundances: 4:307 2:718 f235 = = 0:613 f238 = = 0:387 (4) 4:307 + 2:718 4:307 + 2:718 235U was 61.3% abundant, and 238U was 38.7% abundant.
    [Show full text]
  • Module01 Nuclear Physics and Reactor Theory
    Module I Nuclear physics and reactor theory International Atomic Energy Agency, May 2015 v1.0 Background In 1991, the General Conference (GC) in its resolution RES/552 requested the Director General to prepare 'a comprehensive proposal for education and training in both radiation protection and in nuclear safety' for consideration by the following GC in 1992. In 1992, the proposal was made by the Secretariat and after considering this proposal the General Conference requested the Director General to prepare a report on a possible programme of activities on education and training in radiological protection and nuclear safety in its resolution RES1584. In response to this request and as a first step, the Secretariat prepared a Standard Syllabus for the Post- graduate Educational Course in Radiation Protection. Subsequently, planning of specialised training courses and workshops in different areas of Standard Syllabus were also made. A similar approach was taken to develop basic professional training in nuclear safety. In January 1997, Programme Performance Assessment System (PPAS) recommended the preparation of a standard syllabus for nuclear safety based on Agency Safely Standard Series Documents and any other internationally accepted practices. A draft Standard Syllabus for Basic Professional Training Course in Nuclear Safety (BPTC) was prepared by a group of consultants in November 1997 and the syllabus was finalised in July 1998 in the second consultants meeting. The Basic Professional Training Course on Nuclear Safety was offered for the first time at the end of 1999, in English, in Saclay, France, in cooperation with Institut National des Sciences et Techniques Nucleaires/Commissariat a l'Energie Atomique (INSTN/CEA).
    [Show full text]
  • Phys586-Lec01-Radioa
    Introduction ¾A more general title for this course might be “Radiation Detector Physics” ¾Goals are to understand the physics, detection, and applications of ionizing radiation The emphasis for this course is on radiation detection and applications to radiological physics However there is much overlap with experimental astro-, particle and nuclear physics And examples will be drawn from all of these fields 1 Introduction ¾While particle and medical radiation physics may seem unrelated, there is much commonality Interactions of radiation with matter is the same Detection principals of radiation are the same Some detectors are also the same, though possibly in different guises ¾Advances in medical physics have often followed quickly from advances in particle physics 2 Introduction ¾ Roentgen discovered x-rays in 1895 (Nobel Prize in 1901) ¾ A few weeks later he was photographing his wife’s hand ¾ Less than a year later x-rays were becoming routine in diagnostic radiography in US, Europe, and Japan ¾ Today the applications are ubiquitous (CAT, angiography, fluoroscopy, …) 3 Introduction ¾ Ernest Lawrence invented the cyclotron accelerator in 1930 (Nobel Prize in 1939) ¾ Five years later, John Lawrence began studies on cancer treatment using radioisotopes and neutrons (produced with the cyclotron) ¾ Their mother saved from cancer using massive x- ray dose 4 Introduction ¾Importance and relevance Radiation is often the only observable available in processes that occur on very short, very small, or very large scales Radiation detection
    [Show full text]
  • Nuclear Physics and Astrophysics SPA5302, 2019 Chris Clarkson, School of Physics & Astronomy [email protected]
    Nuclear Physics and Astrophysics SPA5302, 2019 Chris Clarkson, School of Physics & Astronomy [email protected] These notes are evolving, so please let me know of any typos, factual errors etc. They will be updated weekly on QM+ (and may include updates to early parts we have already covered). Note that material in purple ‘Digression’ boxes is not examinable. Updated 16:29, on 05/12/2019. Contents 1 Basic Nuclear Properties4 1.1 Length Scales, Units and Dimensions............................7 2 Nuclear Properties and Models8 2.1 Nuclear Radius and Distribution of Nucleons.......................8 2.1.1 Scattering Cross Section............................... 12 2.1.2 Matter Distribution................................. 18 2.2 Nuclear Binding Energy................................... 20 2.3 The Nuclear Force....................................... 24 2.4 The Liquid Drop Model and the Semi-Empirical Mass Formula............ 26 2.5 The Shell Model........................................ 33 2.5.1 Nuclei Configurations................................ 44 3 Radioactive Decay and Nuclear Instability 48 3.1 Radioactive Decay...................................... 49 CONTENTS CONTENTS 3.2 a Decay............................................. 56 3.2.1 Decay Mechanism and a calculation of t1/2(Q) .................. 58 3.3 b-Decay............................................. 62 3.3.1 The Valley of Stability................................ 64 3.3.2 Neutrinos, Leptons and Weak Force........................ 68 3.4 g-Decay...........................................
    [Show full text]
  • Periodic Table of Elements
    The origin of the elements – Dr. Ille C. Gebeshuber, www.ille.com – Vienna, March 2007 The origin of the elements Univ.-Ass. Dipl.-Ing. Dr. techn. Ille C. Gebeshuber Institut für Allgemeine Physik Technische Universität Wien Wiedner Hauptstrasse 8-10/134 1040 Wien Tel. +43 1 58801 13436 FAX: +43 1 58801 13499 Internet: http://www.ille.com/ © 2007 © Photographs of the elements: Mag. Jürgen Bauer, http://www.smart-elements.com 1 The origin of the elements – Dr. Ille C. Gebeshuber, www.ille.com – Vienna, March 2007 I. The Periodic table............................................................................................................... 5 Arrangement........................................................................................................................... 5 Periodicity of chemical properties.......................................................................................... 6 Groups and periods............................................................................................................. 6 Periodic trends of groups.................................................................................................... 6 Periodic trends of periods................................................................................................... 7 Examples ................................................................................................................................ 7 Noble gases .......................................................................................................................
    [Show full text]
  • Reactor Fuel Isotopics and Code Validation for Nuclear Applications
    ORNL/TM-2014/464 Reactor Fuel Isotopics and Code Validation for Nuclear Applications Matthew W. Francis Charles F. Weber Marco T. Pigni Approved for public release; Ian C. Gauld distribution is unlimited. September 2014 DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via US Department of Energy (DOE) SciTech Connect. Website http://www.osti.gov/scitech/ Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone 703-605-6000 (1-800-553-6847) TDD 703-487-4639 Fax 703-605-6900 E-mail [email protected] Website http://www.ntis.gov/help/ordermethods.aspx Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange representatives, and International Nuclear Information System representatives from the following source: Office of Scientific and Technical Information PO Box 62 Oak Ridge, TN 37831 Telephone 865-576-8401 Fax 865-576-5728 E-mail [email protected] Website http://www.osti.gov/contact.html This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof.
    [Show full text]
  • Inventory of Radiological Methodologies for Sites
    A \ Inventory of Radiological Methodologies For Sites Contaminated with Radioactive Materials EPA 402-R-06-007 www.epa.gov October 2006 Inventory of Radiological Methodologies For Sites Contaminated With Radioactive Materials U.S. Environmental Protection Agency Office of Air and Radiation Office of Radiation and Indoor Air National Air and Radiation Environmental Laboratory Montgomery, AL 36115 Inventory of Radiological Methodologies This report was prepared for the National Air and Radiation Environmental Laboratory of the Office of Radiation and Indoor Air, United States Environmental Protection Agency. It was prepared by Environmental Management Support, Inc., of Silver Spring, Maryland, under contract 68-W-00-084, work assignment 46, and contract 68-W-03-038, work assignments 10 and 26, all managed by David Garman. Mention of trade names or specific applications does not imply endorsement or acceptance by EPA. For further information, contact Dr. John Griggs, U.S. EPA, Office of Radiation and Indoor Air, National Air and Radiation Environmental Laboratory, 540 South Morris Avenue, Montgomery, AL 36115-2601. Inventory of Radiological Methodologies Preface This compendium is part of a continuing effort by the Office of Radiation and Indoor Air and the Office of Superfund Remediation and Technology Innovation to provide guidance to engineers and scientists responsible for managing the cleanup of sites contaminated with radioactive materials. The document focuses on the radionuclides likely to be found in soil and water at cleanup sites contaminated with radioactive materials. However, its general principles apply also to other media that require analysis to support cleanup activities. It is not a complete catalog of analytical method­ ologies, but rather is intended to assist project managers in understanding the concepts, require­ ments, practices, and limitations of radioanalytical laboratory analyses of environmental samples.
    [Show full text]
  • Chapter 3 Radioactivity
    Nuclear Science—A Guide to the Nuclear Science Wall Chart ©2018 Contemporary Physics Education Project (CPEP) Chapter 3 Radioactivity In radioactive processes, particles or electromagnetic radiation are emitted from the nucleus. The most common forms of radiation emitted have been traditionally classified as alpha (a), beta (b), and gamma (g) radiation. Nuclear radiation occurs in other forms, including the emission of protons or neutrons or spontaneous fission of a massive nucleus. Of the nuclei found on Earth, the vast majority is stable. This is so because almost all short-lived radioactive nuclei have decayed during the history of the Earth. There are approximately 270 stable isotopes and 50 naturally occurring radioisotopes (radioactive isotopes). Thousands of other radioisotopes have been made in the laboratory. Fig. 3-1. The lower end of the Chart of the Nuclides. Radioactive decay will change one nucleus to another if the product nucleus has a greater nuclear binding energy than the initial decaying nucleus. The difference in binding energy (comparing the before and after states) determines which decays are 3-1 Chapter 3—Radioactivity energetically possible and which are not. The excess binding energy appears as kinetic energy or rest mass energy of the decay products. The Chart of the Nuclides, part of which is shown in Fig. 3-1, is a plot of nuclei as a function of proton number, Z, and neutron number, N. All stable nuclei and known radioactive nuclei, both naturally occurring and manmade, are shown on this chart, along with their decay properties. Nuclei with an excess of protons or neutrons in comparison with the stable nuclei will decay toward the stable nuclei by changing protons into neutrons or neutrons into protons, or else by shedding neutrons or protons either singly or in combination.
    [Show full text]
  • Inventory of Radiological Methodologies for Sites
    EPA 402-R-06-007 www.epa.gov October 2006 Inventory of Radiological Methodologies For Sites Contaminated With Radioactive Materials U.S. Environmental Protection Agency Office of Air and Radiation Office of Radiation and Indoor Air National Air and Radiation Environmental Laboratory Montgomery, AL 36115 Inventory of Radiological Methodologies This report was prepared for the National Air and Radiation Environmental Laboratory of the Office of Radiation and Indoor Air, United States Environmental Protection Agency. It was prepared by Environmental Management Support, Inc., of Silver Spring, Maryland, under contract 68-W-00-084, work assignment 46, and contract 68-W-03-038, work assignments 10 and 26, all managed by David Garman. Mention of trade names or specific applications does not imply endorsement or acceptance by EPA. For further information, contact Dr. John Griggs, U.S. EPA, Office of Radiation and Indoor Air, National Air and Radiation Environmental Laboratory, 540 South Morris Avenue, Montgomery, AL 36115-2601. Inventory of Radiological Methodologies Preface This compendium is part of a continuing effort by the Office of Radiation and Indoor Air and the Office of Superfund Remediation and Technology Innovation to provide guidance to engineers and scientists responsible for managing the cleanup of sites contaminated with radioactive materials. The document focuses on the radionuclides likely to be found in soil and water at cleanup sites contaminated with radioactive materials. However, its general principles apply also to other media that require analysis to support cleanup activities. It is not a complete catalog of analytical method­ ologies, but rather is intended to assist project managers in understanding the concepts, require­ ments, practices, and limitations of radioanalytical laboratory analyses of environmental samples.
    [Show full text]
  • Isotopes: Production and Application
    Isotopes: production and application Kornoukhov Vasily Nikolaevich [email protected] Lecture No1 Isotopes: Introduction & History of discovery Milestones of History of isotopes 1896 – Discovery of radioactivity by Henri Becquerel. Nobel prize of 1903 1898 - Discovery of Po-212 by P. Curie and M. Curie and Ra-226 by P. Curie and M. Curie and G. Bemont. 1910-1913 – Investigation of the properties of isotopes and origin. Introduction of the term “Isotope” by Frederick Soddy. Nobel prize of 1921. 1911 – The first direct observation of the stable isotopes (Ne-20 and Ne-22) in experiments with “canal (anode) rays” by Joseph John Thomson. Nobel prize of 1906. 1919 – Investigation of isotope phenomenon. The first mass-spectrometer by Francis Aston. He identified isotopes of Cl-35, -37, Br-79, -81, and Kr-78, -80, -82, -83, -84, -86. Nobel prize of 1922. 1934 – Discovery of artificial radioactivity. Production of P-30 as a very first “artificial” isotope by Irène and Jean Frédéric Joliot-Curie. 1934 –Enrico Fermi reported the discovery of neutron-induced radioactivity in the Italian journal La Ricerca Scientifica on 25 March 1934. Production of new radionuclides. 1936 - Emilio Segre discovered the very first artificial element Technetium Tc (in Greek - τεχνητός — “artificial”). 10.112020 Lecture No1 Isotopes: introduction V.N. Kornoukhov 2 Isotope: definition “ISOTOPES (from the Greek isos - equal, the same and topos - place), varieties of atoms of the same chemical element whose atomic nuclei have the same number of protons (Z) and different numbers of neutrons (N). (Isotopes are the nuclides of one element.) The nuclei of such atoms are also called isotopes.
    [Show full text]
  • BLM – Radioactive Half-Life: the Whole Story
    BLM – Radioactive Half-Life: The Whole Story Isotopes Info Sheet When we look at the periodic table of elements we see a catalogue of all the elements known to exist. Each element has a unique atomic number which is equal to the number of protons in its nucleus. Hydrogen has 1 proton, helium has 2, and so on. What the periodic table of elements doesn’t tell us is that each element comes in a variety of forms, called isotopes. Isotopes of an element have the same number of protons, but different numbers of neutrons in their nuclei. For example, hydrogen, which has 1 proton, occurs naturally with 0, 1 or 2 neutrons. Since neutrons have no electrical charge, the number of neutrons in a nucleus can be changed without changing the charge of the nucleus. A single element can therefore consist of many isotopes which Hydrogen isotopes. are all chemically similar (since this is determined mainly by number of electrons) but differ slightly in mass. The element mass you see on the periodic table is an average mass of all the isotopes of that element that are found in nature. Isotopes vs. Nuclides A nuclide is any particular atomic nucleus with a specific atomic number Z (the number of protons) and mass number A (the number of protons plus the number of neutrons). Collectively, all the isotopes of all the elements form the set of nuclides. There are more than 3,100 nuclides identified in the Chart of Nuclides. A chart or table of nuclides is a simple map that distinguishes the isotopes of the elements.
    [Show full text]