Carpophilinae: Nitidulidae: Coleoptera)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Coleoptera, Cucujoidea, Nitidulidae
Евразиатский энтомол. журнал 14(3): 276–284 © EUROASIAN ENTOMOLOGICAL JOURNAL, 2015 Æóêè-áëåñòÿíêè (Coleoptera, Cucujoidea, Nitidulidae) ßðîñëàâñêîé îáëàñòè: ïîäñåìåéñòâà Carpophilinae, Cryptarchinae è Nitidulinae, ñ óêàçàíèÿìè íåêîòîðûõ äðóãèõ íîâûõ äëÿ ðåãèîíà âèäîâ æóêîâ èç ðàçíûõ ñåìåéñòâ Sap beetles (Coleoptera, Cucujoidea, Nitidulidae) of Yaroslavskaya Oblast’: subfamilies Carpophilinae, Cryptarchinae and Nitidulinae, together with new records of species from the other beetle families Ä.Â. Âëàñîâ*, Í.Á. Íèêèòñêèé** D.V. Vlasov*, N.B. Nikitsky** * Ярославский государственный историко-архитектурный и художественный музей-заповедник, Богоявленская пл. 25, Ярославль 15000 Россия. E-mail: [email protected]. * Yaroslavl State Historical and Architectural Museum-Reserve, Bogoyavlenskaya Sq. 25, Yaroslavl 150000 Russia. ** Зоологический музей МГУ им. М.В. Ломоносова, ул. Большая Никитская 6, Москва 125009 Россия. E-mai l: [email protected]. ** Zoological Museum of Moscow Lomonosov State University, Bolshaya Nikitskaya Str. 6, Moscow 125009 Russia. Ключевые слова: жуки-блестянки, Nitidulidae, Ярославская область, новые виды Ptinidae, Coccinellidae, Tenebrionidae, Scolytinae. Key words: sap beetles, Nitidulidae, Yaroslavskaya Oblast’, new species Ptinidae, Coccinellidae, Tenebrionidae, Scolytinae. Резюме. Статья посвящена изучению жуков-блестя- culinaris, and Curculionidae (Scolytinae), Trypophloeus bin- нок (Coleoptera, Nitidulidae) Ярославской области из под- odulus and Scolytus sulcifrons are recorded from the region семейств Carpophilinae, Cryptarchinae, Nitudulinae, а так- for the first time. же новым для региона видам ряда других семейств, которые являются дополнением к предшествующим пуб- Ярославская область расположена в центре Вос- ликациям. Из анализируемых групп блестянок в работу точно-Европейской равнины между 56°32' и 58°55'с.ш., включено 25 видов, три из которых являются новыми 37°21' и 41°12' в.д. и занимает часть бассейна Верхней для региона (Omosita discoidea, O. -
A Catalogue of Coleoptera Specimens with Potential Forensic Interest in the Goulandris Natural History Museum Collection
ENTOMOLOGIA HELLENICA Vol. 25, 2016 A catalogue of Coleoptera specimens with potential forensic interest in the Goulandris Natural History Museum collection Dimaki Maria Goulandris Natural History Museum, 100 Othonos St. 14562 Kifissia, Greece Anagnou-Veroniki Maria Makariou 13, 15343 Aghia Paraskevi (Athens), Greece Tylianakis Jason Zoology Department, University of Canterbury, Private Bag 4800, Christchurch, New Zealand http://dx.doi.org/10.12681/eh.11549 Copyright © 2017 Maria Dimaki, Maria Anagnou- Veroniki, Jason Tylianakis To cite this article: Dimaki, M., Anagnou-Veroniki, M., & Tylianakis, J. (2016). A catalogue of Coleoptera specimens with potential forensic interest in the Goulandris Natural History Museum collection. ENTOMOLOGIA HELLENICA, 25(2), 31-38. doi:http://dx.doi.org/10.12681/eh.11549 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 27/12/2018 06:22:38 | ENTOMOLOGIA HELLENICA 25 (2016): 31-38 Received 15 March 2016 Accepted 12 December 2016 Available online 3 February 2017 A catalogue of Coleoptera specimens with potential forensic interest in the Goulandris Natural History Museum collection MARIA DIMAKI1’*, MARIA ANAGNOU-VERONIKI2 AND JASON TYLIANAKIS3 1Goulandris Natural History Museum, 100 Othonos St. 14562 Kifissia, Greece 2Makariou 13, 15343 Aghia Paraskevi (Athens), Greece 3Zoology Department, University of Canterbury, Private Bag 4800, Christchurch, New Zealand ABSTRACT This paper presents a catalogue of the Coleoptera specimens in the Goulandris Natural History Museum collection that have potential forensic interest. Forensic entomology can help to estimate the time elapsed since death by studying the necrophagous insects collected on a cadaver and its surroundings. In this paper forty eight species (369 specimens) are listed that belong to seven families: Silphidae (3 species), Staphylinidae (6 species), Histeridae (11 species), Anobiidae (4 species), Cleridae (6 species), Dermestidae (14 species), and Nitidulidae (4 species). -
Biology of Meligethes Seminulum Lec. (Coleoptera: Nitidulidae)
AIT ABSTRACT OF THE THESIS OF Elvis Arnie Dickason for the M.S. in Entoino1or (Name) çDegree) (Najor) Date Thesis presented May 10, 19L9 Title Biology of Me14thes semiri1um Lee. (Coleoptera:Nitiduiidae) Abstract Approved (iao Red clover is an inioortant croo in the iUamette Valley. One of the important 1initin factors in clover seed production is the vast cornlex of insects affecting clover in all stages of growth. In the late 1930's a small beetle began apoearing in large numbers in the red clover seed producing areas of the valley. The insect is a member of the order Coleoptera, fainiJ Nitidulidae. It was described from Oregon in 1860 as Me1igetes seminuluin by J. L. Leconte. The studies outlined in this paper were done during the suimner of 19)8. The egg stage was never found during this work. The larvae were found in the blossoms of clover and haiiy vetch during June arid July. rfhe pupae were four naked in the upper lrers of soil during the same period. The adults were present in the blossoms of a large number of plants from April through August. The winter is passed as adults in soil debris. Dissection of the larvae revealed that pollen formed at least part of the larval diet. Whenever the adults were present in clover the blossoms were browned, blasted, had the style broken, and failed to set seeds. That the adults are caab1e of causing this damage was demon- strated in laboratory feeding exoeriments. The exact feeding habits of trie adults were not determined. In order to identify the snecies with which this stuy ws con- cerned, a large number of adults were examined. -
Snake Gourd and Pointed Gourd: Botany and Horticulture
9 Snake Gourd and Pointed Gourd: Botany and Horticulture L. K. Bharathi Central Horticultural Experiment Station Bhubaneswar 751019, Odisha, India T. K. Behera and A. K. Sureja Division of Vegetable Science Indian Agricultural Research Institute New Delhi 110012, India K. Joseph John National Bureau of Plant Genetic Resources KAU (P.O.), Thrissur 680656, Kerala, India Todd C. Wehner Department of Horticultural Science North Carolina State University Raleigh, North Carolina 27695-7609, USA ABSTRACT Trichosanthes is the largest genus of the family Cucurbitaceae. Its center of diversity exists in southern and eastern Asia from India to Taiwan, The Philippines, Japan, and Australia, Fiji, and Pacific Islands. Two species, T. cucumerina (snake gourd) and T. dioica (pointed gourd), are widely cultivated in tropical regions, mainly for the culinary use of their immature fruit. The fruit of these two species are good sources of minerals and dietary fiber. Despite their economic importance and nutritive values, not much effort has been invested toward genetic improvement of these crops. Only recently efforts have been directed toward systematic improvement strategies of these crops in India. Horticultural Reviews, Volume 41, First Edition. Edited by Jules Janick. Ó 2013 Wiley-Blackwell. Published 2013 by John Wiley & Sons, Inc. 457 458 L. K. BHARATHI ET AL. KEYWORDS: cucurbits; Trichosanthes; Trichosanthes cucumerina; Tricho- santhes dioica I. INTRODUCTION II. THE GENUS TRICHOSANTES A. Origin and Distribution B. Taxonomy C. Cytogenetics D. Medicinal Use III. SNAKE GOURD A. Quality Attributes and Human Nutrition B. Reproductive Biology C. Ecology D. Culture 1. Propagation 2. Nutrient Management 3. Water Management 4. Training 5. Weed Management 6. -
Jordan Beans RA RMO Dir
Importation of Fresh Beans (Phaseolus vulgaris L.), Shelled or in Pods, from Jordan into the Continental United States A Qualitative, Pathway-Initiated Risk Assessment February 14, 2011 Version 2 Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology United States Department of Agriculture Animal and Plant Health Inspection Service Plant Protection and Quarantine 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Pest Risk Assessment for Beans from Jordan Executive Summary In this risk assessment we examined the risks associated with the importation of fresh beans (Phaseolus vulgaris L.), in pods (French, green, snap, and string beans) or shelled, from the Kingdom of Jordan into the continental United States. We developed a list of pests associated with beans (in any country) that occur in Jordan on any host based on scientific literature, previous commodity risk assessments, records of intercepted pests at ports-of-entry, and information from experts on bean production. This is a qualitative risk assessment, as we express estimates of risk in descriptive terms (High, Medium, and Low) rather than numerically in probabilities or frequencies. We identified seven quarantine pests likely to follow the pathway of introduction. We estimated Consequences of Introduction by assessing five elements that reflect the biology and ecology of the pests: climate-host interaction, host range, dispersal potential, economic impact, and environmental impact. We estimated Likelihood of Introduction values by considering both the quantity of the commodity imported annually and the potential for pest introduction and establishment. We summed the Consequences of Introduction and Likelihood of Introduction values to estimate overall Pest Risk Potentials, which describe risk in the absence of mitigation. -
Newsletter of the Biological Survey of Canada
Newsletter of the Biological Survey of Canada Vol. 40(1) Summer 2021 The Newsletter of the BSC is published twice a year by the In this issue Biological Survey of Canada, an incorporated not-for-profit From the editor’s desk............2 group devoted to promoting biodiversity science in Canada. Membership..........................3 President’s report...................4 BSC Facebook & Twitter...........5 Reminder: 2021 AGM Contributing to the BSC The Annual General Meeting will be held on June 23, 2021 Newsletter............................5 Reminder: 2021 AGM..............6 Request for specimens: ........6 Feature Articles: Student Corner 1. City Nature Challenge Bioblitz Shawn Abraham: New Student 2021-The view from 53.5 °N, Liaison for the BSC..........................7 by Greg Pohl......................14 Mayflies (mainlyHexagenia sp., Ephemeroptera: Ephemeridae): an 2. Arthropod Survey at Fort Ellice, MB important food source for adult by Robert E. Wrigley & colleagues walleye in NW Ontario lakes, by A. ................................................18 Ricker-Held & D.Beresford................8 Project Updates New book on Staphylinids published Student Corner by J. Klimaszewski & colleagues......11 New Student Liaison: Assessment of Chironomidae (Dip- Shawn Abraham .............................7 tera) of Far Northern Ontario by A. Namayandeh & D. Beresford.......11 Mayflies (mainlyHexagenia sp., Ephemerop- New Project tera: Ephemeridae): an important food source Help GloWorm document the distribu- for adult walleye in NW Ontario lakes, tion & status of native earthworms in by A. Ricker-Held & D.Beresford................8 Canada, by H.Proctor & colleagues...12 Feature Articles 1. City Nature Challenge Bioblitz Tales from the Field: Take me to the River, by Todd Lawton ............................26 2021-The view from 53.5 °N, by Greg Pohl..............................14 2. -
Managing Carpophilus Beetle in Almonds
JANUARY 2016 ALL ABOUT ALMONDS ORCHARD MANAGEMENT MANAGING CARPOPHILUS BEETLE IN ALMONDS PRELIMINARY MONITORING GUIDELINES, ATTRACT & KILL GUIDELINES FOR 2016 - 2017 SEASON CARPOPHILUS IN ALMONDS project includes research on the KEY POINTS distribution of different Carpophilus Carpophilus beetles comprise many species throughout orchards and in species with different preferences different almond growing regions, Almonds are most vulnerable to attack from for fruit type and fruit ripening/ testing whether the “stonefruit” lure Carpophilus Beetle during hull split. maturing stage. In recent years, is effective in almonds and how its Pheromone and co-attractant are much less almond growers have indicated potency might be improved, and effective when used separately rather than in significant crop losses due to determining the most effective combination. Carpophilus, and there is an urgent spacing of A&K traps to achieve need for an Attract and Kill (A&K) control. High priority blocks to monitor are likely to system that can control these This article contains information on include those that experience excessive pests, particularly in the ‘hull-split’ how best to apply an A&K strategy to moisture retention and humidity. development stage when almonds monitor and control Carpophilus in are most vulnerable to attack. During It is suggested that growers start with at least almonds using the current stonefruit the 2014/15 and 2015/16 seasons, one trap per orchard block (approx. 20 ha). lure. We consider this an interim five species of Carpophilus were guide for interested growers, and as detected in samples from traps in Carpophilus starts to become active and able we continue our research we aim to almond orchards, and concerns that to fly to traps as temperatures increase in provide growers with more detailed beetle populations could escalate late winter/early spring. -
Family Nitidulidae
1 Family Nitidulidae Key to genus adapted and updated from Joy (1932) A Practical Handbook of British Beetles. Checklist From the Checklist of Beetles of the British Isles, 2012 edition (R.G. Booth), edited by A. G. Duff (available from www.coleopterist.org.uk/checklist.htm). Subfamily Carpophilinae Subfamily Cryptarchinae Urophorus Murray, 1864 Cryptarcha Stuckard, 1839 Carpophilus Stephens, 1829 Glischrochilus Reitter 1873 Epuraea Erichson, 1843 Pityophagus Stuckard, 1839 Subfamily Meligethinae Pria Stephens, 1829 Subfamily Cybocephalinae Meligethes Stephens, 1829 Cybocephalus Erichson, 1844 Subfamily Nitidulinae Nitidula Fabricius 1775 Omosita Erichson, 1843 Soronia Erichson, 1843 Amphotis Erichson, 1843 Cychrmaus Kugelann, 1794 Pocadius Erichson, 1843 Thalycra Erichson, 1843 Image Credits The illustrations in this key are reproduced from the Iconographia Coleopterorum Poloniae, with permission kindly granted by Lech Borowiec. Creative Commons. © Mike Hackston (2009) Adapted and updated from Joy (1932). 2 Family Nitidulidae Key to genus 1 Elytra truncate leaving more than just the pygidium exposed. .......................................2 Only the pygidium is exposed beyond the elytra. ......................................3 Creative Commons. © Mike Hackston (2009) Adapted and updated from Joy (1932). 3 2 Antennae with the club much more distinct; pronotum with the hind margin simply and gently curved and the sides less rounded; hind angles of pronotum more distinct. ....................................... .......... Genera Carpophilus and Urophorus Club of the antennae not abruptly widening compared to the rest of the antennae. ................ .......... Family Kateretidae Creative Commons. © Mike Hackston (2009) Adapted and updated from Joy (1932). 4 3 Elytra more distinctly rounded (in cross section) and more elongate (best viewed from the side). ...............................................................................4 Elytra more flattened and less elongate. ...................................................9 Creative Commons. -
A Microsatellite-Based Identification Tool Used to Confirm Vector Association in a Fungal Tree Pathogen
Australasian Plant Pathology (2018) 47:63–69 https://doi.org/10.1007/s13313-017-0535-7 ORIGINAL PAPER A microsatellite-based identification tool used to confirm vector association in a fungal tree pathogen D. H. Lee1 & J. Roux2 & B. D. Wingfield3 & M. J. Wingfield1 Received: 28 July 2017 /Accepted: 5 December 2017 /Published online: 18 January 2018 # Australasian Plant Pathology Society Inc. 2017 Abstract Many fungi live in close association with insects, and some are specifically vectored by them. One of the best examples is found in the so-called Ophiostomatoid fungi, including species of Ceratocystis and other genera in the Ceratocystidaceae. Our under- standing of vectorship in these fungi is based predominantly on either their frequency of isolation from insects or the success with which these fungi are isolated from their insect vectors. The fact that Ceratocystis species mostly have casual as opposed to highly specific relationships with their insect vectors makes it difficult to prove insect vector relations. In order to provide unambiguous support for Ceratocystis species being vectored by insects, we interrogated whether genotypes of the tree pathogen, Ceratocystis albifundus, would be shared between isolates retrieved from either infected trees or nitidulid beetles. Ceratocystis albifundus isolates were collected from nitidulid beetles and from naturally occurring wounds on trees in the Kruger National Park (KNP) in South Africa. The genotypes of these isolates were then determined using eight microsatellite markers, and they were compared using a haploid network analyses. A high frequency of Multi-Locus Haplotypes (MLHs) derived from nitidulid beetles was found to be shared with those from wounded trees across the KNP. -
Semiochemical-Based Alternatives to Synthetic Toxicant Insecticides For
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Rothamsted Repository Arthropod-Plant Interactions DOI 10.1007/s11829-017-9569-6 ORIGINAL PAPER Semiochemical‑based alternatives to synthetic toxicant insecticides for pollen beetle management Alice L. Mauchline1 · Maxime R. Hervé2 · Samantha M. Cook3 Received: 31 March 2017 / Accepted: 3 October 2017 © Her Majesty the Queen in Right of United Kingdom 2017 Abstract There is an urgent need to develop sustainable Introduction pest management systems to protect arable crops in order to replace the current over-reliance on synthetic insecticides. The pollen beetle Brassicogethes aeneus Fab. (synonym Semiochemicals are insect- or plant-derived chemicals that Meligethes aeneus) (Coleoptera: Nitidulidae) is a major are used by organisms as information signals. Integrated pest pest of oilseed rape (OSR) (Brassica napus L.) crops (Wil- management tools are currently in development that utilise liams 2010). Of the suite of pests that attack OSR, pollen semiochemicals to manipulate the behaviour of pest insects beetles were found to have the largest negative impact on and their natural enemies to provide efective control of pests seed yield (Gagic et al. 2016). They can cause signifcant within the crop. These innovative tools usually require fewer feeding damage to the developing fower buds which can inputs and can involve multiple elements, therefore reduc- result in blind stalks, thereby preventing the growth of pods, ing the likelihood of resistance developing compared with leading to large economic losses (Hansen 2004; Zlof 2008). use of synthetic toxicants. We review here the life cycle of Pyrethroid insecticides have been the main control option for the pollen beetle Brassicogethes aeneus (previously known pollen beetles for over 20 years. -
Coleoptera: Nitidulidae) on Annona Spp
Scientific Notes 475 EFFECT OF PHEROMONE BAIT STATIONS FOR SAP BEETLES (COLEOPTERA: NITIDULIDAE) ON ANNONA SPP. FRUIT SET J. E. PEÑA1, A. CASTIÑEIRAS1, R. BARTELT2 AND R. DUNCAN1 1University of Florida, Tropical Research and Education Center, 18905 SW 280 St., Homestead FL 33031 2USDA-ARS-Midwest Area National Center for Agriculture, 1815 N University St., Peoria IL 61604 Atemoya, Annona squamosa L. x Annona cherimola Miller, and sugar apple, A. squamosa, have importance for the tropical fruit industry in Florida, but their yields are unreliable. This is so because fruit set is erratic due to highly variable pollination and physiological stress. Flowers of atemoyas and sugar apples initially undergo a fe- male phase during which stigmas are receptive, and later they have a male phase when the anthers split to shed pollen, but the stigmas are no longer receptive (Gotts- berger 1970). This prevents autogamy (i.e., fertilization of ovules by pollen from the same flower) (Nadel and Peña 1994). Most Annonaceae species are cantharophilous (beetle-pollinated), and a few are sapromyophilus (fly-pollinated) or thrips-pollinated (Gottsberger 1985). Cross pollination of Annona spp. can be carried out by sap beetles (Nitidulidae) (Reiss 1971, Nagel et al. 1989, George et al. 1992). In south Florida, nit- idulid pollinators are in the genera Carpophilus (six species) and Haptoncus (one spe- cies) (Nadel and Peña 1994). Gottsberger (1985) suggested that the Annonaceae and other primitive plants with cantharophilous pollination had evolved a specialized pol- lination system by releasing heavy floral volatiles that attract certain beetle species. For example, atemoya flowers open mid- to late afternoon and allow beetles enter. -
Oregon Invasive Species Action Plan
Oregon Invasive Species Action Plan June 2005 Martin Nugent, Chair Wildlife Diversity Coordinator Oregon Department of Fish & Wildlife PO Box 59 Portland, OR 97207 (503) 872-5260 x5346 FAX: (503) 872-5269 [email protected] Kev Alexanian Dan Hilburn Sam Chan Bill Reynolds Suzanne Cudd Eric Schwamberger Risa Demasi Mark Systma Chris Guntermann Mandy Tu Randy Henry 7/15/05 Table of Contents Chapter 1........................................................................................................................3 Introduction ..................................................................................................................................... 3 What’s Going On?........................................................................................................................................ 3 Oregon Examples......................................................................................................................................... 5 Goal............................................................................................................................................................... 6 Invasive Species Council................................................................................................................. 6 Statute ........................................................................................................................................................... 6 Functions .....................................................................................................................................................