Suborder Adeleorina) Some Cases, Such As Between Lizards and in Five Holarctic Anuran Species Snakes (Tomé Et Al
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effects of Probiotic Administration During
EFFECTS OF PROBIOTIC ADMINISTRATION DURING COCCIDIOSIS VACCINATION ON PERFORMANCE AND LESION DEVELOPMENT IN BROILERS A Thesis by Anthony Emil Klein, Jr. Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2009 Major Subject: Poultry Science EFFECTS OF PROBIOTIC ADMINISTRATION DURING COCCIDIOSIS VACCINATION ON PERFORMANCE AND LESION DEVELOPMENT IN BROILERS A Thesis by Anthony Emil Klein, Jr. Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, David J. Caldwell Committee Members, James A. Byrd Morgan B. Farnell Jason T. Lee Head of Department, John B. Carey August 2009 Major Subject: Poultry Science iii ABSTRACT Effects of Probiotic Administration during Coccidiosis Vaccination on Performance and Lesion Development in Broilers. (August 2009) Anthony Emil Klein, Jr., B.S., Texas A&M University Chair of Advisory Committee: Dr. David J. Caldwell The principal objective of this investigation was to evaluate coccidiosis vaccination, with or without probiotic administration, for effects on broiler performance and clinical indices of infection due to field strain Eimeria challenge during pen trials of commercially applicable durations. During trials 1 and 2, body weights of vaccinated broilers were reduced (P<0.05) compared to other experimental groups during rearing through the grower phase. Final body weights, however, were not different among experimental groups at the termination of each trial. Similarly, feed conversion in trials 1 and 2 was increased (P<0.05) in vaccinated broilers during rearing through the grower phase when compared to non-vaccinated broilers. -
Prevalence of Cryptosporidium Spp. \(Eucoccidiorida
Article available at http://www.parasite-journal.org or http://dx.doi.org/10.1051/parasite/2007144335 PREVALENCE OF CRYPTOSPORIDIUM SPP. (EUCOCCIDIORIDA: CRYPTOSPORIIDAE) IN SEVEN SPECIES OF FARM ANIMALS IN TUNISIA SOLTANE R.*, GUYOT K.**, DEI-CAS E.** & AYADI A.* Summary: Résumé : PRÉVALENCE DE CRYPTOSPORIDIUM SPP. (EUCOCCIDIORIDA : CRYPTOSPORIIDAE) CHEZ SEPT ESPÈCES D’ANIMAUX DE FERME EN TUNISIE 1,001 faecal samples were obtained from 89 sheep (lambs and adult), 184 goats, 190 horses, 178 rabbits, 110 camels, 1001 prélèvements fécaux ont été obtenus à partir de 89 moutons, 200 broiler chicken and 50 turkeys housed in farms from different 184 chèvres, 190 chevaux, 178 lapins, 110 chameaux, localities in Tunisia. All samples were analysed for 200 poulets et 50 dindes élevés dans des fermes de différentes Cryptosporidium oocysts by microscopic examination of smears localités en Tunisie. Tous les prélèvements ont été analysés pour la stained by modified Ziehl Neelsen technique. The parasite was recherche de Cryptosporidium par examen microscopique des detected in ten lambs and adult sheep (11.2 %) and nine broiler frottis colorés au Ziehl Neelsen modifié. Le parasite a été détecté chicken (4.5 %). Molecular characterization, performed in four chez dix ovins (11,2 %) et neuf poulets (4,5 %). La caractérisation animals, identified C. bovis in three lambs and C. meleagridis in moléculaire réalisée pour quatre isolats a identifié C. bovis chez one broiler chicken. This work is the first report on trois agneaux et C. meleagridis chez un poulet. Ce travail est le Cryptosporidium in farm animals in Tunisia. premier rapport sur Cryptosporidium chez des animaux de ferme en Tunisie. -
Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile (Supplement Data)
Protocols for monitoring Harmful Algal Blooms for sustainable aquaculture and coastal fisheries in Chile (Supplement data) Provided by Kyoko Yarimizu, et al. Table S1. Phytoplankton Naming Dictionary: This dictionary was constructed from the species observed in Chilean coast water in the past combined with the IOC list. Each name was verified with the list provided by IFOP and online dictionaries, AlgaeBase (https://www.algaebase.org/) and WoRMS (http://www.marinespecies.org/). The list is subjected to be updated. Phylum Class Order Family Genus Species Ochrophyta Bacillariophyceae Achnanthales Achnanthaceae Achnanthes Achnanthes longipes Bacillariophyta Coscinodiscophyceae Coscinodiscales Heliopeltaceae Actinoptychus Actinoptychus spp. Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Akashiwo Akashiwo sanguinea Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Amphidinium Amphidinium spp. Ochrophyta Bacillariophyceae Naviculales Amphipleuraceae Amphiprora Amphiprora spp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora Amphora spp. Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Anabaenopsis Anabaenopsis milleri Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema Anagnostidinema amphibium Anagnostidinema Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema lemmermannii Cyanobacteria Cyanophyceae Oscillatoriales Microcoleaceae Annamia Annamia toxica Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Aphanizomenon Aphanizomenon flos-aquae -
(Apicomplexa: Adeleorina) Haemoparasites
Biological Forum – An International Journal 8(1): 331-337(2016) ISSN No. (Print): 0975-1130 ISSN No. (Online): 2249-3239 Molecular identification of Hepatozoon Miller, 1908 (Apicomplexa: Adeleorina) haemoparasites in Podarcis muralis lizards from northern Italy and detection of conserved motifs in the 18S rRNA gene Simona Panelli, Marianna Bassi and Enrica Capelli Department of Earth and Environmental Sciences, Section of Animal Biology, Laboratory of Immunology and Genetic Analyses and Centre for Health Technologies (CHT)/University of Pavia, Via Taramelli 24, 27100 Pavia, Italy (Corresponding author: Enrica Capelli, [email protected]) (Received 22 March, 2016, Accepted 06 April, 2016) (Published by Research Trend, Website: www.researchtrend.net) ABSTRACT: This study applies a non-invasive molecular test on common wall lizards (Podarcis muralis) collected in Northern Italy in order to i) identify protozoan blood parasites using primers targeting a portion of haemogregarine 18S rRNA; ii) perform a detailed bioinformatic and phylogenetic analysis of amplicons in a context where sequence analyses data are very scarce. Indeed the corresponding phylum (Apicomplexa) remains the poorest-studied animal group in spite of its significance for reptile ecology and evolution. A single genus, i.e., Hepatozoon Miller, 1908 (Apicomplexa: Adeleorina) and an identical infecting genotype were identified in all positive hosts. Bioinformatic analyses identified highly conserved sequence patterns, some of which known to be involved in the host-parasite cross-talk. Phylogenetic analyses evidenced a limited host specificity, in accord with existing data. This paper provides the first Hepatozoon sequence from P. muralis and one of the few insights into the molecular parasitology, sequence analysis and phylogenesis of haemogregarine parasites. -
A New Species of Hepatozoon (Apicomplexa: Adeleorina) from Python Regius (Serpentes: Pythonidae) and Its Experimental Transmission by a Mosquito Vector
J. Parasitol., 93(?), 2007, pp. 1189–1198 ᭧ American Society of Parasitologists 2007 A NEW SPECIES OF HEPATOZOON (APICOMPLEXA: ADELEORINA) FROM PYTHON REGIUS (SERPENTES: PYTHONIDAE) AND ITS EXPERIMENTAL TRANSMISSION BY A MOSQUITO VECTOR Michal Sloboda, Martin Kamler, Jana Bulantova´*, Jan Voty´pka*†, and David Modry´† Department of Parasitology, University of Veterinary and Pharmaceutical Sciences, Palacke´ho 1-3, 612 42 Brno, Czech Republic. e-mail: [email protected] ABSTRACT: Hepatozoon ayorgbor n. sp. is described from specimens of Python regius imported from Ghana. Gametocytes were found in the peripheral blood of 43 of 55 snakes examined. Localization of gametocytes was mainly inside the erythrocytes; free gametocytes were found in 15 (34.9%) positive specimens. Infections of laboratory-reared Culex quinquefasciatus feeding on infected snakes, as well as experimental infection of juvenile Python regius by ingestion of infected mosquitoes, were performed to complete the life cycle. Similarly, transmission to different snake species (Boa constrictor and Lamprophis fuliginosus) and lizards (Lepidodactylus lugubris) was performed to assess the host specificity. Isolates were compared with Hepatozoon species from sub-Saharan reptiles and described as a new species based on the morphology, phylogenetic analysis, and a complete life cycle. Hemogregarines are the most common intracellular hemo- 3 genera (Telford et al., 2004). Low host specificity of Hepa- parasites found in reptiles. The Hemogregarinidae, Karyolysi- tozoon spp. is supported by experimental transmissions between dae, and Hepatozoidae are distinguished based on the different snakes from different families. Ball (1967) observed experi- developmental patterns in definitive (invertebrate) hosts oper- mental parasitemia with Hepatozoon rarefaciens in the Boa ating as vectors; all 3 families have heteroxenous life cycles constrictor (Boidae); the vector was Culex tarsalis, which had (Telford, 1984). -
(Apicomplexa: Adeleorina) from the Blood of Echis Pyramidum: Morphology and SSU Rdna Sequence Hepatozoon Pyramidumi Sp
Original Article ISSN 1984-2961 (Electronic) www.cbpv.org.br/rbpv Hepatozoon pyramidumi sp. n. (Apicomplexa: Adeleorina) from the blood of Echis pyramidum: morphology and SSU rDNA sequence Hepatozoon pyramidumi sp. n. (Apicomplexa: Adeleorina) do sangue de Echis pyramidum: morfologia e sequência de SSU rDNA Lamjed Mansour1,2; Heba Mohamed Abdel-Haleem3; Esam Sharf Al-Malki4; Saleh Al-Quraishy1; Abdel-Azeem Shaban Abdel-Baki3* 1 Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia 2 Unité de Recherche de Biologie Intégrative et Écologie Évolutive et Fonctionnelle des Milieux Aquatiques, Département de Biologie, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunisia 3 Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt 4 Department of Biology, College of Sciences, Majmaah University, Majmaah 11952, Riyadh Region, Saudi Arabia How to cite: Mansour L, Abdel-Haleem HM, Al-Malki ES, Al-Quraishy S, Abdel-Baki AZS. Hepatozoon pyramidumi sp. n. (Apicomplexa: Adeleorina) from the blood of Echis pyramidum: morphology and SSU rDNA sequence. Braz J Vet Parasitol 2020; 29(2): e002420. https://doi.org/10.1590/S1984-29612020019 Abstract Hepatozoon pyramidumi sp. n. is described from the blood of the Egyptian saw-scaled viper, Echis pyramidum, captured from Saudi Arabia. Five out of ten viper specimens examined (50%) were found infected with Hepatozoon pyramidumi sp. n. with parasitaemia level ranged from 20-30%. The infection was restricted only to the erythrocytes. Two morphologically different forms of intraerythrocytic stages were observed; small and mature gamonts. The small ganomt with average size of 10.7 × 3.5 μm. Mature gamont was sausage-shaped with recurved poles measuring 16.3 × 4.2 μm in average size. -
NEW CLASSIFICATION for Toxoplasma Gondii
LETTER TO THE EDITOR NEW CLASSIFICATION FOR Toxoplasma gondii Claudio Bruno Silva de Oliveira Dear Editor, I have been following the latest publications in the field of parasitology and have noticed that, despite the changes in the group that host the parasite Toxoplasma gondii that have been suggested since 2012 (Adl et al. 2012), many articles in several journals have not been updated (Liempi et al. 2014; Ning et al. 2015; Lorenzi et al. 2016). This can be explained by a certain protectionism regarding the form that has been used for several years. However, it is important to consider that this can also be due to some unfamiliarity with the current classification of eukaryotes and protozoa. Classically this protozoan is classified within the Protista kingdom, Apicomplexa phylum, Sporozoasida class, Eucoccidiorida order, Sarcocystidae family, and Toxoplasma genus (Current et al. 1990). This classification has been used for many decades, and it is well accepted by research groups in the area. Recently, however, Adl et al. (2012) seeking to standardize and organize different groups of eukaryotes, mainly protists, suggested a new classification based on phylogenetic and ultra-structural similarity. Now Toxoplasma gondii appears within a super group called SAR comprising: Stramenopiles, Alveolata, and Rhizaria. More precisely, it appears inside the Alveolata group (first group); among Alveolata it is classified as Apicomplexa (second group); among the Apicomplexa it is classified as Conoidasida (third group); among these it is classified as Coccidia (fourth group); and finally among the Coccidia it is part of Eimeriorina group (fifth group), along with other associated parasites such as Cyclospora and Neospora. -
Redalyc.Protozoan Infections in Farmed Fish from Brazil: Diagnosis
Revista Brasileira de Parasitologia Veterinária ISSN: 0103-846X [email protected] Colégio Brasileiro de Parasitologia Veterinária Brasil Laterça Martins, Mauricio; Cardoso, Lucas; Marchiori, Natalia; Benites de Pádua, Santiago Protozoan infections in farmed fish from Brazil: diagnosis and pathogenesis. Revista Brasileira de Parasitologia Veterinária, vol. 24, núm. 1, enero-marzo, 2015, pp. 1- 20 Colégio Brasileiro de Parasitologia Veterinária Jaboticabal, Brasil Available in: http://www.redalyc.org/articulo.oa?id=397841495001 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Review Article Braz. J. Vet. Parasitol., Jaboticabal, v. 24, n. 1, p. 1-20, jan.-mar. 2015 ISSN 0103-846X (Print) / ISSN 1984-2961 (Electronic) Doi: http://dx.doi.org/10.1590/S1984-29612015013 Protozoan infections in farmed fish from Brazil: diagnosis and pathogenesis Infecções por protozoários em peixes cultivados no Brasil: diagnóstico e patogênese Mauricio Laterça Martins1*; Lucas Cardoso1; Natalia Marchiori2; Santiago Benites de Pádua3 1Laboratório de Sanidade de Organismos Aquáticos – AQUOS, Departamento de Aquicultura, Universidade Federal de Santa Catarina – UFSC, Florianópolis, SC, Brasil 2Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina – Epagri, Campo Experimental de Piscicultura de Camboriú, Camboriú, SC, Brasil 3Aquivet Saúde Aquática, São José do Rio Preto, SP, Brasil Received January 19, 2015 Accepted February 2, 2015 Abstract The Phylum Protozoa brings together several organisms evolutionarily different that may act as ecto or endoparasites of fishes over the world being responsible for diseases, which, in turn, may lead to economical and social impacts in different countries. -
Cyclospora Cayetanensis and Cyclosporiasis: an Update
microorganisms Review Cyclospora cayetanensis and Cyclosporiasis: An Update Sonia Almeria 1 , Hediye N. Cinar 1 and Jitender P. Dubey 2,* 1 Department of Health and Human Services, Food and Drug Administration, Center for Food Safety and Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), Division of Virulence Assessment, Laurel, MD 20708, USA 2 Animal Parasitic Disease Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Building 1001, BARC-East, Beltsville, MD 20705-2350, USA * Correspondence: [email protected] Received: 19 July 2019; Accepted: 2 September 2019; Published: 4 September 2019 Abstract: Cyclospora cayetanensis is a coccidian parasite of humans, with a direct fecal–oral transmission cycle. It is globally distributed and an important cause of foodborne outbreaks of enteric disease in many developed countries, mostly associated with the consumption of contaminated fresh produce. Because oocysts are excreted unsporulated and need to sporulate in the environment, direct person-to-person transmission is unlikely. Infection by C. cayetanensis is remarkably seasonal worldwide, although it varies by geographical regions. Most susceptible populations are children, foreigners, and immunocompromised patients in endemic countries, while in industrialized countries, C. cayetanensis affects people of any age. The risk of infection in developed countries is associated with travel to endemic areas and the domestic consumption of contaminated food, mainly fresh produce imported from endemic regions. Water and soil contaminated with fecal matter may act as a vehicle of transmission for C. cayetanensis infection. The disease is self-limiting in most immunocompetent patients, but it may present as a severe, protracted or chronic diarrhea in some cases, and may colonize extra-intestinal organs in immunocompromised patients. -
DETECTION of TOXOPLASMA GONDII in FRESH PRODUCE By
DETECTION OF TOXOPLASMA GONDII IN FRESH PRODUCE by DANAYA AMINA BETHEA (Under the Direction of Ynes R. Ortega) ABSTRACT Toxoplasma gondii is an intracellular obligate protozoan parasite that causes toxoplasmosis in humans. This study aimed to detect and genotype T. gondii in fresh produce. Six PCR assays using various Toxoplasma gene targets were examined for their suitability in vegetable matrices. The SAG2 PCR was selected for this study. Collectively, DNA was extracted from 818 vegetable samples acquired from 16 markets in Atlanta, GA, U.S. and 5 in Lima, Peru. Nested polymerase chain reaction was conducted using characterized primers for T. gondii SAG2 locus. PCR products were purified and sequenced. Detection via PCR showed that 2.5% and 0.79% of U.S and Peru samples tested positive, respectively. The detection of T. gondii in fresh produce indicates that it may play a role in the prevalence of toxoplasmosis in the U.S and Peru. It also emphasizes the need to develop methodologies to prevent dissemination and inactivation of viable oocysts in the environment. INDEX WORDS: Toxoplasma gondii, Fresh Produce, PCR, Genotyping, SAG2, Peru, Georgia DETECTION OF TOXOPLASMA GONDII IN FRESH PRODUCE by DANAYA AMINA BETHEA B.S., Clark Atlanta University, 2011 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE ATHENS, GEORGIA 2014 © 2014 Danaya Amina Bethea All Rights Reserved DETECTION OF TOXOPLASMA GONDII IN FRESH PRODUCE by DANAYA AMINA BETHEA Major Professor: Ynes R. Ortega Committee: Jennifer Cannon Joseph F. Frank Electronic Version Approved: Julie Coffield Interim Dean of the Graduate School The University of Georgia August 2014 DEDICATION I would like to dedicate this manuscript to my family and friends, for their immeasurable love and support and my boyfriend Roderique John, for always being there for me. -
Epidemiology of Toxoplasma Gondii in Thailand
Doctoral thesis University of Limoges Gay Lussac Doctoral School - Science for the Environment (ED 523) École Doctorale Gay Lussac - Sciences pour l’Environnement (ED 523) INSERM UMR 1094 Laboratory of Parasitology Thesis to obtain the grade of Doctor of University of Limoges Discipline/Speciality: Parasitology Presented and supported by Patcharee CHAICHAN 25 April 2017 Epidemiology of Toxoplasma gondii in Thailand Thesis directed by Pr. Marie-Laure DARDÉ, Pr. Yaowalark SUKTHANA, Dr. Aurélien MERCIER and Dr. Aongart MAHITTIKORN JURY: President of jury Prof. Gilles DREYFUSS, Professor, Laboratory of Parasitology and Mycology, University of Limoges, France Reporters Prof. Marie-Hélène RODIER, Professor, Laboratory of Parasitology and Mycology, University of Poitiers, France Dr. HDR, Dominique AUBERT, Lecturer, Laboratory of Parasitology and Mycology, University of Reims Champagne-Ardenne, France Examiners Prof. Gilles DREYFUSS, Professor, Laboratory of Parasitology and Mycology, University of Limoges, France Prof. Marie-Laure DARDÉ, Professor, Laboratory of Parasitology and Mycology, University of Limoges, France Prof. Yaowalark SUKTHANA, Professor, Department of Protozoology, University of Mahidol, Thailand Dr. Aurélien MERCIER, Lecturer, Laboratory of Parasitology, University of Limoges, France “Never compare yourself or others to other people. Everyone has their own struggles, own fights, and a different path that they choose to get to where they are. Everyone is who they are for a reason.” “Never give up on something you really want. However impossible things may seem. There’s always a way.” “Experience tells you what to do; Confidence allows you to do it.” 2 Acknowledgement Firstly, I would like to thank to my principle supervisors, Pr. Marie-Laure Dardé and Pr. Yaowalark Sukthana who kindly accepted me for this project, supervised and mentored my work and gave me many advices to overcome the obstacles for along my thesis. -
Redescription, Molecular Characterisation and Taxonomic Re-Evaluation of a Unique African Monitor Lizard Haemogregarine Karyolysus Paradoxa (Dias, 1954) N
Cook et al. Parasites & Vectors (2016) 9:347 DOI 10.1186/s13071-016-1600-8 RESEARCH Open Access Redescription, molecular characterisation and taxonomic re-evaluation of a unique African monitor lizard haemogregarine Karyolysus paradoxa (Dias, 1954) n. comb. (Karyolysidae) Courtney A. Cook1*, Edward C. Netherlands1,2† and Nico J. Smit1† Abstract Background: Within the African monitor lizard family Varanidae, two haemogregarine genera have been reported. These comprise five species of Hepatozoon Miller, 1908 and a species of Haemogregarina Danilewsky, 1885. Even though other haemogregarine genera such as Hemolivia Petit, Landau, Baccam & Lainson, 1990 and Karyolysus Labbé, 1894 have been reported parasitising other lizard families, these have not been found infecting the Varanidae. The genus Karyolysus has to date been formally described and named only from lizards of the family Lacertidae and to the authors’ knowledge, this includes only nine species. Molecular characterisation using fragments of the 18S gene has only recently been completed for but two of these species. To date, three Hepatozoon species are known from southern African varanids, one of these Hepatozoon paradoxa (Dias, 1954) shares morphological characteristics alike to species of the family Karyolysidae. Thus, this study aimed to morphologically redescribe and characterise H. paradoxa molecularly, so as to determine its taxonomic placement. Methods: Specimens of Varanus albigularis albigularis Daudin, 1802 (Rock monitor) and Varanus niloticus (Linnaeus in Hasselquist, 1762) (Nile monitor) were collected from the Ndumo Game Reserve, South Africa. Upon capture animals were examined for haematophagous arthropods. Blood was collected, thin blood smears prepared, stained with Giemsa, screened and micrographs of parasites captured. Haemogregarine morphometric data were compared with the data for named haemogregarines of African varanids.