Managing Carpophilus Beetle in Almonds

Total Page:16

File Type:pdf, Size:1020Kb

Managing Carpophilus Beetle in Almonds JANUARY 2016 ALL ABOUT ALMONDS ORCHARD MANAGEMENT MANAGING CARPOPHILUS BEETLE IN ALMONDS PRELIMINARY MONITORING GUIDELINES, ATTRACT & KILL GUIDELINES FOR 2016 - 2017 SEASON CARPOPHILUS IN ALMONDS project includes research on the KEY POINTS distribution of different Carpophilus Carpophilus beetles comprise many species throughout orchards and in species with different preferences different almond growing regions, Almonds are most vulnerable to attack from for fruit type and fruit ripening/ testing whether the “stonefruit” lure Carpophilus Beetle during hull split. maturing stage. In recent years, is effective in almonds and how its Pheromone and co-attractant are much less almond growers have indicated potency might be improved, and effective when used separately rather than in significant crop losses due to determining the most effective combination. Carpophilus, and there is an urgent spacing of A&K traps to achieve need for an Attract and Kill (A&K) control. High priority blocks to monitor are likely to system that can control these This article contains information on include those that experience excessive pests, particularly in the ‘hull-split’ how best to apply an A&K strategy to moisture retention and humidity. development stage when almonds monitor and control Carpophilus in are most vulnerable to attack. During It is suggested that growers start with at least almonds using the current stonefruit the 2014/15 and 2015/16 seasons, one trap per orchard block (approx. 20 ha). lure. We consider this an interim five species of Carpophilus were guide for interested growers, and as detected in samples from traps in Carpophilus starts to become active and able we continue our research we aim to almond orchards, and concerns that to fly to traps as temperatures increase in provide growers with more detailed beetle populations could escalate late winter/early spring. guidelines specific to almonds, and over coming years has led to a hopefully more effective lures. research project “Management of INTRODUCTION Carpophilus beetles in almonds” to look specifically at this problem. The CARPOPHILUS BEETLES ARE SERIOUS PESTS OF ORCHARD CROPS IN AUSTRALIA. In stonefruits, two species (C. davidsoni and C. hemipterus) attack fruit and can result in annual losses of up to 30% of the crop. Damage by Carpophilus beetle is most severe as the fruit ripens/matures, with beetles penetrating the fruit and also causing indirect damage by serving as a vector for brown rot (Monilinia), which frequently develops at the sites of beetle entry. Carpophilus are highly active pests that can spread rapidly from fruit to fruit and between neighbouring orchards, leading to populations quickly escalating out of control. An effective lure has been developed for monitoring Carpophilus in stonefruit, with potential to control this pest through a mass trapping program (“Attract and Kill”). The lure combines the beetle’s aggregation pheromones with a synthetic blend of fruit odours, and is highly attractive to the male and female beetles. The lure was developed through Victorian Government (DEDJTR) research in collaboration with Horticulture Innovation Australia Ltd (Hort Innovation), and together with a suitable Carpophilus Catcha Trap Kit trap (funnel trap) it is used by the stonefruit industry to effectively control Carpophilus before fruit crops ripen. PO Box 1507 | 1801 Bookpurnong Road, Loxton SA 5333 | T +61 8 8584 7053 | E [email protected] | W growing.australianalmonds.com.au • Monitoring traps include the co-attractant solution and insecticide strip but no pheromone button. may help producers to identify HOW DO THE TRAPS WORK? infested blocks and highlight areas Pheromone from the rubber button HOW SHOULD THE TRAP COMPONENTS BE STORED? where monitoring traps should be combined with odours from the • Pheromone buttons should be stored frozen to maximise their shelf life. installed. co-attractant solution are released If this is not practical, they should at least be stored in a fridge until they from the traps and disperse into the High priority blocks to monitor are used in traps. orchard. Carpophilus can detect the are likely to include those that pheromone from over 100 metres • Synthetic co-attractant must be stored refrigerated (around 4°C) to experience excessive moisture and respond to it by flying towards prevent the rapid breakdown of critical volatile compounds. retention and humidity such as the odour. When the beetles are • Insecticide strips should be stored in a sealed bag in a cool dark place. low lying areas and sites near closer to the pheromone source, dams and other water sources. In they become less responsive to • During field trips for trap maintenance, the co-attractant and addition, blocks with a history of it and more attracted to the fruit pheromone buttons should ideally be carried in a cold esky or car fridge. insect damage, hull rot and orchard odours emitted from the co- • For safety, the co-attractant and insecticide strips should not be kept in hygiene issues should be given attractant solution. Beetles enter the fridges that are used to store food or drinks. attention. trap and find it difficult to escape because of the funnel design, and HOW ARE THE TRAPS USED FOR MONITORING? HOW ARE THE TRAPS USED are subsequently killed by the Considering the limited information regarding Carpophilus in almonds, FOR ATTRACT AND KILL? insecticide strip. we recommend growers begin to monitor this pest using the synthetic co- Growers who are concerned by the numbers they catch in A crucial factor for the effectiveness attractant and insecticide strip without pheromone, and manage traps with monitoring traps and choose to of A&K traps is the combination weekly servicing as detailed below. employ the current A&K system, of odours that attract Carpophilus Carpophilus have been found in spring in almond mummies on the ground must understand that it has over long distances (pheromone) near dripper lines where the nuts are kept moist. Inspection of these nuts not yet been fully evaluated or and short distances (co-attractant). adapted for almonds and has not Both the pheromone and co- been registered for that purpose. attractant are much less effective Remember - the only difference when used separately rather than in between the two systems is that combination. A&K traps include the long-range To simply detect and monitor aggregation pheromone as well as Carpophilus activity in orchard the synthetic co-attractant solution blocks, the traps are used without and insecticide strip. the pheromone buttons. This Once Carpophilus beetles infest ensures that the traps attract beetles and start to feed on stone fruit, they only from the local area, and do not emit their own pheromone which draw more beetles in from outside competes with the pheromone used the blocks being monitored. in A&K traps. In addition, ripening fruit and nuts at hull split or beyond WHAT IS A CARPOPHILUS also emit odours that attract the TRAP COMPRISED OF? Above: Carpophilus hemipterus (Driedfruit beetle) Source of images: Walker, K. (2007) PaDIL - http://www.padil.gov.au beetles and compete against the A plastic funnel trap containing: traps. Therefore, to be effective, • A tub of liquid co-attractant A&K traps need to be installed early (fruit odour) covered with enough to kill the maximum number mesh to keep insects out of the of beetles before the fruit or nuts solution become susceptible to Carpophilus • A rubber button (septum) damage. The aim is to prevent fruit containing Carpophilus or nut infestation by the beetles. As aggregation pheromone suggested earlier, successful use • A piece of insecticide strip to kill of A&K to protect stone fruit relies beetles that enter the trap on reducing beetle populations to below a threshold level before fruit The only difference between traps becomes susceptible to damage, used for monitoring vs A&K is that: i.e. before ripening. This is likely to • A&K traps include the co- be equally important for almonds, attractant solution, insecticide although the threshold levels in the strip and pheromone button. Above: Carpophilus davidsoni (Australian sap beetle) two crops may differ. Source of images: Walker, K. (2007) PaDIL - http://www.padil.gov.au Page 2 PO Box 1507 | 1801 Bookpurnong Road, Loxton SA 5333 | T +61 8 8584 7053 | E [email protected] | W growing.australianalmonds.com.au TRAPPING METHODOLOGY HOW MANY TRAPS ARE REQUIRED? • The high trapping densities used in high-value stone fruit orchards (e.g. 1 trap/ ha to monitor and 2-3 traps/ha for A&K) are not likely to be feasible in large almond orchards for economic and management reasons. For monitoring therefore, it is suggested that growers start with at least one trap per orchard block (approx. 20 ha) to gain some preliminary information on the distribution of the pest within their orchard. • We cannot advise on the number or placement of A&K traps in almonds until the A&K system for Carpophilus is adapted and registered for use in almonds. Above: Carpophilus mutilatus (Confused sap beetle) WHERE SHOULD TRAPS BE LOCATED? Source of images: Walker, K. (2007) PaDIL - http://www.padil.gov.au • Given the very low trapping density likely to be used in almonds no specific recommendation can be made for locating traps for monitoring, • Insert the trap, containing the tub with 250 ml co-attractant, insecticide other than placing them at least 15 metres inside the orchard blocks strip and pheromone button (for A&K only) into the metal ring, taking and taking block history into account (e.g. nut damage, mummy care not to spill the co-attractant. infestation as mentioned above). • For A&K in stone fruit, traps should be placed specifically in the HOW SHOULD TRAPS BE SERVICED? appropriate corner of orchard blocks to allow for the most predominant • Service each trap routinely on the same day of the week, so that every spring and summer winds to distribute the pheromone into the blocks.
Recommended publications
  • A Catalogue of Coleoptera Specimens with Potential Forensic Interest in the Goulandris Natural History Museum Collection
    ENTOMOLOGIA HELLENICA Vol. 25, 2016 A catalogue of Coleoptera specimens with potential forensic interest in the Goulandris Natural History Museum collection Dimaki Maria Goulandris Natural History Museum, 100 Othonos St. 14562 Kifissia, Greece Anagnou-Veroniki Maria Makariou 13, 15343 Aghia Paraskevi (Athens), Greece Tylianakis Jason Zoology Department, University of Canterbury, Private Bag 4800, Christchurch, New Zealand http://dx.doi.org/10.12681/eh.11549 Copyright © 2017 Maria Dimaki, Maria Anagnou- Veroniki, Jason Tylianakis To cite this article: Dimaki, M., Anagnou-Veroniki, M., & Tylianakis, J. (2016). A catalogue of Coleoptera specimens with potential forensic interest in the Goulandris Natural History Museum collection. ENTOMOLOGIA HELLENICA, 25(2), 31-38. doi:http://dx.doi.org/10.12681/eh.11549 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 27/12/2018 06:22:38 | ENTOMOLOGIA HELLENICA 25 (2016): 31-38 Received 15 March 2016 Accepted 12 December 2016 Available online 3 February 2017 A catalogue of Coleoptera specimens with potential forensic interest in the Goulandris Natural History Museum collection MARIA DIMAKI1’*, MARIA ANAGNOU-VERONIKI2 AND JASON TYLIANAKIS3 1Goulandris Natural History Museum, 100 Othonos St. 14562 Kifissia, Greece 2Makariou 13, 15343 Aghia Paraskevi (Athens), Greece 3Zoology Department, University of Canterbury, Private Bag 4800, Christchurch, New Zealand ABSTRACT This paper presents a catalogue of the Coleoptera specimens in the Goulandris Natural History Museum collection that have potential forensic interest. Forensic entomology can help to estimate the time elapsed since death by studying the necrophagous insects collected on a cadaver and its surroundings. In this paper forty eight species (369 specimens) are listed that belong to seven families: Silphidae (3 species), Staphylinidae (6 species), Histeridae (11 species), Anobiidae (4 species), Cleridae (6 species), Dermestidae (14 species), and Nitidulidae (4 species).
    [Show full text]
  • Newsletter of the Biological Survey of Canada
    Newsletter of the Biological Survey of Canada Vol. 40(1) Summer 2021 The Newsletter of the BSC is published twice a year by the In this issue Biological Survey of Canada, an incorporated not-for-profit From the editor’s desk............2 group devoted to promoting biodiversity science in Canada. Membership..........................3 President’s report...................4 BSC Facebook & Twitter...........5 Reminder: 2021 AGM Contributing to the BSC The Annual General Meeting will be held on June 23, 2021 Newsletter............................5 Reminder: 2021 AGM..............6 Request for specimens: ........6 Feature Articles: Student Corner 1. City Nature Challenge Bioblitz Shawn Abraham: New Student 2021-The view from 53.5 °N, Liaison for the BSC..........................7 by Greg Pohl......................14 Mayflies (mainlyHexagenia sp., Ephemeroptera: Ephemeridae): an 2. Arthropod Survey at Fort Ellice, MB important food source for adult by Robert E. Wrigley & colleagues walleye in NW Ontario lakes, by A. ................................................18 Ricker-Held & D.Beresford................8 Project Updates New book on Staphylinids published Student Corner by J. Klimaszewski & colleagues......11 New Student Liaison: Assessment of Chironomidae (Dip- Shawn Abraham .............................7 tera) of Far Northern Ontario by A. Namayandeh & D. Beresford.......11 Mayflies (mainlyHexagenia sp., Ephemerop- New Project tera: Ephemeridae): an important food source Help GloWorm document the distribu- for adult walleye in NW Ontario lakes, tion & status of native earthworms in by A. Ricker-Held & D.Beresford................8 Canada, by H.Proctor & colleagues...12 Feature Articles 1. City Nature Challenge Bioblitz Tales from the Field: Take me to the River, by Todd Lawton ............................26 2021-The view from 53.5 °N, by Greg Pohl..............................14 2.
    [Show full text]
  • Coleoptera: Nitidulidae) on Annona Spp
    Scientific Notes 475 EFFECT OF PHEROMONE BAIT STATIONS FOR SAP BEETLES (COLEOPTERA: NITIDULIDAE) ON ANNONA SPP. FRUIT SET J. E. PEÑA1, A. CASTIÑEIRAS1, R. BARTELT2 AND R. DUNCAN1 1University of Florida, Tropical Research and Education Center, 18905 SW 280 St., Homestead FL 33031 2USDA-ARS-Midwest Area National Center for Agriculture, 1815 N University St., Peoria IL 61604 Atemoya, Annona squamosa L. x Annona cherimola Miller, and sugar apple, A. squamosa, have importance for the tropical fruit industry in Florida, but their yields are unreliable. This is so because fruit set is erratic due to highly variable pollination and physiological stress. Flowers of atemoyas and sugar apples initially undergo a fe- male phase during which stigmas are receptive, and later they have a male phase when the anthers split to shed pollen, but the stigmas are no longer receptive (Gotts- berger 1970). This prevents autogamy (i.e., fertilization of ovules by pollen from the same flower) (Nadel and Peña 1994). Most Annonaceae species are cantharophilous (beetle-pollinated), and a few are sapromyophilus (fly-pollinated) or thrips-pollinated (Gottsberger 1985). Cross pollination of Annona spp. can be carried out by sap beetles (Nitidulidae) (Reiss 1971, Nagel et al. 1989, George et al. 1992). In south Florida, nit- idulid pollinators are in the genera Carpophilus (six species) and Haptoncus (one spe- cies) (Nadel and Peña 1994). Gottsberger (1985) suggested that the Annonaceae and other primitive plants with cantharophilous pollination had evolved a specialized pol- lination system by releasing heavy floral volatiles that attract certain beetle species. For example, atemoya flowers open mid- to late afternoon and allow beetles enter.
    [Show full text]
  • The Nitidulidae and Kateretidae of Sardinia: Recent Data and Updated Checklist (Coleoptera) *
    ConseRVaZione haBitat inVeRteBRati 5: 447–460 (2011) CnBfVR The Nitidulidae and Kateretidae of Sardinia: recent data and updated checklist ( Coleoptera)* Paolo AUDISIO Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Via A. Borelli 50, I-00161 Rome, Italy. E-mail: [email protected] *In: Nardi G., Whitmore D., Bardiani M., Birtele D., Mason F., Spada L. & Cerretti P. (eds), Biodiversity of Marganai and Montimannu (Sardinia). Research in the framework of the ICP Forests network. Conservazione Habitat Invertebrati, 5: 447–460. ABSTRACT This paper deals with the Coleoptera Nitidulidae and Kateretidae collected in Sardinia during the surveys organized by Centro Nazionale per lo Studio e la Conservazione della Biodiversità Forestale "Bosco Fontana" of Verona in 2003–2008, with a few selected additional data collected on the island by the author during entomological trips carried out in 1982–2008, and by several Italian and European entomologists in the last few decades. The paper is also completed with the updated checklist of the species so far recorded from the island, including those based on a few unpublished data or extracted from recently examined material. 79 species (73 Nitidulidae, including 10 the presence of which is based only on very doubtful ancient records, and 6 Kateretidae) are listed for Sardinia. The updated list includes two species endemic to the Corso-Sardinian System: Sagittogethes nuragicus (Audisio & Jelínek, 1990), and Thymogethes foddaii (Audisio, De Biase & Trizzino, 2009) n. comb. Sagittogethes minutus (C. Brisout de Barneville, 1872) is recorded for the fi rst time from continental Italy (SE Calabria). Key words: Nitidulidae, Kateretidae, Sardinia, faunistics.
    [Show full text]
  • Carpophilus Mutilatus) (Coleoptera: Nitidulidae) in Relation to Different Concentrations of Carbon Dioxide (CO2) - 6443
    Nor-Atikah et al.: Evaluation on colour changes, survival rate and life span of the confused sap beetle (Carpophilus mutilatus) (Coleoptera: Nitidulidae) in relation to different concentrations of carbon dioxide (CO2) - 6443 - EVALUATION OF COLOUR CHANGES, SURVIVAL RATE AND LIFE SPAN OF THE CONFUSED SAP BEETLE (Carpophilus mutilatus) (COLEOPTERA: NITIDULIDAE) IN DIFFERENT CONCENTRATIONS OF CARBON DIOXIDE (CO2) NOR-ATIKAH, A. R. – HALIM, M. – NUR-HASYIMAH, H. – YAAKOP, S.* Centre for Insect Systematics, Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia *Corresponding author e-mail: [email protected]; phone: +60-389-215-698 (Received 8th Apr 2020; accepted 13th Aug 2020) Abstract. This study conducted in a rearing room (RR) (300-410 ppm) and in an open roof ventilation greenhouse system (ORVS) (800-950 ppm). No changes observed on Carpophilus mutilatus colouration after treatment in the ORVS. The survival rate increased from 61.59% in the F1 to 73.05% in the F2 generation reared in the RR. However, a sharp decline was observed from 27.05% in F1 to 1.5% in F2 in the ORVS. There was significant difference in number of individuals between RR and ORVS in F1 and F2 (F 12.76 p= 0.001< 0.05). The life span of F1 and F2 in the RR took about 46 days to complete; 7-21 days from adult to larvae stage, 5-15 days from the larval to pupal stage and 3-10 days from adult to pupal stage. Whereas in ORVS, F1 and F2 took about 30 and 22 days, respectively to complete their life cycles; that is 7-14, 7-14 days (adult to larval stage), 5-10, 0-5 days (larval to pupal stage) and 3-6, 0-3 days (pupal to adult stage), respectively.
    [Show full text]
  • New Records and Taxonomic Updates for Adventive Sap Beetles (Coleoptera: Nitidulidae) in Hawai`I
    42 BISHOP MUSEUM OCCASIONAL PAPERS: No. 79, 2004 Expedition, 1895-’97, Nos. 501-705. Made by Perkins in 1936. Box 1, Bishop Museum Archives. (Photocopy of original in British Museum of Natural History). Sharp, D. 1878. On some Nitidulidae from the Hawaiian Islands. Trans. R. Entomol. Soc. Lond. 26: 127–140. ———. & H. Scott. 1908. Coleoptera III, p. 435–508. In: Sharp D., ed. Fauna Hawaii- ensis, Volume 3, Part 5. The University Press, Cambridge, England. Figs. 1–3. Prosopeus male genitalia. 1, Prosopeus subaeneus Murray; tegmen of male, ventral; 2, same, apex of inverted male internal sac; 3, Prosopeus scottianus (Sharp); apex of inverted male internal sac. sd, sperm duct; v, ventral surface. Scale bars 0.1mm. New records and taxonomic updates for adventive sap beetles (Coleoptera: Nitidulidae) in Hawai`i CURTIS P. EWING (Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York 14853-0901, USA; email: [email protected]) and ANDREW S. CLINE (Louisiana State Arthropod Museum, Department of Entomology, Louisiana State University, Baton Rouge, Louisiana 10803, USA; email: [email protected]) The adventive sap beetles present in Hawai`i are all saprophagous, except for Cybocephalus nipponicus Endrödy-Younga, which is predatory. Species in the genus Carpophilus are the most commonly encountered and are considered nuisance pests around pineapple fields and canneries (Illingworth, 1929; Schmidt, 1935; Hinton, 1945). The remaining species are less frequently encountered and are not considered to be impor- tant pests. We report 2 new state records, 5 new island records, and 4 taxonomic changes for the adventive sap beetles in Hawai`i. With the exception of Stelidota chontalensis Sharp, all of the species reported are widely distributed outside Hawai`i.
    [Show full text]
  • Biorational Tree-Fruit Pest Management, an Area That Ron Was So Instrumental in Nurturing
    BIORATIONAL T REE-FRUIT PEST MANAGEMENT This page intentionally left blank BIORATIONAL T REE-FRUIT PEST MANAGEMENT Edited by Martín Aluja Tracy C. Leskey and Charles Vincent CABI is a trading name of CAB International CABI Head Offi ce CABI North American Offi ce Nosworthy Way 875 Massachusetts Avenue Wallingford 7th Floor Oxfordshire OX10 8DE Cambridge, MA 02139 UK USA Tel: +44 (0)1491 832111 Tel: +1 617 395 4056 Fax: +44 (0)1491 833508 Fax: +1 617 354 6875 E-mail: [email protected] E-mail: [email protected] Website: www.cabi.org © CAB International 2009. All rights reserved. No part of this publication may be reproduced in any form or by any means, electronically, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. Library of Congress Cataloging-in-Publication Data Biorational tree fruit pest management / edited by Martín Aluja, Tracy C. Leskey, and Charles Vincent. p. cm. Includes bibliographical references and index. ISBN 978-1-84593-484-2 (alk. paper) 1. Pests–Integrated control. 2. Fruit–Diseases and pests. I. Aluja, Martin. II. Leskey, Tracy C. III. Vincent, Charles, 1953- IV. Title. SB951.B48 2009 634′.049–dc22 2008045145 ISBN-13: 978 1 84593 484 2 Typeset by AMA Dataset, Preston. Printed and bound in the UK by the MPG Books Group, Bodmin. The paper used for the text pages in this book is FSC certifi ed. The FSC (Forest Stewardship Council) is an international network to promote responsible management of the world’s forests.
    [Show full text]
  • Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring Within the Kahului Airport Environs, Maui, Hawai‘I: Synthesis Report
    Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Prepared by Francis G. Howarth, David J. Preston, and Richard Pyle Honolulu, Hawaii January 2012 Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Francis G. Howarth, David J. Preston, and Richard Pyle Hawaii Biological Survey Bishop Museum Honolulu, Hawai‘i 96817 USA Prepared for EKNA Services Inc. 615 Pi‘ikoi Street, Suite 300 Honolulu, Hawai‘i 96814 and State of Hawaii, Department of Transportation, Airports Division Bishop Museum Technical Report 58 Honolulu, Hawaii January 2012 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright 2012 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2012 001 to the Hawaii Biological Survey COVER Adult male Hawaiian long-horned wood-borer, Plagithmysus kahului, on its host plant Chenopodium oahuense. This species is endemic to lowland Maui and was discovered during the arthropod surveys. Photograph by Forest and Kim Starr, Makawao, Maui. Used with permission. Hawaii Biological Report on Monitoring Arthropods within Kahului Airport Environs, Synthesis TABLE OF CONTENTS Table of Contents …………….......................................................……………...........……………..…..….i. Executive Summary …….....................................................…………………...........……………..…..….1 Introduction ..................................................................………………………...........……………..…..….4
    [Show full text]
  • Amargosa River Expert Bioblitz April 7-9 , 2017 Final Report
    Amargosa River Expert BioBlitz April 7-9th, 2017 Final Report Photo credit: Janine Knapp Please cite this document as: Parker, S.S., B.S. Cohen, N. Fraga, B. Brown, J. Cole, W. Chatfield-Taylor, K. Guadalupe, G.B. Pauly, D. Cooper, and M. Ordeñana. 2017. Amargosa River Expert BioBlitz. Unpublished Report. The Nature Conservancy. Los Angeles, California. 50 pp. ii Report Contributors: Sophie S. Parker The Nature Conservancy [email protected] Brian S. Cohen The Nature Conservancy [email protected] Naomi Fraga Rancho Santa Ana Botanic Garden [email protected] Brian Brown Natural History Museum of Los Angeles County [email protected] Jeffrey Cole Pasadena City College [email protected] Will Chatfield-Taylor [email protected] Kevin Guadalupe Nevada Department of Wildlife [email protected] Gregory B. Pauly Natural History Museum of Los Angeles County [email protected] Daniel Cooper Cooper Ecological Monitoring, Inc. [email protected] Miguel Ordeñana Natural History Museum of Los Angeles County [email protected] iii Acknowledgements We thank our agency partners at the Bureau of Land Management, particularly C. Otahal, who co-organized the Amargosa River BioBlitz. We also thank the Amargosa Conservancy for supporting the collection efforts, and private land owners B. Brown of China Ranch and S. Sorrells of Shoshone Village for hosting volunteers on their property. iv Table of Contents I. Introduction and Context: Amargosa Watershed Conservation .............................................. 1 II. What is an Expert BioBlitz? ...................................................................................................
    [Show full text]
  • Biology of Dried Fruit Beetle, Carpophilus Hemipterus (L) and Its Damage Assessment on Different Dried Fruits in Storage
    BIOLOGY OF DRIED FRUIT BEETLE, CARPOPHILUS HEMIPTERUS (L) AND ITS DAMAGE ASSESSMENT ON DIFFERENT DRIED FRUITS IN STORAGE MST. REZENNAHAR KUMKUM DEPARTMENT OF ENTOMOLOGY SHER-E-BANGLA AGRICULTURAL UNIVERSITY DHAKA-1207 JUNE, 2017 1 BIOLOGY OF DRIED FRUIT BEETLE, CARPOPHILUS HEMIPTERUS (L) AND ITS DAMAGE ASSESSMENT ON DIFFERENT DRIED FRUITS IN STORAGE BY MST. REZENNAHAR KUMKUM REG. NO.: 11-04566 A Thesis Submitted to the Faculty of Agriculture Sher-e-Bangla Agricultural University, Dhaka in partial fulfilment of the requirements for the degree of MASTER OF SCIENCE (MS) IN ENTOMOLOGY SEMESTER: JANUARY - JUNE, 2017 APPROVED BY: ………………………………………………….. …………………………………………… (Prof. Dr. Mohammed Ali) (Prof. Dr. Tahmina Akter) Supervisor Co-Supervisor Department of Entomology Department of Entomology SAU, Dhaka -1207 SAU, Dhaka-1207 ………………………………………………….. Dr. Mst. Nur Mahal Akter Banu Chairman Department of Entomology & Examination Committee 2 DEPARTMENT OF ENTOMOLOGY Sher-e-Bangla Agricultural University Sher-e-Bangla Nagar, Dhaka-1207 CERTIFICATE This is to certify that the thesis entitled ‘Biology of dried fruit beetle, Carpophilus hemipterus (L) and its damage assessment on different dried fruits in storage’ submitted to the Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, in partial fulfillment of the requirements for the degree of Master of Science in Entomology embodies the result of a piece of bona fide research work carried out by Mst. Rezennahar Kumkum, Registration number: 11-04566 under my supervision and guidance. No part of the thesis has been submitted for any other degree or diploma. I further certify that any help or source of information, received during the course of this investigation has duly been acknowledged.
    [Show full text]
  • Halona2021r.Pdf
    Terrestrial Arthropod Survey of Hālona Valley, Joint Base Pearl Harbor-Hickam, Naval Magazine Lualualei Annex, August 2020–November 2020 Neal L. Evenhuis, Keith T. Arakaki, Clyde T. Imada Hawaii Biological Survey Bernice Pauahi Bishop Museum Honolulu, Hawai‘i 96817, USA Final Report prepared for the U.S. Navy Contribution No. 2021-003 to the Hawaii Biological Survey EXECUTIVE SUMMARY The Bishop Museum was contracted by the U.S. Navy to conduct surveys of terrestrial arthropods in Hālona Valley, Naval Magazine Lualualei Annex, in order to assess the status of populations of three groups of insects, including species at risk in those groups: picture-winged Drosophila (Diptera; flies), Hylaeus spp. (Hymenoptera; bees), and Rhyncogonus welchii (Coleoptera; weevils). The first complete survey of Lualualei for terrestrial arthropods was made by Bishop Museum in 1997. Since then, the Bishop Museum has conducted surveys in Hālona Valley in 2015, 2016–2017, 2017, 2018, 2019, and 2020. The current survey was conducted from August 2020 through November 2020, comprising a total of 12 trips; using yellow water pan traps, pitfall traps, hand collecting, aerial net collecting, observations, vegetation beating, and a Malaise trap. The area chosen for study was a Sapindus oahuensis grove on a southeastern slope of mid-Hālona Valley. The area had potential for all three groups of arthropods to be present, especially the Rhyncogonus weevil, which has previously been found in association with Sapindus trees. Trapped and collected insects were taken back to the Bishop Museum for sorting, identification, data entry, and storage and preservation. The results of the surveys proved negative for any of the target groups.
    [Show full text]
  • 5 Biology, Behavior, and Ecology of Pests in Other Durable Commodities
    5 Biology, Behavior, and Ecology of Pests in Other Durable Commodities Peter A. Edde Marc Eaton Stephen A. Kells Thomas W. Phillips Introduction biology, behavior, and ecology of the common insect pests of stored durable commodities. Physical ele- Other durable commodities of economic importance ments defined by the type of storage structure, insect besides dry grains include tobacco, spices, mush- fauna, and interrelationships in the storage environ- rooms, seeds, dried plants, horticultural and agro- ment are also discussed. nomic seeds, decorative dried plants, birdseed, dry pet foods, and animal products such as dried meat and fish, fishmeal, horns, and hooves. Similar to dry Life Histories grains, these commodities are typically maintained and Behavior at such low moisture levels that preserving quality by minimizing insect damage can be a significant chal- lenge. Stored commodities may become infested at the processing plant or warehouse, in transit, at the store, or at home. Many arthropod pests of stored commodities are relatively abundant outdoors, but natural host plants before preadaptation to stored products remain unknown. Capable of long flight, they migrate into unprotected warehouses. Adults (larvae) crawl through seams and folds or chew into sealed packages and multiply, diminishing product quality and quantity. Infestations may spread within a manufacturing facility through electrical conduit Figure 1. Adult of the cigarette beetle, Lasioderma serricorne and control panels. (F.), 2 to 4 mm long (from Bousquet 1990). The type of pest observed on a stored product Cigarette Beetle Lasioderma depends on the commodity, but some insects vary widely in their food preferences and may infest a Serricorne (F.) wide range of commodities.
    [Show full text]