How Individual Cells Develop from a Syncytium: Merogony in Theileria Pan/A (Apicomplexa)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Essential Function of the Alveolin Network in the Subpellicular
RESEARCH ARTICLE Essential function of the alveolin network in the subpellicular microtubules and conoid assembly in Toxoplasma gondii Nicolo` Tosetti1, Nicolas Dos Santos Pacheco1, Eloı¨se Bertiaux2, Bohumil Maco1, Lore` ne Bournonville2, Virginie Hamel2, Paul Guichard2, Dominique Soldati-Favre1* 1Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland; 2Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland Abstract The coccidian subgroup of Apicomplexa possesses an apical complex harboring a conoid, made of unique tubulin polymer fibers. This enigmatic organelle extrudes in extracellular invasive parasites and is associated to the apical polar ring (APR). The APR serves as microtubule- organizing center for the 22 subpellicular microtubules (SPMTs) that are linked to a patchwork of flattened vesicles, via an intricate network composed of alveolins. Here, we capitalize on ultrastructure expansion microscopy (U-ExM) to localize the Toxoplasma gondii Apical Cap protein 9 (AC9) and its partner AC10, identified by BioID, to the alveolin network and intercalated between the SPMTs. Parasites conditionally depleted in AC9 or AC10 replicate normally but are defective in microneme secretion and fail to invade and egress from infected cells. Electron microscopy revealed that the mature parasite mutants are conoidless, while U-ExM highlighted the disorganization of the SPMTs which likely results in the catastrophic loss of APR and conoid. Introduction *For correspondence: Toxoplasma gondii belongs to the phylum of Apicomplexa that groups numerous parasitic protozo- Dominique.Soldati-Favre@unige. ans causing severe diseases in humans and animals. As part of the superphylum of Alveolata, the ch Apicomplexa are characterized by the presence of the alveoli, which consist in small flattened single- membrane sacs, underlying the plasma membrane (PM) to form the inner membrane complex (IMC) Competing interest: See of the parasite. -
(Alveolata) As Inferred from Hsp90 and Actin Phylogenies1
J. Phycol. 40, 341–350 (2004) r 2004 Phycological Society of America DOI: 10.1111/j.1529-8817.2004.03129.x EARLY EVOLUTIONARY HISTORY OF DINOFLAGELLATES AND APICOMPLEXANS (ALVEOLATA) AS INFERRED FROM HSP90 AND ACTIN PHYLOGENIES1 Brian S. Leander2 and Patrick J. Keeling Canadian Institute for Advanced Research, Program in Evolutionary Biology, Departments of Botany and Zoology, University of British Columbia, Vancouver, British Columbia, Canada Three extremely diverse groups of unicellular The Alveolata is one of the most biologically diverse eukaryotes comprise the Alveolata: ciliates, dino- supergroups of eukaryotic microorganisms, consisting flagellates, and apicomplexans. The vast phenotypic of ciliates, dinoflagellates, apicomplexans, and several distances between the three groups along with the minor lineages. Although molecular phylogenies un- enigmatic distribution of plastids and the economic equivocally support the monophyly of alveolates, and medical importance of several representative members of the group share only a few derived species (e.g. Plasmodium, Toxoplasma, Perkinsus, and morphological features, such as distinctive patterns of Pfiesteria) have stimulated a great deal of specula- cortical vesicles (syn. alveoli or amphiesmal vesicles) tion on the early evolutionary history of alveolates. subtending the plasma membrane and presumptive A robust phylogenetic framework for alveolate pinocytotic structures, called ‘‘micropores’’ (Cavalier- diversity will provide the context necessary for Smith 1993, Siddall et al. 1997, Patterson -
Extra-Intestinal Coccidians Plasmodium Species Distribution Of
Extra-intestinal coccidians Apicomplexa Coccidia Gregarinea Piroplasmida Eimeriida Haemosporida -Eimeriidae -Theileriidae -Haemosporiidae -Cryptosporidiidae - Babesiidae (Plasmodium) -Sarcocystidae (Sacrocystis) Aconoid (Toxoplasmsa) Plasmodium species Causitive agent of Malaria ~155 species named Infect birds, reptiles, rodents, primates, humans Species is specific for host and •P. falciparum vector •P. vivax 4 species cause human disease •P. malariae No zoonoses or animal reservoirs •P. ovale Transmission by Anopheles mosquito Distribution of Malarial Parasites P. vivax most widespread, found in most endemic areas including some temperate zones P. falciparum primarily tropics and subtropics P. malariae similar range as P. falciparum, but less common and patchy distribution P. ovale occurs primarily in tropical west Africa 1 Distribution of Malaria US Army, 1943 300 - 500 million cases per year 1.5 to 2.0 million deaths per year #1 cause of infant mortality in Africa! 40% of world’s population is at risk Malaria Atlas Map Project http://www.map.ox.ac.uk/index.htm 2 Malaria in the United States Malaria was quite prevalent in the rural South It was eradicated after world war II in an aggressive campaign using, treatment, vector control and exposure control Time magazine - 1947 (along with overall improvement of living Was a widely available, conditions) cheap insecticide This was the CDCs initial DDT resistance misssion Half-life in mammals - 8 years! US banned use of DDT in 1973 History of Malaria Considered to be the most -
Real-Time Dynamics of Plasmodium NDC80 Reveals Unusual Modes of Chromosome Segregation During Parasite Proliferation Mohammad Zeeshan1,*, Rajan Pandey1,*, David J
© 2020. Published by The Company of Biologists Ltd | Journal of Cell Science (2021) 134, jcs245753. doi:10.1242/jcs.245753 RESEARCH ARTICLE SPECIAL ISSUE: CELL BIOLOGY OF HOST–PATHOGEN INTERACTIONS Real-time dynamics of Plasmodium NDC80 reveals unusual modes of chromosome segregation during parasite proliferation Mohammad Zeeshan1,*, Rajan Pandey1,*, David J. P. Ferguson2,3, Eelco C. Tromer4, Robert Markus1, Steven Abel5, Declan Brady1, Emilie Daniel1, Rebecca Limenitakis6, Andrew R. Bottrill7, Karine G. Le Roch5, Anthony A. Holder8, Ross F. Waller4, David S. Guttery9 and Rita Tewari1,‡ ABSTRACT eukaryotic organisms to proliferate, propagate and survive. During Eukaryotic cell proliferation requires chromosome replication and these processes, microtubular spindles form to facilitate an equal precise segregation to ensure daughter cells have identical genomic segregation of duplicated chromosomes to the spindle poles. copies. Species of the genus Plasmodium, the causative agents of Chromosome attachment to spindle microtubules (MTs) is malaria, display remarkable aspects of nuclear division throughout their mediated by kinetochores, which are large multiprotein complexes life cycle to meet some peculiar and unique challenges to DNA assembled on centromeres located at the constriction point of sister replication and chromosome segregation. The parasite undergoes chromatids (Cheeseman, 2014; McKinley and Cheeseman, 2016; atypical endomitosis and endoreduplication with an intact nuclear Musacchio and Desai, 2017; Vader and Musacchio, 2017). Each membrane and intranuclear mitotic spindle. To understand these diverse sister chromatid has its own kinetochore, oriented to facilitate modes of Plasmodium cell division, we have studied the behaviour movement to opposite poles of the spindle apparatus. During and composition of the outer kinetochore NDC80 complex, a key part of anaphase, the spindle elongates and the sister chromatids separate, the mitotic apparatus that attaches the centromere of chromosomes to resulting in segregation of the two genomes during telophase. -
Clinical Pathology, Immunopathology and Advanced Vaccine Technology in Bovine Theileriosis: a Review
pathogens Review Clinical Pathology, Immunopathology and Advanced Vaccine Technology in Bovine Theileriosis: A Review Onyinyechukwu Ada Agina 1,2,* , Mohd Rosly Shaari 3, Nur Mahiza Md Isa 1, Mokrish Ajat 4, Mohd Zamri-Saad 5 and Hazilawati Hamzah 1,* 1 Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia; [email protected] 2 Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University of Nigeria Nsukka, Nsukka 410001, Nigeria 3 Animal Science Research Centre, Malaysian Agricultural Research and Development Institute, Headquarters, Serdang 43400, Malaysia; [email protected] 4 Department of Veterinary Pre-clinical sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia; [email protected] 5 Research Centre for Ruminant Diseases, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia; [email protected] * Correspondence: [email protected] (O.A.A.); [email protected] (H.H.); Tel.: +60-11-352-01215 (O.A.A.); +60-19-284-6897 (H.H.) Received: 2 May 2020; Accepted: 16 July 2020; Published: 25 August 2020 Abstract: Theileriosis is a blood piroplasmic disease that adversely affects the livestock industry, especially in tropical and sub-tropical countries. It is caused by haemoprotozoan of the Theileria genus, transmitted by hard ticks and which possesses a complex life cycle. The clinical course of the disease ranges from benign to lethal, but subclinical infections can occur depending on the infecting Theileria species. The main clinical and clinicopathological manifestations of acute disease include fever, lymphadenopathy, anorexia and severe loss of condition, conjunctivitis, and pale mucous membranes that are associated with Theileria-induced immune-mediated haemolytic anaemia and/or non-regenerative anaemia. -
Substrate and Cell Fusion Influence on Slime Mold Network Dynamics
www.nature.com/scientificreports OPEN Substrate and cell fusion infuence on slime mold network dynamics Fernando Patino‑Ramirez1*, Chloé Arson1,3 & Audrey Dussutour2,3* The acellular slime mold Physarum polycephalum provides an excellent model to study network formation, as its network is remodelled constantly in response to mass gain/loss and environmental conditions. How slime molds networks are built and fuse to allow for efcient exploration and adaptation to environmental conditions is still not fully understood. Here, we characterize the network organization of slime molds exploring homogeneous neutral, nutritive and adverse environments. We developed a fully automated image analysis method to extract the network topology and followed the slime molds before and after fusion. Our results show that: (1) slime molds build sparse networks with thin veins in a neutral environment and more compact networks with thicker veins in a nutritive or adverse environment; (2) slime molds construct long, efcient and resilient networks in neutral and adverse environments, whereas in nutritive environments, they build shorter and more centralized networks; and (3) slime molds fuse rapidly and establish multiple connections with their clone‑mates in a neutral environment, whereas they display a late fusion with fewer connections in an adverse environment. Our study demonstrates that slime mold networks evolve continuously via pruning and reinforcement, adapting to diferent environmental conditions. Transportation networks where fuids are transported from one point of the network to another are ubiquitous in nature. Vascular networks in animals, plants, fungi and slime molds are commonly cited examples of such natural transportation networks. Tese networks are ofen studied as static architectures, although most of them have the ability to alter their morphology in space and time in response to environmental conditions1. -
Bovine Theileriosis
EAZWV Transmissible Disease Fact Sheet Sheet No. 125 BOVINE THEILERIOSIS ANIMAL TRANS- CLINICAL SIGNS FATAL TREATMENT PREVENTION GROUP MISSION DISEASE ? & CONTROL AFFECTED Bovine Tick-borne Lymphoproliferati Yes Parvaquone In houses ve diseases, (Parvexon) Tick control characterized by Buparvaquone fever, leucopenia (Butalex) in zoos and/or anaemia Tick control Fact sheet compiled by Last update J. Brandt, Royal Zoological Society of Antwerp, February 2009 Belgium Fact sheet reviewed by F. Vercammen, Royal Zoological Society of Antwerp, Belgium D. Geysen, Animal Health, Institute of Tropical Medicine, Antwerp, Belgium Susceptible animal groups Theileria parva: cattle, African Buffalo* (Syncerus caffer) and Waterbuck (Kobus defassa). T.annulata: cattle, yak (Bos gruniens) and waterbuffalo* (Bubalus bubalis). T.mutans: cattle* and buffalo*. T.taurotragi: cattle, sheep, goat and eland (Taurotragus oryx- natural host). T.velifera: cattle* and buffalo*. T.orientalis/buffeli: cattle * = usually benign Causative organism Several species belonging to the phylum of the Apicomplexa, order Piroplasmida, family Theileriidae Pathogenic species are T.parva ( according to the strain: East Coast Fever, Corridor Disease, Buffalo Disease, January Disease, Turning Sickness). T.annulata (Tropical theileriosis, Mediterranean theileriosis). T.taurotragi (Turning Sickness). Other species, i.a. T.mutans, T.orientalis/buffeli, T.velifera are considered to be less or non pathogenic. Zoonotic potential Theileria species of cattle have no zoonotic potential unlike Theileria (Babesia) microti, an American species in rodents which can infect humans Distribution Buffalo and cattle associated T.parva occurs in Eastern and Southern Africa (from S.Sudan to S.Zimbabwe). T.annulata in N.Africa, Sudan, Erithrea, Mediterranean Europe, S. Russia, Near & Middle East, India, China and Central Asia. -
A MOLECULAR PHYLOGENY of MALARIAL PARASITES RECOVERED from CYTOCHROME B GENE SEQUENCES
J. Parasitol., 88(5), 2002, pp. 972±978 q American Society of Parasitologists 2002 A MOLECULAR PHYLOGENY OF MALARIAL PARASITES RECOVERED FROM CYTOCHROME b GENE SEQUENCES Susan L. Perkins* and Jos. J. Schall Department of Biology, University of Vermont, Burlington, Vermont 05405. e-mail: [email protected] ABSTRACT: A phylogeny of haemosporidian parasites (phylum Apicomplexa, family Plasmodiidae) was recovered using mito- chondrial cytochrome b gene sequences from 52 species in 4 genera (Plasmodium, Hepatocystis, Haemoproteus, and Leucocy- tozoon), including parasite species infecting mammals, birds, and reptiles from over a wide geographic range. Leucocytozoon species emerged as an appropriate out-group for the other malarial parasites. Both parsimony and maximum-likelihood analyses produced similar phylogenetic trees. Life-history traits and parasite morphology, traditionally used as taxonomic characters, are largely phylogenetically uninformative. The Plasmodium and Hepatocystis species of mammalian hosts form 1 well-supported clade, and the Plasmodium and Haemoproteus species of birds and lizards form a second. Within this second clade, the relation- ships between taxa are more complex. Although jackknife support is weak, the Plasmodium of birds may form 1 clade and the Haemoproteus of birds another clade, but the parasites of lizards fall into several clusters, suggesting a more ancient and complex evolutionary history. The parasites currently placed within the genus Haemoproteus may not be monophyletic. Plasmodium falciparum of humans was not derived from an avian malarial ancestor and, except for its close sister species, P. reichenowi,is only distantly related to haemospordian parasites of all other mammals. Plasmodium is paraphyletic with respect to 2 other genera of malarial parasites, Haemoproteus and Hepatocystis. -
S41598-020-68694-9.Pdf
www.nature.com/scientificreports OPEN Delayed cytokinesis generates multinuclearity and potential advantages in the amoeba Acanthamoeba castellanii Nef strain Théo Quinet1, Ascel Samba‑Louaka2, Yann Héchard2, Karine Van Doninck1 & Charles Van der Henst1,3,4,5* Multinuclearity is a widespread phenomenon across the living world, yet how it is achieved, and the potential related advantages, are not systematically understood. In this study, we investigate multinuclearity in amoebae. We observe that non‑adherent amoebae are giant multinucleate cells compared to adherent ones. The cells solve their multinuclearity by a stretchy cytokinesis process with cytosolic bridge formation when adherence resumes. After initial adhesion to a new substrate, the progeny of the multinucleate cells is more numerous than the sibling cells generated from uninucleate amoebae. Hence, multinucleate amoebae show an advantage for population growth when the number of cells is quantifed over time. Multiple nuclei per cell are observed in diferent amoeba species, and the lack of adhesion induces multinuclearity in diverse protists such as Acanthamoeba castellanii, Vermamoeba vermiformis, Naegleria gruberi and Hartmannella rhysodes. In this study, we observe that agitation induces a cytokinesis delay, which promotes multinuclearity. Hence, we propose the hypothesis that multinuclearity represents a physiological adaptation under non‑adherent conditions that can lead to biologically relevant advantages. Te canonical view of eukaryotic cells is usually illustrated by an uninucleate organization. However, in the liv- ing world, cells harbouring multiple nuclei are common. Tis multinuclearity can have diferent origins, being either generated (i) by fusion events between uninucleate cells or by (ii) uninucleate cells that replicate their DNA content without cytokinesis. -
Equine Piroplasmosis
EAZWV Transmissible Disease Fact Sheet Sheet No. 119 EQUINE PIROPLASMOSIS ANIMAL TRANS- CLINICAL SIGNS FATAL TREATMENT PREVENTION GROUP MISSION DISEASE ? & CONTROL AFFECTED Equines Tick-borne Acute, subacute Sometimes Babesiosis: In houses or chronic disease fatal, in Imidocarb Tick control characterised by particular in (Imizol, erythrolysis: fever, acute T.equi Carbesia, in zoos progressive infections. Forray) Tick control anaemia, icterus, When Dimenazene haemoglobinuria haemoglobinuria diaceturate (in advanced develops, (Berenil) stages). prognosis is Theileriosis: poor. Buparvaquone (Butalex) Fact sheet compiled by Last update J. Brandt, Royal Zoological Society of Antwerp, February 2009 Belgium Fact sheet reviewed by D. Geysen, Animal Health, Institute of Tropical Medicine, Antwerp, Belgium F. Vercammen, Royal Zoological Society of Antwerp, Belgium Susceptible animal groups Horse (Equus caballus), donkey (Equus asinus), mule, zebra (Equus zebra) and Przewalski (Equus przewalskii), likely all Equus spp. are susceptible to equine piroplasmosis or biliary fever. Causative organism Babesia caballi: belonging to the phylum of the Apicomplexa, order Piroplasmida, family Babesiidae; Theileria equi, formerly known as Babesia equi or Nutallia equi, apicomplexa, order Piroplasmida, family Theileriidae. Babesia canis has been demonstrated by molecular diagnosis in apparently asymptomatic horses. A single case of Babesia bovis and two cases of Babesia bigemina have been detected in horses by a quantitative PCR. Zoonotic potential Equine piroplasmoses are specific for Equus spp. yet there are some reports of T.equi in asymptomatic dogs. Distribution Widespread: B.caballi occurs in southern Europe, Russia, Asia, Africa, South and Central America and the southern states of the US. T.equi has a more extended geographical distribution and even in tropical regions it occurs more frequent than B.caballi, also in the Mediterranean basin, Switzerland and the SW of France. -
Antigenic Diversity in Theileria Parva Populations from Sympatric Cattle and African Buffalo Analyzed Using Long Read Sequencing
fgene-12-684127 July 10, 2021 Time: 13:19 # 1 ORIGINAL RESEARCH published: 15 July 2021 doi: 10.3389/fgene.2021.684127 Antigenic Diversity in Theileria parva Populations From Sympatric Cattle and African Buffalo Analyzed Using Long Read Sequencing Fiona K. Allan1†, Siddharth Jayaraman1†, Edith Paxton1, Emmanuel Sindoya2, Tito Kibona3, Robert Fyumagwa4, Furaha Mramba5, Stephen J. Torr6, Johanneke D. Hemmink1,7, Philip Toye7, Tiziana Lembo8, Ian Handel1, Harriet K. Auty8, W. Ivan Morrison1 and Liam J. Morrison1* 1 Royal (Dick) School of Veterinary Studies, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom, 2 Ministry of Livestock and Fisheries, Serengeti District Livestock Office, Mugumu, Tanzania, 3 Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania, 4 Tanzania Wildlife Research Institute, Arusha, Tanzania, 5 Vector Edited by: and Vector-Borne Diseases Research Institute, Tanga, Tanzania, 6 Liverpool School of Tropical Medicine, Liverpool, Matthew Adekunle Adeleke, United Kingdom, 7 International Livestock Research Institute, Nairobi, Kenya, 8 Institute of Biodiversity, Animal Health University of KwaZulu-Natal, and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, South Africa United Kingdom Reviewed by: Stefano D’Amelio, East Coast fever (ECF) in cattle is caused by the Apicomplexan protozoan parasite Sapienza University of Rome, Italy Jun-Hu Chen, Theileria parva, transmitted by the three-host tick Rhipicephalus appendiculatus. The National Institute of Parasitic African buffalo (Syncerus caffer) is the natural host for T. parva but does not suffer Diseases, China disease, whereas ECF is often fatal in cattle. The genetic relationship between T. parva *Correspondence: Liam J. Morrison populations circulating in cattle and buffalo is poorly understood, and has not been [email protected] studied in sympatric buffalo and cattle. -
First Case of Autochthonous Equine Theileriosis in Austria
pathogens Case Report First Case of Autochthonous Equine Theileriosis in Austria Esther Dirks 1, Phebe de Heus 1, Anja Joachim 2, Jessika-M. V. Cavalleri 1 , Ilse Schwendenwein 3, Maria Melchert 4 and Hans-Peter Fuehrer 2,* 1 Clinical Unit of Equine Internal Medicine, Department Hospital for Companion Animals and Horses, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; [email protected] (E.D.); [email protected] (P.d.H.); [email protected] (J.-M.V.C.) 2 Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; [email protected] 3 Clinical Pathology Platform, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; [email protected] 4 Centre for Insemination and Embryo transfer Platform, Department Hospital for Companion Animals and Horses, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; [email protected] * Correspondence: [email protected]; Tel.: +43-125-077-2205 Abstract: A 23-year-old pregnant warmblood mare from Güssing, Eastern Austria, presented with apathy, anemia, fever, tachycardia and tachypnoea, and a severely elevated serum amyloid A concentration. The horse had a poor body condition and showed thoracic and pericardial effusions, and later dependent edema and icteric mucous membranes. Blood smear and molecular analyses revealed an infection with Theileria equi. Upon treatment with imidocarb diproprionate, the mare improved clinically, parasites were undetectable in blood smears, and 19 days after hospitalization the horse was discharged from hospital. However, 89 days after first hospitalization, the mare again presented to the hospital with an abortion, and the spleen of the aborted fetus was also PCR-positive Citation: Dirks, E.; de Heus, P.; for T.