In Winter Oilseed Rape Zdzisław Klukowski, Jacek P

Total Page:16

File Type:pdf, Size:1020Kb

In Winter Oilseed Rape Zdzisław Klukowski, Jacek P IOBC / WPRS Working Group “Integrated Control in Oilseed Crops” OILB / SROP Groupe de Travail “Lutte Intégrée en Culture d’Oléagineux” Proceedings of the meeting at Poznań (Poland) 11-12 October, 2004 Edited by Birger Koopmann, Samantha Cook, Neal Evans and Bernd Ulber IOBC wprs Bulletin Bulletin OILB srop Vol. 29 (7) 2006 The content of the contributions is in the responsibility of the authors The IOBC/WPRS Bulletin is published by the International Organization for Biological and Integrated Control of Noxious Animals and Plants, West Palearctic Regional Section (IOBC/WPRS) Le Bulletin OILB/SROP est publié par l‘Organisation Internationale de Lutte Biologique et Intégrée contre les Animaux et les Plantes Nuisibles, section Regionale Ouest Paléarctique (OILB/SROP) Copyright: IOBC/WPRS 2006 The Publication Commission of the IOBC/WPRS: Horst Bathon Luc Tirry Federal Biological Research Center University of Gent for Agriculture and Forestry (BBA) Laboratory of Agrozoology Institute for Biological Control Department of Crop Protection Heinrichstr. 243 Coupure Links 653 D-64287 Darmstadt (Germany) B-9000 Gent (Belgium) Tel +49 6151 407-225, Fax +49 6151 407-290 Tel +32-9-2646152, Fax +32-9-2646239 e-mail: [email protected] e-mail: luc.tirry@ rug.ac.be Address General Secretariat: Dr. Philippe C. Nicot INRA – Unité de Pathologie Végétale Domaine St Maurice - B.P. 94 F-84143 Monfavet Cedex France ISBN 92-9067-190-2 Web: http://www.iobc-wprs.org Dedication Convenors for years At our last Working Group meeting in Poznań, October 2005, we listened to the talk given by Volker Paul about the history of our Working Group and were highly impressed by what we heard. As you may remember from the last issue of this Working Group Bulletin, Bent Bromand was the founding head of the group until 1988. At this time Volker Paul and Ingrid Williams began their convenorships. From 1988 until 2003, they organized ten (!) Working Group meetings and were editors of seven (!) IOBC-Bulletins. Both organizing meetings and editorial work are time consuming assignments. Their activities were of course an honorary post, enhancing their workload considerably. We are all obliged to Ingrid and Volker. Their activities offered the possibility to meet and have exchange with colleagues from abroad. Beside the exchange of the most recent scientific results and publishing them, the set up of a `scientific-social´ network becomes more and more important. Against this background the Working Group is of extraordinary importance to all of us. Successful funding of four EU projects (BORIS, MASTER, IMASCORE and SECURE) may also be attributed at least partly to the activities of Ingrid and Volker. These few words can only partially appreciate their achievements. Thank you both, for all you have done for the group! Now, we hope that you are able to use your time for other nice things beside the Working Group on Integrated Control in Oilseed Crops. We hope that you keep in good shape, as can be seen on the photograph taken at our conference dinner in Poznań 2005. With all our very best wishes on behalf of the whole Working Group! Birger Koopmann and Sam Cook, April 2006 i ii Preface At our last meeting in 2004, held at Rothamsted Research, Harpenden, UK, we decided to meet next in Poznań, Poland, in 2005, to take advantage of the possibility of support provided by the EU project PAGEN. Thanks to all who helped the meeting to run so smoothly and in particular, Małgorzata ‘Gosia’ Jędryczka, for co-ordinating the local arrangements so care- fully.These included an interesting and fun excursion to the Malyszyn plant breeding station of Plant Breeding Strzelce and the bat reserve Nietoperek (Miedzyrzecki Wal Umocniony, Grupa Warowna Scharnhorst). This meeting was the biggest so far in the history of our Working Group, with 77 participants from a total of 11 countries, giving a total of 42 oral presentations and 25 posters. We are grateful to all who submitted manuscripts for the Bulletin! Editing and formatting the 48 papers and 18 abstracts in this volume was a big task, and we thank Neal Evans and Bernd Ulber for their assistance. This procedure has taken somewhat longer than we would have liked, due in part to the late submission of several papers. In order to maximize the usefulness of the Bulletin for both authors and readers, we believe we need to minimize the duration between the meeting and publication of the Bulletin. We will therefore ask that all manuscripts for the Bulletin are submitted at the meeting in future. This was the first meeting convened by both the new convenors (Birger is now fully recovered from an achilles tendon rupture, which prevented his attendance at the 2004 meeting!). We gratefully acknowledge the support of the previous convenors, Volker Paul and Ingrid Williams, given to us both prior to and during this meeting. We dedicate this volume to them with gratitude for all they have done for our Working Group. We hope to see you all at CETIOM in France for the next meeting, and thank Xavier Pinochet for taking on the responsibility for local arrangements. Á bientôt! Sam Cook and Birger Koopmann iii iv List of Participants Name Organization, City/Town, Country Aubertot, Jean-Noel INRA/INA, Thiverval-Grignon, France Balesdent, Marie-Hélène INRA, Versailles, France Baturo, Anna Agricultural University, Bydgoszcz, Poland Besnard, Anne-Laure INRA, Rennes, France Berg, Gunilla SBA, Alnarp, Sweden Borowczak, Paulina Agricultural University, Poznań, Poland Brun, Hortense INRA, Rennes, France Büchs, Wolfgang BBA, Braunschweig, Germany Cook, Sam Rothamsted Research, Harpenden, United Kingdom Downes, Katherine Rothamsted Research, Harpenden, United Kingdom Evans, Neal Rothamsted Research, Harpenden, United Kingdom Eynck, Christina Georg-August University, Göttingen, Germany Fisher, Kirsa Georg-August University, Göttingen, Germany Fudal, Isabelle INRA, Versailles, France Gladders, Peter ADAS Boxworth, Cambridge, United Kingdom Gutowska, Aneta Agricultural University, Poznań, Poland Happstadius, Ingrid SW Seed, Svalöf, Sweden Heimann, Stefan Research Centre for Cultivar Testing, Słupia Wielka, Poland Heimbach, Udo BBA, Braunschweig, Germany Hokkanen, Heikki University of Helsinki, Helsinki, Finland Hood, John Rothamsted Research, Harpenden, United Kingdom Hornby, Paul Rothamsted Research, Harpenden, United Kingdom Irzykowski, Witold Institute of Plant Genetics, PAS, Poznań, Poland Jajor, Ewa Institute of Plant Protection, Poznań, Poland Jędryczka, Małgorzata Institute of Plant Genetics, PAS, Poznań, Poland Kachlicki, Piotr Institute of Plant Genetics, PAS, Poznań, Poland Kaczmarek, Joanna Institute of Plant Genetics, PAS, Poznań, Poland Kałuski, Tomasz Institute of Plant Protection, Poznań, Poland Karolewski, Zbigniew Agricultural University, Poznań, Poland Kasprzyk, Idalia University of Rzeszow, Rzeszów, Poland Kelm, Maria Agricultural University , Wrocław, Poland Keunecke, Harald Georg-August University, Göttingen, Germany Klukowski, Zdzisław Agricultural University, Wrocław, Poland Koch, Simone Georg-August University, Göttingen, Germany Koopmann, Birger Georg-August University, Göttingen, Germany Korbas, Marek Institute of Plant Protection, Poznań, Poland Kozłowski, Jan Institute of Plant Protection, Poznań, Poland Krause, Ulrike Georg-August University, Göttingen, Germany v vi Name Organization, City/Town, Country Kreye, Holger BBA, Braunschweig, Germany Krzymański, Jan Institute of Plant Breeding and Acclimatization, Poznań, Poland Lewartowska, Elżbieta Institute of Plant Genetics, PAS, Poznań, Poland Łukanowski, Andrzej Agricultural University´, Bydgoszcz, Poland Mrówczyński, Marek Institute of Plant Protection, Poznań, Poland Muśnicki, Czesław Agricultural University, Poznań, Poland Neumann, Nadine Georg-August University, Göttingen, Germany Odstrclova, Lenka AGRITEC, Sumperk, Czech Republic Olechnowicz, Julia Institute of Plant Genetics, PAS, Poznań, Poland Paul, Volker University of Paderborn, Paderborn, Germany Penaud, Anette CETIOM, Thiverval-Grignon, France Piliuk, Jadviha Institute of Arable Farming and Plant Breeding, Zodino, Belarus Pinochet, Xavier CETIOM, Thiverval-Grignon, France Pirie, Elizabeth Rothamsted Research, Harpenden, United Kingdom Plachka, Eva OSEVA, Opava, Czech Republic Podleśna, Anna Institute of Soil Science and Cultivation, Pulawy, Poland Radaunia, Uladimir Institute of Arable Farming and Plant Breeding, Zodino, Belarus Riediger, Nadine Georg-August University, Göttingen, Germany Sadowski, Czeslaw Agricultural University, Bydgoszcz, Poland Seta, Gustaw Institute of Plant Protection, Sosnicowice, Poland Skellern, Matt Rothamsted Research, Harpenden, United Kingdom Stachowiak, Anna Institute of Plant Genetics, PAS, Poznań, Poland Starzycka, Eligia Institute of Plant Breeding and Acclimatization, Poznań, Poland Starzycki, Michal Institute of Plant Breeding and Acclimatization, Poznań, Poland Tekiela, Agata Institute of Plant Protection, Rzeszów, Poland Twardowski, Jacek Agricultural University, Wrocław, Poland Ulber, Bernd Georg-August University, Göttingen, Germany Veromann, Eve Institute of Plant Protection, Tartu´, Estonia Vrbovsky, Viktor OSEVA´, Opava, Czech Republic Wachowiak, Henryk Institute of Plant Protection, Poznań, Poland Walczak, Felicyta Institute of Plant Protection, Poznań, Poland Wagas, Wakil University of Arid Agriculture, Ravalpindi, Pakistan Watts, Nigel Rothamsted Research, Harpenden, United Kingdom Weber, Zbigniew Agricultural University, Poznań, Poland Wesolowska, Ilona Agricultural University, Poznań,
Recommended publications
  • A Catalogue of Coleoptera Specimens with Potential Forensic Interest in the Goulandris Natural History Museum Collection
    ENTOMOLOGIA HELLENICA Vol. 25, 2016 A catalogue of Coleoptera specimens with potential forensic interest in the Goulandris Natural History Museum collection Dimaki Maria Goulandris Natural History Museum, 100 Othonos St. 14562 Kifissia, Greece Anagnou-Veroniki Maria Makariou 13, 15343 Aghia Paraskevi (Athens), Greece Tylianakis Jason Zoology Department, University of Canterbury, Private Bag 4800, Christchurch, New Zealand http://dx.doi.org/10.12681/eh.11549 Copyright © 2017 Maria Dimaki, Maria Anagnou- Veroniki, Jason Tylianakis To cite this article: Dimaki, M., Anagnou-Veroniki, M., & Tylianakis, J. (2016). A catalogue of Coleoptera specimens with potential forensic interest in the Goulandris Natural History Museum collection. ENTOMOLOGIA HELLENICA, 25(2), 31-38. doi:http://dx.doi.org/10.12681/eh.11549 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 27/12/2018 06:22:38 | ENTOMOLOGIA HELLENICA 25 (2016): 31-38 Received 15 March 2016 Accepted 12 December 2016 Available online 3 February 2017 A catalogue of Coleoptera specimens with potential forensic interest in the Goulandris Natural History Museum collection MARIA DIMAKI1’*, MARIA ANAGNOU-VERONIKI2 AND JASON TYLIANAKIS3 1Goulandris Natural History Museum, 100 Othonos St. 14562 Kifissia, Greece 2Makariou 13, 15343 Aghia Paraskevi (Athens), Greece 3Zoology Department, University of Canterbury, Private Bag 4800, Christchurch, New Zealand ABSTRACT This paper presents a catalogue of the Coleoptera specimens in the Goulandris Natural History Museum collection that have potential forensic interest. Forensic entomology can help to estimate the time elapsed since death by studying the necrophagous insects collected on a cadaver and its surroundings. In this paper forty eight species (369 specimens) are listed that belong to seven families: Silphidae (3 species), Staphylinidae (6 species), Histeridae (11 species), Anobiidae (4 species), Cleridae (6 species), Dermestidae (14 species), and Nitidulidae (4 species).
    [Show full text]
  • Biosecurity Plan for the Vegetable Industry
    Biosecurity Plan for the Vegetable Industry A shared responsibility between government and industry Version 3.0 May 2018 Plant Health AUSTRALIA Location: Level 1 1 Phipps Close DEAKIN ACT 2600 Phone: +61 2 6215 7700 Fax: +61 2 6260 4321 E-mail: [email protected] Visit our web site: www.planthealthaustralia.com.au An electronic copy of this plan is available through the email address listed above. © Plant Health Australia Limited 2018 Copyright in this publication is owned by Plant Health Australia Limited, except when content has been provided by other contributors, in which case copyright may be owned by another person. With the exception of any material protected by a trade mark, this publication is licensed under a Creative Commons Attribution-No Derivs 3.0 Australia licence. Any use of this publication, other than as authorised under this licence or copyright law, is prohibited. http://creativecommons.org/licenses/by-nd/3.0/ - This details the relevant licence conditions, including the full legal code. This licence allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to Plant Health Australia (as below). In referencing this document, the preferred citation is: Plant Health Australia Ltd (2018) Biosecurity Plan for the Vegetable Industry (Version 3.0 – 2018) Plant Health Australia, Canberra, ACT. This project has been funded by Hort Innovation, using the vegetable research and development levy and contributions from the Australian Government. Hort Innovation is the grower-owned, not for profit research and development corporation for Australian horticulture Disclaimer: The material contained in this publication is produced for general information only.
    [Show full text]
  • Identification of the Small Hive Beetle, Aethina Tumida, by Morphological Examination (OIE Method)
    Analytical method for animal health REFERENCE: ANSES/SOP/ANA-I1.MOA.1500 - Version 04 February 2020 Identification of the Small Hive Beetle, Aethina tumida, by morphological examination (OIE method) Sophia-Antipolis Laboratory National Reference Laboratory – Bee Health European Union Reference Laboratory – Bee Health This document, in its electronic form, is being made available to users as an analytical method. This document is the property of ANSES. Any reproduction, whether in full or in part, is authorised on the express condition that the source is ANSES/PR3/7/01-07 [version a] mentioned, for example by citing its reference (including its version number and ANSES/FGE/0209 year) and its title. REFERENCE : ANSES/SOP/ANA-I1.MOA.1500 - Version 04 History of the method A method can be updated in order to take changes into account. A change is considered major when it involves the analytic process, the scope or critical points of the analysis method, the application of which may modify the performance characteristics of the method and/or the results. A major change requires major adaptations and either total or partial revalidation. A change is considered minor if it provides useful or practical clarifications, reformulates the text to make it clearer or more accurate, or corrects minor errors. A minor change in the method does not alter its performance characteristics and does not require revalidation. The table below summarises the version history of this method and provides qualifications for the changes. Nature of Version changes Date Main changes (Major / Minor) 1. Reformatting of the method. 2. Updating of references.
    [Show full text]
  • Morphology, Taxonomy, and Biology of Larval Scarabaeoidea
    Digitized by the Internet Archive in 2011 with funding from University of Illinois Urbana-Champaign http://www.archive.org/details/morphologytaxono12haye ' / ILLINOIS BIOLOGICAL MONOGRAPHS Volume XII PUBLISHED BY THE UNIVERSITY OF ILLINOIS *, URBANA, ILLINOIS I EDITORIAL COMMITTEE John Theodore Buchholz Fred Wilbur Tanner Charles Zeleny, Chairman S70.S~ XLL '• / IL cop TABLE OF CONTENTS Nos. Pages 1. Morphological Studies of the Genus Cercospora. By Wilhelm Gerhard Solheim 1 2. Morphology, Taxonomy, and Biology of Larval Scarabaeoidea. By William Patrick Hayes 85 3. Sawflies of the Sub-family Dolerinae of America North of Mexico. By Herbert H. Ross 205 4. A Study of Fresh-water Plankton Communities. By Samuel Eddy 321 LIBRARY OF THE UNIVERSITY OF ILLINOIS ILLINOIS BIOLOGICAL MONOGRAPHS Vol. XII April, 1929 No. 2 Editorial Committee Stephen Alfred Forbes Fred Wilbur Tanner Henry Baldwin Ward Published by the University of Illinois under the auspices of the graduate school Distributed June 18. 1930 MORPHOLOGY, TAXONOMY, AND BIOLOGY OF LARVAL SCARABAEOIDEA WITH FIFTEEN PLATES BY WILLIAM PATRICK HAYES Associate Professor of Entomology in the University of Illinois Contribution No. 137 from the Entomological Laboratories of the University of Illinois . T U .V- TABLE OF CONTENTS 7 Introduction Q Economic importance Historical review 11 Taxonomic literature 12 Biological and ecological literature Materials and methods 1%i Acknowledgments Morphology ]* 1 ' The head and its appendages Antennae. 18 Clypeus and labrum ™ 22 EpipharynxEpipharyru Mandibles. Maxillae 37 Hypopharynx <w Labium 40 Thorax and abdomen 40 Segmentation « 41 Setation Radula 41 42 Legs £ Spiracles 43 Anal orifice 44 Organs of stridulation 47 Postembryonic development and biology of the Scarabaeidae Eggs f*' Oviposition preferences 48 Description and length of egg stage 48 Egg burster and hatching Larval development Molting 50 Postembryonic changes ^4 54 Food habits 58 Relative abundance.
    [Show full text]
  • Coleoptera: Scarabaeidae: Dynastinae: Oryctini) of the Neotropical and Nearctic Realms
    Zootaxa 3090: 21–40 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) An annotated checklist of the oryctine rhinoceros beetles (Coleoptera: Scarabaeidae: Dynastinae: Oryctini) of the Neotropical and Nearctic realms HÉCTOR JAIME GASCA-ÁLVAREZ1 & BRETT C. RATCLIFFE2 1Corporación Sentido Natural, Carrera 70 H # 122 – 98. Int. 1, Bogotá, COLOMBIA. E-mail: [email protected] 2University of Nebraska State Museum, W436 Nebraska Hall, Lincoln, NE 68588-0514, USA. E-mail: [email protected] Abstract A brief review of the taxonomy and natural history of the New World Oryctini is provided. An updated and annotated checklist of the Oryctini of the Neotropical and Nearctic realms is included. This now includes 14 genera, 133 extant spe- cies, and two extinct species. Tehuacania porioni Dechambre, 2009 (Oryctini) is reduced to synonymy with Barutus hart- manni Ratcliffe, 2003 (Pentodontini). Key words: species catalog Introduction The tribe Oryctini is one of the most species rich groups of Dynastinae, and more than half the species occur in the Neotropical and Nearctic regions where there is considerable endemism (Mizinuma 1999). Species of Oryctini are characterized by mostly brown to black coloration (rarely pale yellow); a large, robust, elongate body; clypeus emarginate, acuminate, or with two teeth; mentum narrow; mandibles exposed and broad; antenna with 9–10 antennomeres, the club short or prolonged; protibia tridentate or quadridentate; prosternal process either long or short; elytra smooth, densely punctate, or with striae or rows of punctures; apex of metatibia usually with teeth, sometimes with lobes or crenulations; and coxal cavities broad.
    [Show full text]
  • Managing Carpophilus Beetle in Almonds
    JANUARY 2016 ALL ABOUT ALMONDS ORCHARD MANAGEMENT MANAGING CARPOPHILUS BEETLE IN ALMONDS PRELIMINARY MONITORING GUIDELINES, ATTRACT & KILL GUIDELINES FOR 2016 - 2017 SEASON CARPOPHILUS IN ALMONDS project includes research on the KEY POINTS distribution of different Carpophilus Carpophilus beetles comprise many species throughout orchards and in species with different preferences different almond growing regions, Almonds are most vulnerable to attack from for fruit type and fruit ripening/ testing whether the “stonefruit” lure Carpophilus Beetle during hull split. maturing stage. In recent years, is effective in almonds and how its Pheromone and co-attractant are much less almond growers have indicated potency might be improved, and effective when used separately rather than in significant crop losses due to determining the most effective combination. Carpophilus, and there is an urgent spacing of A&K traps to achieve need for an Attract and Kill (A&K) control. High priority blocks to monitor are likely to system that can control these This article contains information on include those that experience excessive pests, particularly in the ‘hull-split’ how best to apply an A&K strategy to moisture retention and humidity. development stage when almonds monitor and control Carpophilus in are most vulnerable to attack. During It is suggested that growers start with at least almonds using the current stonefruit the 2014/15 and 2015/16 seasons, one trap per orchard block (approx. 20 ha). lure. We consider this an interim five species of Carpophilus were guide for interested growers, and as detected in samples from traps in Carpophilus starts to become active and able we continue our research we aim to almond orchards, and concerns that to fly to traps as temperatures increase in provide growers with more detailed beetle populations could escalate late winter/early spring.
    [Show full text]
  • Paper Teplate
    Volume-03 ISSN: 2455-3085 (Online) Issue-12 RESEARCH REVIEW International Journal of Multidisciplinary December -2018 www.rrjournals.com [UGC Listed Journal] Biology of acridid grasshopper, Chrotogonus trachypterus Blanchard -A review Shashi Meena Assistant Professor, Department of Zoology, University of Rajasthan, Jaipur (India) _____________________________________________________________________________________________________________________ Grasshoppers are abundant and most diverse group of was studied by various workers [1, 17]. Observations were also insects worldwide. They are ployphagous in nature and made on population density, seasonal history and number of become voracious foliage feeder when occupying maximum generations, food preferences, development on different food population density [29, 30]. Grasshoppers, belong to family plants, nature and extent of damage caused by C. trachypterus ‘Acrididae’, order Orthoptera, feed voraciously on green plants in Punjab [6]. Patterns of variation in external morphology, and vegetation, throughout India and other parts of the world biology and ecology of immature and adults of C. trachypterus and cause severe damage. They consume considerable was also illustrated [5, 11, 12]. amount of foliage during their nymphal stage and damage millets, vegetables, cereal, citrus and ornamental plants. The eggs of acridids in general are slightly curved in the Migratory grasshoppers can also attack on other shrubs and middle and blunt at the ends and are enclosed in a frothy plants and consume all parts of them [14]. secretion of accessory glands and laid eggs at a depth of 4.81± 0.09 cm [9, 13, 32, 33, 34]. C. trachypterus on an Surface grasshopper, Chrotogonus trachypterus average laid 71.10±24.54 eggs. The highest fertility of eggs Blanchard is a polyphagous pest and occurs through the year was observed at fluctuating temperature but in contrast C.
    [Show full text]
  • Diseases of Trees in the Great Plains
    United States Department of Agriculture Diseases of Trees in the Great Plains Forest Rocky Mountain General Technical Service Research Station Report RMRS-GTR-335 November 2016 Bergdahl, Aaron D.; Hill, Alison, tech. coords. 2016. Diseases of trees in the Great Plains. Gen. Tech. Rep. RMRS-GTR-335. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 229 p. Abstract Hosts, distribution, symptoms and signs, disease cycle, and management strategies are described for 84 hardwood and 32 conifer diseases in 56 chapters. Color illustrations are provided to aid in accurate diagnosis. A glossary of technical terms and indexes to hosts and pathogens also are included. Keywords: Tree diseases, forest pathology, Great Plains, forest and tree health, windbreaks. Cover photos by: James A. Walla (top left), Laurie J. Stepanek (top right), David Leatherman (middle left), Aaron D. Bergdahl (middle right), James T. Blodgett (bottom left) and Laurie J. Stepanek (bottom right). To learn more about RMRS publications or search our online titles: www.fs.fed.us/rm/publications www.treesearch.fs.fed.us/ Background This technical report provides a guide to assist arborists, landowners, woody plant pest management specialists, foresters, and plant pathologists in the diagnosis and control of tree diseases encountered in the Great Plains. It contains 56 chapters on tree diseases prepared by 27 authors, and emphasizes disease situations as observed in the 10 states of the Great Plains: Colorado, Kansas, Montana, Nebraska, New Mexico, North Dakota, Oklahoma, South Dakota, Texas, and Wyoming. The need for an updated tree disease guide for the Great Plains has been recog- nized for some time and an account of the history of this publication is provided here.
    [Show full text]
  • Coleoptera: Nitidulidae) on Annona Spp
    Scientific Notes 475 EFFECT OF PHEROMONE BAIT STATIONS FOR SAP BEETLES (COLEOPTERA: NITIDULIDAE) ON ANNONA SPP. FRUIT SET J. E. PEÑA1, A. CASTIÑEIRAS1, R. BARTELT2 AND R. DUNCAN1 1University of Florida, Tropical Research and Education Center, 18905 SW 280 St., Homestead FL 33031 2USDA-ARS-Midwest Area National Center for Agriculture, 1815 N University St., Peoria IL 61604 Atemoya, Annona squamosa L. x Annona cherimola Miller, and sugar apple, A. squamosa, have importance for the tropical fruit industry in Florida, but their yields are unreliable. This is so because fruit set is erratic due to highly variable pollination and physiological stress. Flowers of atemoyas and sugar apples initially undergo a fe- male phase during which stigmas are receptive, and later they have a male phase when the anthers split to shed pollen, but the stigmas are no longer receptive (Gotts- berger 1970). This prevents autogamy (i.e., fertilization of ovules by pollen from the same flower) (Nadel and Peña 1994). Most Annonaceae species are cantharophilous (beetle-pollinated), and a few are sapromyophilus (fly-pollinated) or thrips-pollinated (Gottsberger 1985). Cross pollination of Annona spp. can be carried out by sap beetles (Nitidulidae) (Reiss 1971, Nagel et al. 1989, George et al. 1992). In south Florida, nit- idulid pollinators are in the genera Carpophilus (six species) and Haptoncus (one spe- cies) (Nadel and Peña 1994). Gottsberger (1985) suggested that the Annonaceae and other primitive plants with cantharophilous pollination had evolved a specialized pol- lination system by releasing heavy floral volatiles that attract certain beetle species. For example, atemoya flowers open mid- to late afternoon and allow beetles enter.
    [Show full text]
  • The Nitidulidae and Kateretidae of Sardinia: Recent Data and Updated Checklist (Coleoptera) *
    ConseRVaZione haBitat inVeRteBRati 5: 447–460 (2011) CnBfVR The Nitidulidae and Kateretidae of Sardinia: recent data and updated checklist ( Coleoptera)* Paolo AUDISIO Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Via A. Borelli 50, I-00161 Rome, Italy. E-mail: [email protected] *In: Nardi G., Whitmore D., Bardiani M., Birtele D., Mason F., Spada L. & Cerretti P. (eds), Biodiversity of Marganai and Montimannu (Sardinia). Research in the framework of the ICP Forests network. Conservazione Habitat Invertebrati, 5: 447–460. ABSTRACT This paper deals with the Coleoptera Nitidulidae and Kateretidae collected in Sardinia during the surveys organized by Centro Nazionale per lo Studio e la Conservazione della Biodiversità Forestale "Bosco Fontana" of Verona in 2003–2008, with a few selected additional data collected on the island by the author during entomological trips carried out in 1982–2008, and by several Italian and European entomologists in the last few decades. The paper is also completed with the updated checklist of the species so far recorded from the island, including those based on a few unpublished data or extracted from recently examined material. 79 species (73 Nitidulidae, including 10 the presence of which is based only on very doubtful ancient records, and 6 Kateretidae) are listed for Sardinia. The updated list includes two species endemic to the Corso-Sardinian System: Sagittogethes nuragicus (Audisio & Jelínek, 1990), and Thymogethes foddaii (Audisio, De Biase & Trizzino, 2009) n. comb. Sagittogethes minutus (C. Brisout de Barneville, 1872) is recorded for the fi rst time from continental Italy (SE Calabria). Key words: Nitidulidae, Kateretidae, Sardinia, faunistics.
    [Show full text]
  • Juzwik, Jennifer
    The Proceedings of the 2nd National Oak Wilt Symposium Edited by: Ronald F. Billings David N. Appel Sponsored by International Society of Arboriculture – Texas Chapter Cooperators Texas Forest Service Texas AgriLife Extension Service The Nature Conservancy of Texas Lady Bird Johnson Wildflower Center USDA Forest Service, Forest Health Protection 2009 EPIDEMIOLOGY AND OCCURRENCE OF OAK WILT IN MIDWESTERN, MIDDLE, AND SOUTH ATLANTIC STATES Jennifer Juzwik USDA Forest Service Northern Research Station 1561 Lindig Avenue St. Paul, MN 55108 Email: [email protected] ABSTRACT In Midwestern, Middle, and South Atlantic states, the oak wilt fungus (Ceratocystis fagacearum) is transmitted from diseased to healthy oaks below ground via root grafts and above ground via insect vectors. Recent studies have identified insect species in the family Nitidulidae that likely account for the majority of above-ground transmission during spring in several Midwestern states based on frequencies of fungus-contaminated beetles dispersing in oak stands and visiting fresh wounds. Other investigations have utilized quantitative and spatial data to predict root-graft spread in red oak stands. Although the disease is widely distributed in the regions, disease severity ranges from low to high among the regions and within states of the Midwestern region. Knowledge of spread frequencies and relationships between disease spread/severity and various physiographic factors is important in the development of tools for effective disease management. Key words: Ceratocystis fagacearum, disease spread, Nitidulidae New oak wilt infection centers (= foci) are the result of above-ground transmission of the pathogen (Ceratocystis fagacearum (Bretz) Hunt) by animal vectors, primarily insects. Outward expansion of foci from the initial infection(s) occur below ground when fungal propagules move through vascular root connections between a diseased and a nearby healthy oak.
    [Show full text]
  • 6. Bremsen Als Parasiten Und Vektoren
    DIPLOMARBEIT / DIPLOMA THESIS Titel der Diplomarbeit / Title of the Diploma Thesis „Blutsaugende Bremsen in Österreich und ihre medizini- sche Relevanz“ verfasst von / submitted by Manuel Vogler angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of Magister der Naturwissenschaften (Mag.rer.nat.) Wien, 2019 / Vienna, 2019 Studienkennzahl lt. Studienblatt / A 190 445 423 degree programme code as it appears on the student record sheet: Studienrichtung lt. Studienblatt / Lehramtsstudium UF Biologie und Umweltkunde degree programme as it appears on UF Chemie the student record sheet: Betreut von / Supervisor: ao. Univ.-Prof. Dr. Andreas Hassl Danksagung Hiermit möchte ich mich sehr herzlich bei Herrn ao. Univ.-Prof. Dr. Andreas Hassl für die Vergabe und Betreuung dieser Diplomarbeit bedanken. Seine Unterstützung und zahlreichen konstruktiven Anmerkungen waren mir eine ausgesprochen große Hilfe. Weiters bedanke ich mich bei meiner Mutter Karin Bock, die sich stets verständnisvoll ge- zeigt und mich mein ganzes Leben lang bei all meinen Vorhaben mit allen ihr zur Verfügung stehenden Kräften und Mitteln unterstützt hat. Ebenso bedanke ich mich bei meiner Freundin Larissa Sornig für ihre engelsgleiche Geduld, die während meiner zahlreichen Bremsenjagden nicht selten auf die Probe gestellt und selbst dann nicht überstrapaziert wurde, als sie sich während eines Ausflugs ins Wenger Moor als ausgezeichneter Bremsenmagnet erwies. Auch meiner restlichen Familie gilt mein Dank für ihre fortwährende Unterstützung.
    [Show full text]