INTRODUCTION MATERIAL and METHODS As the Lake Frog's Habitat
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Redescription, Molecular Characterisation and Taxonomic Re-Evaluation of a Unique African Monitor Lizard Haemogregarine Karyolysus Paradoxa (Dias, 1954) N
Cook et al. Parasites & Vectors (2016) 9:347 DOI 10.1186/s13071-016-1600-8 RESEARCH Open Access Redescription, molecular characterisation and taxonomic re-evaluation of a unique African monitor lizard haemogregarine Karyolysus paradoxa (Dias, 1954) n. comb. (Karyolysidae) Courtney A. Cook1*, Edward C. Netherlands1,2† and Nico J. Smit1† Abstract Background: Within the African monitor lizard family Varanidae, two haemogregarine genera have been reported. These comprise five species of Hepatozoon Miller, 1908 and a species of Haemogregarina Danilewsky, 1885. Even though other haemogregarine genera such as Hemolivia Petit, Landau, Baccam & Lainson, 1990 and Karyolysus Labbé, 1894 have been reported parasitising other lizard families, these have not been found infecting the Varanidae. The genus Karyolysus has to date been formally described and named only from lizards of the family Lacertidae and to the authors’ knowledge, this includes only nine species. Molecular characterisation using fragments of the 18S gene has only recently been completed for but two of these species. To date, three Hepatozoon species are known from southern African varanids, one of these Hepatozoon paradoxa (Dias, 1954) shares morphological characteristics alike to species of the family Karyolysidae. Thus, this study aimed to morphologically redescribe and characterise H. paradoxa molecularly, so as to determine its taxonomic placement. Methods: Specimens of Varanus albigularis albigularis Daudin, 1802 (Rock monitor) and Varanus niloticus (Linnaeus in Hasselquist, 1762) (Nile monitor) were collected from the Ndumo Game Reserve, South Africa. Upon capture animals were examined for haematophagous arthropods. Blood was collected, thin blood smears prepared, stained with Giemsa, screened and micrographs of parasites captured. Haemogregarine morphometric data were compared with the data for named haemogregarines of African varanids. -
D070p001.Pdf
DISEASES OF AQUATIC ORGANISMS Vol. 70: 1–36, 2006 Published June 12 Dis Aquat Org OPENPEN ACCESSCCESS FEATURE ARTICLE: REVIEW Guide to the identification of fish protozoan and metazoan parasites in stained tissue sections D. W. Bruno1,*, B. Nowak2, D. G. Elliott3 1FRS Marine Laboratory, PO Box 101, 375 Victoria Road, Aberdeen AB11 9DB, UK 2School of Aquaculture, Tasmanian Aquaculture and Fisheries Institute, CRC Aquafin, University of Tasmania, Locked Bag 1370, Launceston, Tasmania 7250, Australia 3Western Fisheries Research Center, US Geological Survey/Biological Resources Discipline, 6505 N.E. 65th Street, Seattle, Washington 98115, USA ABSTRACT: The identification of protozoan and metazoan parasites is traditionally carried out using a series of classical keys based upon the morphology of the whole organism. However, in stained tis- sue sections prepared for light microscopy, taxonomic features will be missing, thus making parasite identification difficult. This work highlights the characteristic features of representative parasites in tissue sections to aid identification. The parasite examples discussed are derived from species af- fecting finfish, and predominantly include parasites associated with disease or those commonly observed as incidental findings in disease diagnostic cases. Emphasis is on protozoan and small metazoan parasites (such as Myxosporidia) because these are the organisms most likely to be missed or mis-diagnosed during gross examination. Figures are presented in colour to assist biologists and veterinarians who are required to assess host/parasite interactions by light microscopy. KEY WORDS: Identification · Light microscopy · Metazoa · Protozoa · Staining · Tissue sections Resale or republication not permitted without written consent of the publisher INTRODUCTION identifying the type of epithelial cells that compose the intestine. -
Redalyc.Studies on Coccidian Oocysts (Apicomplexa: Eucoccidiorida)
Revista Brasileira de Parasitologia Veterinária ISSN: 0103-846X [email protected] Colégio Brasileiro de Parasitologia Veterinária Brasil Pereira Berto, Bruno; McIntosh, Douglas; Gomes Lopes, Carlos Wilson Studies on coccidian oocysts (Apicomplexa: Eucoccidiorida) Revista Brasileira de Parasitologia Veterinária, vol. 23, núm. 1, enero-marzo, 2014, pp. 1- 15 Colégio Brasileiro de Parasitologia Veterinária Jaboticabal, Brasil Available in: http://www.redalyc.org/articulo.oa?id=397841491001 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Review Article Braz. J. Vet. Parasitol., Jaboticabal, v. 23, n. 1, p. 1-15, Jan-Mar 2014 ISSN 0103-846X (Print) / ISSN 1984-2961 (Electronic) Studies on coccidian oocysts (Apicomplexa: Eucoccidiorida) Estudos sobre oocistos de coccídios (Apicomplexa: Eucoccidiorida) Bruno Pereira Berto1*; Douglas McIntosh2; Carlos Wilson Gomes Lopes2 1Departamento de Biologia Animal, Instituto de Biologia, Universidade Federal Rural do Rio de Janeiro – UFRRJ, Seropédica, RJ, Brasil 2Departamento de Parasitologia Animal, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro – UFRRJ, Seropédica, RJ, Brasil Received January 27, 2014 Accepted March 10, 2014 Abstract The oocysts of the coccidia are robust structures, frequently isolated from the feces or urine of their hosts, which provide resistance to mechanical damage and allow the parasites to survive and remain infective for prolonged periods. The diagnosis of coccidiosis, species description and systematics, are all dependent upon characterization of the oocyst. Therefore, this review aimed to the provide a critical overview of the methodologies, advantages and limitations of the currently available morphological, morphometrical and molecular biology based approaches that may be utilized for characterization of these important structures. -
Haemocystidium Spp., a Species Complex Infecting Ancient Aquatic
IDENTIFICACIÓN DE HEMOPARÁSITOS PRESENTES EN LA HERPETOFAUNA DE DIFERENTES DEPARTAMENTOS DE COLOMBIA. Leydy Paola González Camacho Universidad Nacional de Colombia Facultad de ciencias, Instituto de Biotecnología IBUN Bogotá, Colombia 2019 IDENTIFICACIÓN DE HEMOPARÁSITOS PRESENTES EN LA HERPETOFAUNA DE DIFERENTES DEPARTAMENTOS DE COLOMBIA. Leydy Paola González Camacho Tesis o trabajo de investigación presentada(o) como requisito parcial para optar al título de: Magister en Microbiología. Director (a): Ph.D MSc Nubia Estela Matta Camacho Codirector (a): Ph.D MSc Mario Vargas-Ramírez Línea de Investigación: Biología molecular de agentes infecciosos Grupo de Investigación: Caracterización inmunológica y genética Universidad Nacional de Colombia Facultad de ciencias, Instituto de biotecnología (IBUN) Bogotá, Colombia 2019 IV IDENTIFICACIÓN DE HEMOPARÁSITOS PRESENTES EN LA HERPETOFAUNA DE DIFERENTES DEPARTAMENTOS DE COLOMBIA. A mis padres, A mi familia, A mi hijo, inspiración en mi vida Agradecimientos Quiero agradecer especialmente a mis padres por su contribución en tiempo y recursos, así como su apoyo incondicional para la culminación de este proyecto. A mi hijo, Santiago Suárez, quien desde que llego a mi vida es mi mayor inspiración, y con quien hemos demostrado que todo lo podemos lograr; a Juan Suárez, quien me apoya, acompaña y no me ha dejado desfallecer, en este logro. A la Universidad Nacional de Colombia, departamento de biología y el posgrado en microbiología, por permitirme formarme profesionalmente; a Socorro Prieto, por su apoyo incondicional. Doy agradecimiento especial a mis tutores, la profesora Nubia Estela Matta y el profesor Mario Vargas-Ramírez, por el apoyo en el desarrollo de esta investigación, por su consejo y ayuda significativa con esta investigación. -
By Jessie Ahmad Shah a Thesis Submitted to the Faculty of Graduate
HAEf.;;:ATOZOA FRm,: SOME CDrv~MON P.. r.IPEIBI.4.NS OF Q.UEBEC by Jessie Ahmad Shah A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfilm.ent of the requirements for the degree of Master of Science. Department of Parasitology, McGill University, Montreal. August 1959 ACKNOT:JLEDG:MENr s My thanks are due to Dr. Marshall Laird for his very thoughtful help and criticism throughout this study, and to Dr. T.~v ..M. C~meron and the National Research Council for making it financially possible. I also wish to acknowledge the help given by Mr. Robert Verney for constructing the containers for the frogs and toads, to Mr. Felick Druzbaki and Mr. Mack Riddel for the tedious job of preparing the nwmbered aluminum dises used as tags. Many young people contributed amphibia and it is impossible to mention all of their names. Raymond Demers brought in large quantities as did Margaret and Heather Oliver. My sons, Damon and Julius Shah, accompanied me on .many collection trips and helped to handle the frogs in the laboratory. Table of Contents Page No. INTRODUCTION . • . • • • . • 1 ~.JETEOD3 AND ~&T:ffiiALS • • . 6 . 11 Trynanosoma rotatoriwm (Mayer, 1843) • . • . • • 11 Rexamita intestinalis Dujardin, 1841 . 15 Lankesterella minima (Naussat, 1850) 20 Haemogregarina catesbiana Stebb ins , 1903 • . 24 ,.. Cytamoaha bacterifera Labbe, 1894 . 30 PlasmodilL.ïl-like artifacts .. 36 Pirhemocyton chattoni n. sp ...... 38 Morphology of chromatin bodies, multiple nuclei, refractile bodies and vacuoles 41 -~teration of Blood cells • . 44 Blood counts . 46 Transmission experiments 48 Discussion • . 49 MITOSIS Ir~ CIRCUlA TING BLOOD OF R. -
Adeleorina: Hepatozoidae) of African Bufonids, with Morphological Description and Molecular Diagnosis of Hepatozoon Ixoxo Sp
Netherlands et al. Parasites & Vectors (2014) 7:552 DOI 10.1186/s13071-014-0552-0 RESEARCH Open Access Hepatozoon species (Adeleorina: Hepatozoidae) of African bufonids, with morphological description and molecular diagnosis of Hepatozoon ixoxo sp. nov. parasitising three Amietophrynus species (Anura: Bufonidae) Edward C Netherlands*, Courtney A Cook and Nico J Smit Abstract Background: Haemogregarines comprise a large group of apicomplexan blood parasites. In 1996 all anuran haemogregarines still in the genus Haemogregarina Danilewsky, 1885 were reassigned to the genus Hepatozoon Miller, 1908. Most (11/15, 73%) African anuran Hepatozoon species have been recorded from the family Bufonidae, however, all these are recorded from only two host species, Amietophrynus mauritanicus (Schlegel, 1841) and Amietophrynus regularis (Reuss, 1833) from Northern and central Africa. To the authors’ knowledge the only description of an anuran haemogregarine from South Africa is Hepatozoon theileri (Laveran, 1905), parasitising Amietia quecketti (Boulenger, 1895). Methods: Thin blood smears for morphometrics and whole blood for molecular work, were collected from 32 Amietophrynus garmani (Meek, 1897), 12 Amietophrynus gutturalis (Power, 1927), and nine Amietophrynus maculatus (Hallowell, 1854), in Ndumo Game Reserve and Kwa Nyamazane Conservancy, KwaZulu-Natal, South Africa. Smears were Giemsa-stained, screened for haemogregarines, parasite stages measured, compared to each other and to other described African bufonid haemogregarines. Parasite 18S rDNA -
Adeleorina: Hepatozoidae
Parasitology Monophyly of the species of Hepatozoon (Adeleorina: Hepatozoidae) parasitizing cambridge.org/par (African) anurans, with the description of three new species from hyperoliid frogs in Research Article South Africa *Present address: Zoology Unit, Finnish Museum of Natural History, University of 1,2,3 1,4 2,5 Helsinki, P.O.Box 17, Helsinki FI-00014, Edward C. Netherlands , Courtney A. Cook , Louis H. Du Preez , Finland. Maarten P.M. Vanhove6,7,8,9* Luc Brendonck1,3 and Nico J. Smit1 Cite this article: Netherlands EC, Cook CA, Du Preez LH, Vanhove MPM, Brendonck L, Smit NJ 1Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag (2018). Monophyly of the species of X6001, Potchefstroom 2520, South Africa; 2African Amphibian Conservation Research Group, Unit for Hepatozoon (Adeleorina: Hepatozoidae) Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South parasitizing (African) anurans, with the Africa; 3Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven, Charles Debériotstraat description of three new species from 32, Leuven B-3000, Belgium; 4Department of Zoology and Entomology, University of the Free State, QwaQwa hyperoliid frogs in South Africa. Parasitology 5 – campus, Free State, South Africa; South African Institute for Aquatic Biodiversity, Somerset Street, Grahamstown 145, 1039 1050. https://doi.org/10.1017/ 6 S003118201700213X 6140, South Africa; Capacities for Biodiversity and Sustainable Development, -
Hemoparasites of the Reptilia
HEMOPARASITES OF THE REPTILIA COLOR ATLAS AND TEXT HEMOPARASITES OF THE REPTILIA COLOR ATLAS AND TEXT SAM ROUNTREE TELFORD, JR. The Florida Museum of Natural History University of Florida Gainesville, Florida Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2009 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number-13: 978-1-4200-8040-7 (Hardcover) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. -
The Revised Classification of Eukaryotes
Published in Journal of Eukaryotic Microbiology 59, issue 5, 429-514, 2012 which should be used for any reference to this work 1 The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D. MITCHELL,l SHARON E. MOZLEY-STANRIDGE,p LAURA W. PARFREY,q JAN PAWLOWSKI,r SONJA RUECKERT,s LAURA SHADWICK,t CONRAD L. SCHOCH,u ALEXEY SMIRNOVv and FREDERICK W. SPIEGELt aDepartment of Soil Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada, and bDepartment of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada, and cDepartment of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, 02881, USA, and dBiology Center and Faculty of Sciences, Institute of Parasitology, University of South Bohemia, Cˇeske´ Budeˇjovice, Czech Republic, and eZoology Department, Natural History Museum, London, SW7 5BD, United Kingdom, and fWadsworth Center, New York State Department of Health, Albany, New York, 12201, USA, and gDepartment of Biochemistry, Dalhousie University, Halifax, NS, B3H 4R2, Canada, and hDepartment of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada, and iDepartment of Ecology, University of Kaiserslautern, 67663, Kaiserslautern, Germany, and jDepartment of Parasitology, Charles University, Prague, 128 43, Praha 2, Czech -
José Fernando Seabra Babo Screening Molecular De
Universidade de Aveiro Departamento de Biologia 2013 José Fernando Screening molecular de Hepatozoon em anfíbios. Seabra Babo Molecular screening of Hepatozoon in amphibian hosts. Universidade de Aveiro Departamento de Biologia 2013 José Fernando Screening molecular de Hepatozoon em anfíbios. Seabra Babo Molecular screening of Hepatozoon in amphibian hosts. Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Biologia Aplicada, realizada sob a orientação científica do Doutor D. James Harris, investigador do CIBIO-UP (Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto) e do Departamento de Biologia da Faculdade de Ciências da Universidade do Porto e co-orientação do Professor Doutor Amadeu Mortágua Velho da Maia Soares, Professor Catedrático do Departamento de Biologia da Universidade de Aveiro. DECLARAÇÃO Declaro que este relatório é integralmente da minha autoria, estando devidamente referenciadas as fontes e obras consultadas, bem como identificadas de modo claro as citações dessas obras. Não contém, por isso, qualquer tipo de plágio quer de textos publicados, qualquer que seja o meio dessa publicação, incluindo meios eletrónicos, quer de trabalhos académicos. ‘Não são as espécies mais fortes que sobrevivem nem as mais inteligentes, e sim as mais suscetíveis a mudanças.’ Charles Darwin o júri presidente Professor Doutor António José Arsénia Nogueira professor associado C/ Agregação da Universidade de Aveiro Doutora Maria João Veloso da Costa Ramos Pereira bolseira de Pós-Doutoramento da Universidade de Aveiro Doutor David James Harris investigador do CIBIO- Centro de Investigação em Biodiversidade e Genética agradecimentos Ao meu orientador James, por todo o tempo despendido comigo e pela ajuda que me deu na realização deste trabalho. -
Diversity of Haemoprotozoan Parasites Infecting the Wildlife of South Africa
Institute of Parasitology, Biology Centre CAS Folia Parasitologica 2018, 65: 015 doi: 10.14411/fp.2018.015 http://folia.paru.cas.cz Research Article Diversity of haemoprotozoan parasites infecting the wildlife of South Africa D. James Harris1,2, Ali Halajian3, Joana L. Santos1, Lourens H. Swanepoel4, Peter John Taylor5,6,7 and Raquel Xavier1 1 CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Vairão, Portugal; 2 Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal; 3 Department of Biodiversity, University of Limpopo, South Africa; 4 Department of Zoology, School of Mathematical and Natural Sciences, University of Venda, Thohoyandou, South Africa; 5 NRF/DET SARCHI Chair on Biodiversity Value and Change, School of Mathematical and Natural Sciences, University of Venda, Thohoyandou, South Africa; 6 Core Team Member, Centre for Invasion Biology, Stellenbosch University, Stellenbosch, Republic of South Africa; 7 Honorary Research Associate, University of KwaZulu Natal, Durban, Republic of South Africa Abstract: Tissue samples from wildlife from South Africa were opportunistically collected and screened for haemoprotozoan parasites using nonspecific PCR primers. Samples of 127 individuals were tested, comprising over 50 different species. Haemogregarines were the most commonly identified parasites, but sarcocystids and piroplasmids were also detected. Phylogenetic analyses estimated from the 18S rDNA marker highlighted the occurrence of several novel parasite forms and the detection of parasites in novel hosts. Phy- logenetic relationships, which have been recently reviewed, appear to be much more complex than previously considered. Our study highlights the high diversity of parasites circulating in wildlife in this biodiverse region, and the need for further studies to resolve taxonomic issues. -
Invited Talk]
International Congress for Tropical Medicine and Malaria, Brisbane, 18-22 Sept. 2016 [Invited talk] Haemoprotozoa: making biological sense of molecular phylogenies Peter O’Donoghue, Department of Parasitology, The University of Queensland, Brisbane QLD 4072 Australia A range of protistan parasites occur in the blood of vertebrates and are transmitted by invertebrate vectors. Some 48 genera are recognized in five groups: trypanosomes, haemogregarines, haemococcidia, haemosporidia and piroplasms. Gene sequences are available for a growing number and molecular phylogenies often link host and parasite evolution. Four major trypanosome clades have been associated with the site of development in the vector (supra- or peri-pylorian for Leishmania, salivarian or stercorarian for Trypanosoma). Four haemogregarine clades have been associated with acarine vectors (Hepatozoon A and B, Karyolysus, Hemolivia) and another two with leeches (Dactylosoma, Haemogregarina s.s.). Three major haemosporidian clades have been associated with mosquito vectors (Plasmodium A and B, Hepatocystis) and another three with other diptera (Parahaemoproteus, Haemoproteus, Leucocytozoon). Three piroplasm clades are recognized: one associated with transovarian transmission (Babesia s.s.); one with pre-erythrocytic schizogony (Theileria/Cytauxzoon); and one with neither (Babesia s.l.). Two haemococcidia clades (Lankesterella, Schellackia) associated with leeches and mosquitoes (paratenic hosts) are entrenched with the monoxenous coccidia. Current evidence suggests trypanosomes, haemogregarines and piroplasms evolved in their invertebrate hosts first, whereas haemosporidia and haemococcidia evolved in vertebrates. More molecular studies are required to place unrepresented taxa, as well as transmission studies to determine their vectors. .