Development of the Marine Myxozoan, Kudoa Thyrsites

Total Page:16

File Type:pdf, Size:1020Kb

Development of the Marine Myxozoan, Kudoa Thyrsites DEVELOPMENT OF THE MARINE MYXOZOAN, KUDOA THYRSITES (GILCHRIST, 1924), IN NETPEN-REARED ATLANTIC SALMON (SU0 SAUR L.) IN BRlTISH COLUMBIA Jonathan David William Moran B-Sc., University of New Brunswick (Fredericton), 1992 M-Sc., University of New Brunswick (Fredericton), 1994 A THESIS SUBMIïTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of Biological Sciences O Jonathan D.W. Moran 1999 SIMON FRASER UNIVERSITY May 1999 Al1 rights resewed. This work rnay not be reproduced in whole or in part, by photocopy or other means, without permission of the author. National Library Bibliothèque nationale 1*1 of Canada du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 Wellington Street 395. me WeHingtm OttawaON K1A ON4 OcrawaON KiA OF)4 Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive Licence aliowing the exclusive permettant à la National Libras, of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or seii reproduire, prêter, distribuer ou copies of this thesis in microfom, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/film, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni Is thkse ni des extraits substantiels may be printed or othenvise de celle-ci ne doivent être imprimés reproduced without the author' s ou autrement reproduits sans son permission. autorisation. ABSTRACT firdoa rhyrsites (phylum Myxozoa) is of concern to the British Columbia (BC) aquaculture industry because of its association with pst-rnortem myoliquefaction in netpen-reared Atlantic salmon (Sdmo salar L.). This condition, commonly referred to as soft flesh syndrome. significantly decreases the market value of afTected fish products. The seasonality of K. thyrsites was investigated following natural exposure of Atlantic saImon in seawater netpens at the Pacific Biologicai Station, in Nanaimo. BC. Atlantic salmon were exposed for several 8-week penods throughout the year, and it was determined that the infections were contracted in only the summer and Ml. The progression of these infections in both netpen and tank popuiations was followed for up to 20 months. The majority of fish contracted K. rhyrsites infections. Sporulation typically occurred within 6 months (approximately 2000 degree-days) afier transfer to seawater, and the fish almost completely recovered fiom the original infections within a year. Of 3 1 nonsalmonid fish species collected fiom the vicinity of seawater netpens and fiom research cruises off Vancouver Island, five species were identified as potentiai reservoir hosts incl uding rock sole (Pleuronectes bilineatus), tube-snout (Aulorhynchusflavidus), arrowtooth flounder (Atheresthes sromias), and two new host records, lingcod (Ophiodon elongatus) and thread fin sculpin (Icelinusfilamentosus). Attempts to transmit the parasite directly fiom fish to fish by intubation of fiesh myxospores were unsuccessfûi. However, intraperitoneal injection of blood collected from a coho salmon (Oncorhynchus kisutch) infected with K. thyrsites successfully transmitted the infection. Using light rnicroscopy to investigate the sequential development, K. rhyrsites infections were detected in the somatic musculature at 13 weeks pst-exposure (pe.). In a subsequent experiment, infections were first detected at 6 weeks p-e- using a PCR test and afier 9 weeks p.e. using light microscopy. The earliest developmental stage detected by histology was a smail plasmodium containhg four nuclei at 9 weeks p.e. No host response was observed histologicaily that was directly related to muscle fibers which contained intact pseudocysts. However, the response associated with ruptured pseudocysts was characterized by chronic, multifocal inflammation between the muscle fibers. DEDICATION This dissertation is dedicated to my farnily, and especially my parents, who have provided me with unwavering support throughout my university career. This accomplishment would not have been possible without their guidance and moral support. 1 would also like to dedicate this, in part, to the residents of St. Martins, New Brunswick, many of whom have had a significant impact on my values and beliefs. Al1 men dream: but not equally. Those who drearn by night in the dusty recesses of their minds wake in the day to find that it wris vanity: but the drearners of the day are dangerous men. for they may act their dream with open eyes. to make it possible. T.E. Lawrence ACKNOWLEDGEMENTS 1 wouid like to express my sincere thanks to rny academic supervisor. J.M. Webster? for his encouragement throughout this study. His financial support for travel to national and international conferences is laudable. My complete gratitude goes to my research supervisor. M.L. Kent? without whose enthusiastic assistance and financial support. this project would never have been able to continue for the past five years. His unconditional moral support, in times when 1 doubted both myself and others, kept me headed in the right direction. 1 must also acknowledge my bnef, but priviledged, period with L. Margolis. His sudden passing was certainly a somber event during my tenure at the Pacific Biologicai Station (PBS). I wouId like to acknowledge the role of several employees of the PBS, without whom this research would not have been able to take place on such a scale. In particular, 1 must thank the director of the PBS, D. Noakes, for allowing me access to the PBS facilities for the past 4 years. Also, the assistance of the fish health and histology section employees is gratefully acknowledged, especially S. Dawe, D. Whitaker, T. McDonald, J. Richard. J. Bagshaw, and V. Rantis. Laboratory space and technicai assistance with the molecular screening were provided by R.H. Devlin and J. Khattra. Fish maintenance at the experimental farm was performed by R. Kennedy and L. Lewington. Of no iess importance was R. Kennedy's organization of the annual hockey pool. Scholarships and fellowships were provided by the Science Council of British Columbia and Simon Fraser University. Research funding was provided by Pacific Aqua Salmon Farming Partnerships (l3. Hicks), Fisheries and Oceans Canada, and the Natural vii Sciences and Engineering Research Council. 1 would also like to thank M. Bhakthan and S. Foran of Simon Fraser University for diligently forwarding mail to me in Nanaîmo, and keeping me informed of pertinent University news- Permission to reproduce photographs was provided by S. Hallett (University of Queensland), Y. Maeno (National Research Institute of Aquaculture Fisheries Agency), and H. Yokoyama (University of Tokyo). Kudoo rhyrsires fiom South Afiica was provided by M. Kerstan of the Sea Fisheries Research Institute. The English translation of Egusa (1 986) was provided by S. Feist (Centre for Environment, Fisheries & Aquaculture Science (CEFAS)). I would also like to acknowledge the hospitality of S. Feist and M. Longshaw during my visit to CEFAS. viii TABLE OF CONTENTS Page ... ABSTRACT ............................................................................................................. .IH DEDICATION .......................................................................................................... v QUOTATION ...................................................................................................... .vi .. ACKNO WLEDGEMENTS .......................................... vu LIST OF TABLES .................................................................................................... xiv LIST OF PLATES AND FIGWS ......................................................................... xv CHAPTER 1 - INTRODUCTION ........................................................................... 1 Salmonid aquaculture in British Columbia ............................................. 2 Effect of fish pathogens on the BC aquaculture ïndustry ...................... .4 Drug treatments ....................................................................................... 7 Vaccines ................................................................................................. .7 The phylum Myxozoa Grassé, 1970 ................... ..... ............................ 8 Life cycle and development of myxosporeans ........................................ 1 1 The genus Kudoa Meglitsch, 1947 ......................................................... 15 Kudoa thyrsires and the BC aquaculture industry ................................... 16 Objectives of this study ......................................................................... 16 CHAPTER 2 - GENERAL METHODS .................................................................-1 8 1. LocaIity ................................................................................................... 19 2. Holding facilities ..................................................................................... 19 Page 2.1. Seawater netpens ...................... .,., ................................................... 19 2.2. Freshwater tanks .............................................................................. 19 2.3. Seawater tanks ................................................................................. 19 3 . Hosts ......................................................................................................
Recommended publications
  • Viral Haemorrhagic Septicaemia Virus (VHSV): on the Search for Determinants Important for Virulence in Rainbow Trout Oncorhynchus Mykiss
    Downloaded from orbit.dtu.dk on: Nov 08, 2017 Viral haemorrhagic septicaemia virus (VHSV): on the search for determinants important for virulence in rainbow trout oncorhynchus mykiss Olesen, Niels Jørgen; Skall, H. F.; Kurita, J.; Mori, K.; Ito, T. Published in: 17th International Conference on Diseases of Fish And Shellfish Publication date: 2015 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Olesen, N. J., Skall, H. F., Kurita, J., Mori, K., & Ito, T. (2015). Viral haemorrhagic septicaemia virus (VHSV): on the search for determinants important for virulence in rainbow trout oncorhynchus mykiss. In 17th International Conference on Diseases of Fish And Shellfish: Abstract book (pp. 147-147). [O-139] Las Palmas: European Association of Fish Pathologists. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. DISCLAIMER: The organizer takes no responsibility for any of the content stated in the abstracts.
    [Show full text]
  • Studies on Some Japanese Fishes of The, Family Gempylidae
    Studies on Some Japanese Fishes of the, Family Gempylidae KIYOMATSU M ATSUBARA and TAMOTSU IWAI l THOUGH TH E FISHES of the family Gempyli­ The few species comprising this family live dae have long been of interest to ichth yolo­ in the high seas and are widely distributed in gists and though considerable literature warm regions throughout the world . concerning this family has accumulated; the The measurements of various parts of the group still is far from being satisfactorily body were made in the same way as those understood. made by the senior author in his study on the Since the publication of " Gempylidae of scorpaenoid fishes ofJapan (Matsubara, 1943: Japan" by Dr. Toshij i Kamohara in 1938, 6-7). We have carefully observed the gill some additional facts have come to ligh t, and rakers stained by alizarin red and cleared by several discrepancies have been found to exist potassium hydroxide. between his descriptions and our specimens. Acknowledgments: .We wish to express our The present paper, supplementing Karno­ sincere gratitude to Mr. Vernon E. Brock, hara's, treats seven species of the family, re­ Dr. Carl L. Hubbs, Mr. T. Abe, Dr. T. Karno­ ferred to the genera N eoepinnul«, Bpinnula, hara, and Mr. M. Nakamura, all of whom Mimasea, Gempylus, Rexea, Nealotus, and helped us in various ways. We are also greatly Prometbicbtbys. The specimens thus far ex­ indebted to Messrs. G . Abe and S. Noda for amined were all taken by deep-sea trawlers assistance in 'obtaining material. Expenses for off the Pacific coast of J apan at a depth of investigations of deep-sea fishes were de­ about 100 fathoms, and all are depo sited in frayed from 1943 to 1945 by a research fun d the Department of Fisheries, Facult y of Agri- .
    [Show full text]
  • History of Myxozoan Character Evolution on the Basis of Rdna and EF-2 Data Ivan Fiala1,2*, Pavla Bartošová1,2
    Fiala and Bartošová BMC Evolutionary Biology 2010, 10:228 http://www.biomedcentral.com/1471-2148/10/228 RESEARCH ARTICLE Open Access History of myxozoan character evolution on the basis of rDNA and EF-2 data Ivan Fiala1,2*, Pavla Bartošová1,2 Abstract Background: Phylogenetic relationships among myxosporeans based on ribosomal DNA data disagree with traditional taxonomic classification: a number of myxosporeans with very similar spore morphology are assigned to the same genera even though they are phylogenetically distantly related. The credibility of rDNA as a suitable marker for Myxozoa is uncertain and needs to be proved. Furthermore, we need to know the history of myxospore evolution to understand the great diversity of modern species. Results: Phylogenetic analysis of elongation factor 2 supports the ribosomal DNA-based reconstruction of myxozoan evolution. We propose that SSU rDNA is a reliable marker for inferring myxozoan relationships, even though SSU rDNA analysis markedly disagrees with the current taxonomy. The analyses of character evolution of 15 morphological and 5 bionomical characters show the evolution of individual characters and uncover the main evolutionary changes in the myxosporean spore morphology and bionomy. Most bionomical and several morphological characters were found to be congruent with the phylogeny. The summary of character analyses leads to the simulation of myxozoan ancestral morphotypes and their evolution to the current species. As such, the ancestor of all myxozoans appears to have infected the renal tubules of freshwater fish, was sphaerosporid in shape, and had a spore with polar capsules that discharged slightly sideways. After the separation of Malacosporea, the spore of the common myxosporean ancestor then changed to the typical sphaerosporid morphotype.
    [Show full text]
  • Crestfish Lophotus Lacepede (Giorna, 1809) and Scalloped Ribbonfish Zu Cristatus (Bonelli, 1819) in the Northern Coast of Sicily, Italy
    ISSN: 0001-5113 ACTA ADRIAT., ORIGINAL SCIENTIFIC PAPER AADRAY 58(1): 137 - 146, 2017 Occurrence of two rare species from order Lampriformes: Crestfish Lophotus lacepede (Giorna, 1809) and scalloped ribbonfish Zu cristatus (Bonelli, 1819) in the northern coast of Sicily, Italy Fabio FALSONE1, Michele Luca GERACI1, Danilo SCANNELLA1, Charles Odilichukwu R. OKPALA1, Giovan Battista GIUSTO1, Mar BOSCH-BELMAR2, Salvatore GANCITANO1 and Gioacchino BONO1 1Institute for the Coastal Marine Environment, IAMC‑CNR, 91026 Mazara del Vallo, Sicily, Italy 2Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy Corresponding author, e‑mail: [email protected] The bony fish Lophotus lacepede (Giorna, 1809) and Zu cristatus (Bonelli, 1819) are the two species rarely recorded within the Mediterranean basin, usually reported as accidentally captured in depth (mesopelagic) fishing operations. In the current work, we present the first record of L. lacepede and Z. cristatus in fishing catches from southwestern Tyrrhenian Sea. Moreover, in order to improve existent biological/ecological knowledge, some bio-related aspects such as feeding aspect, sexual maturity and age estimate have been discussed. Key words: crestfish, scalloped ribbonfish, meristic features, vertebrae, growth ring INTRODUCTION species of Lophotidae family, the L. lacepede inhabits the epipelagic zone, although it could The target species of this study (Lophotus also be recorded in most oceans from the surface lacepede and Zu cristatus) belong to Lophotidae up to 1000 m depth (HEEMSTRA, 1986; PALMER, (Bonaparte, 1845) and Trachipteridae (Swain- 1986; OLNEY, 1999). First record of this spe- son, 1839) families respectively, including the cies in the Mediterranean Basin was from the Lampriformes order (consisted of 7 families).
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Redalyc.Kudoa Spp. (Myxozoa, Multivalvulida) Parasitizing Fish Caught in Aracaju, Sergipe, Brazil
    Revista Brasileira de Parasitologia Veterinária ISSN: 0103-846X [email protected] Colégio Brasileiro de Parasitologia Veterinária Brasil Costa Eiras, Jorge; Yudi Fujimoto, Rodrigo; Riscala Madi, Rubens; Sierpe Jeraldo, Veronica de Lourdes; Moura de Melo, Cláudia; dos Santos de Souza, Jônatas; Picanço Diniz, José Antonio; Guerreiro Diniz, Daniel Kudoa spp. (Myxozoa, Multivalvulida) parasitizing fish caught in Aracaju, Sergipe, Brazil Revista Brasileira de Parasitologia Veterinária, vol. 25, núm. 4, octubre-diciembre, 2016, pp. 429-434 Colégio Brasileiro de Parasitologia Veterinária Jaboticabal, Brasil Available in: http://www.redalyc.org/articulo.oa?id=397848910008 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Original Article Braz. J. Vet. Parasitol., Jaboticabal, v. 25, n. 4, p. 429-434, out.-dez. 2016 ISSN 0103-846X (Print) / ISSN 1984-2961 (Electronic) Doi: http://dx.doi.org/10.1590/S1984-29612016059 Kudoa spp. (Myxozoa, Multivalvulida) parasitizing fish caught in Aracaju, Sergipe, Brazil Kudoa spp. (Myxozoa, Multivalvulida) parasitando peixes capturados em Aracaju, Sergipe, Brasil Jorge Costa Eiras1; Rodrigo Yudi Fujimoto2; Rubens Riscala Madi3; Veronica de Lourdes Sierpe Jeraldo4; Cláudia Moura de Melo4; Jônatas dos Santos de Souza5; José Antonio Picanço Diniz6; Daniel Guerreiro Diniz7*
    [Show full text]
  • A New Species of Myxidium (Myxosporea: Myxidiidae)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln John Janovy Publications Papers in the Biological Sciences 6-2006 A New Species of Myxidium (Myxosporea: Myxidiidae), from the Western Chorus Frog, Pseudacris triseriata triseriata, and Blanchard's Cricket Frog, Acris crepitans blanchardi (Hylidae), from Eastern Nebraska: Morphology, Phylogeny, and Critical Comments on Amphibian Myxidium Taxonomy Miloslav Jirků University of Veterinary and Pharmaceutical Sciences, Palackého, [email protected] Matthew G. Bolek Oklahoma State University, [email protected] Christopher M. Whipps Oregon State University John J. Janovy Jr. University of Nebraska - Lincoln, [email protected] Mike L. Kent OrFollowegon this State and Univ additionalersity works at: https://digitalcommons.unl.edu/bioscijanovy Part of the Parasitology Commons See next page for additional authors Jirků, Miloslav; Bolek, Matthew G.; Whipps, Christopher M.; Janovy, John J. Jr.; Kent, Mike L.; and Modrý, David, "A New Species of Myxidium (Myxosporea: Myxidiidae), from the Western Chorus Frog, Pseudacris triseriata triseriata, and Blanchard's Cricket Frog, Acris crepitans blanchardi (Hylidae), from Eastern Nebraska: Morphology, Phylogeny, and Critical Comments on Amphibian Myxidium Taxonomy" (2006). John Janovy Publications. 60. https://digitalcommons.unl.edu/bioscijanovy/60 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in John Janovy Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Miloslav Jirků, Matthew G. Bolek, Christopher M. Whipps, John J. Janovy Jr., Mike L. Kent, and David Modrý This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ bioscijanovy/60 J.
    [Show full text]
  • Tristan Da Cunha Fisheries Detailed Report 2017
    Tristan da Cunha The Tristan da Cunha Archipelago is a group of volcanic islands in the South Atlantic (37o-41 o S; 9o-13o W), which includes the main island of Tristan da Cunha (96 km2), Gough Island (65 km2), Inaccessible Island (14 km2), Nightingale Island (3 km2) and two small islands close to Nightingale. The island group is situated around 1200 nautical miles south of St Helena and 1500 miles WSW of Cape Town, South Africa (Figure TdC-1). The island is part of the British Overseas Territory of Saint Helena, Ascension and Tristan da Cunha, with the Governor based on St Helena. The Administrator is the Governor’s representative on Tristan da Cunha. Figure TdC-1. The South Atlantic Ocean showing the location of the Tristan da Cunha island group. The three northern islands (Tristan, Nightingale and Inaccessible) lie north of the Subtropical Convergence STC), a circumpolar oceanic front located at approximately 42˚S where the sea surface temperature (SST) drops sharply. Gough Island lies in the path of the STC, which moves north of the island during winter months. Average SST at Tristan da Cunha in the austral summer range from 15- 19˚C, and in winter it declines to 13-15˚C. At Gough Island SST is on average 3˚C cooler than at the Tristan group during all months. The tidal range is small, but trade winds and frequent storms means that the marine environment is high energy with frequent physical disturbance. The Tristan da Cunha 200 nautical mile Exclusive Fishing Zone (EFZ; Figure TdC-2) was established in 1983 and covers an area of 754,000 km2.
    [Show full text]
  • Canadian Aquaculture R&D Review 2019
    AQUACULTURE ASSOCIATION OF CANADA SPECIAL PUBLICATION 26 2019 CANADIAN AQUACULTURE R&D REVIEW INSIDE Development of optimal diet for Rainbow Trout (Oncorhynchus mykiss) Acoustic monitoring of wild fish interactions with aquaculture sites Potential species as cleaner fish for sea lice on farmed salmon Piscine reovirus (PRV): characterization, susceptibility, prevalence, and transmission in Atlantic and Pacific Salmon Novel sensors for fish health and welfare Effect of climate change on the culture Blue Mussel (Mytilus edulis) Oyster aquaculture in an acidifying ocean Presence, extent, and impacts of microplastics on shellfish aquaculture Validation of a hydrodynamic model to support aquaculture in the West coast of Vancouver Island CANADIAN AQUACULTURE R&D REVIEW 2019 AAC Special Publication #26 ISBN: 978-0-9881415-9-9 © 2019 Aquaculture Association of Canada Cover Photo (Front): Cultivated sugar kelp (Saccharina latissima) on a culture line at an aquaculture site. (Photo: Isabelle Gendron-Lemieux, Merinov) First Photo Inside Cover (Front): Mussels. (DFO, Gulf Region) Second Photo inside Cover (Front): American Lobsters (Homarus americanus) in a holding tank. (Jean-François Laplante, Merinov) Cover Photo (Back): Atlantic Salmon sea cages in southern Newfoundland. (KÖBB Media/DFO) The Canadian Aquaculture R&D Review 2019 has been published with support provided by Fisheries and Oceans Canada's Aquaculture Collaborative Research and Development Program (ACRDP), and by the Aquaculture Association of Canada (AAC). Submitted materials may have been edited for length and writing style. Projects not included in this edition should be submitted before the deadline to be set for the next edition. Editors: Tricia Gheorghe, Véronique Boucher Lalonde, Emily Ryall and G. Jay Parsons Cited as: T Gheorghe, V Boucher Lalonde, E Ryall, and GJ Parsons (eds).
    [Show full text]
  • Unesco-Eolss Sample Chapters
    FISHERIES AND AQUACULTURE - Myxozoan Biology And Ecology - Dr. Ariadna Sitjà-Bobadilla and Oswaldo Palenzuela MYXOZOAN BIOLOGY AND ECOLOGY Ariadna Sitjà-Bobadilla and Oswaldo Palenzuela Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellón, Spain Keywords: Myxozoa, Myxosporea, Actinosporea, Malacosporea, Metazoa, Parasites, Fish Pathology, Invertebrates, Taxonomy, Phylogeny, Cell Biology, Life Cycle Contents 1. Introduction 2. Phylogeny 3. Morphology and Taxonomy 3.1. Spore Morphology 3.2. Taxonomy 4. Life Cycle 4.1. Life Cycle of Myxosporea 4.2. Life Cycle of Malacosporea 5. Cell Biology and Development 6. Ecological Aspects 6.1. Hosts 6.2. Habitats 6.3. Environmental Cues 7. Pathology 7.1. General Remarks 7.2. Pathogenic Effects of Myxozoans 7.2.1. Effects on Invertebrates 7.2.2. Effects on Fish 7.2.3. Effects on non-fish Vertebrates Acknowledgements Glossary Bibliography Biographical Sketches Summary UNESCO-EOLSS The phylum Myxozoa is a group of microscopic metazoans with an obligate endoparasitic lifestyle.SAMPLE Traditionally regarded CHAPTERS as protists, research findings during the last decades have dramatically changed our knowledge of these organisms, nowadays understood as examples of early metazoan evolution and extreme adaptation to parasitic lifestyles. Two distinct classes of myxozoans, Myxosporea and Malacosporea, are characterized by profound differences in rDNA evolution and well supported by differential biological and developmental features. This notwithstanding, most of the existing Myxosporea subtaxa require revision in the light of molecular phylogeny data. Most known myxozoans exhibit diheteroxenous cycles, alternating between a vertebrate host (mostly fish but also other poikilothermic vertebrates, and exceptionally birds and mammals) and an invertebrate (mainly annelids and bryozoans but possibly other ©Encyclopedia of Life Support Systems (EOLSS) FISHERIES AND AQUACULTURE - Myxozoan Biology And Ecology - Dr.
    [Show full text]
  • Percomorph Phylogeny: a Survey of Acanthomorphs and a New Proposal
    BULLETIN OF MARINE SCIENCE, 52(1): 554-626, 1993 PERCOMORPH PHYLOGENY: A SURVEY OF ACANTHOMORPHS AND A NEW PROPOSAL G. David Johnson and Colin Patterson ABSTRACT The interrelationships of acanthomorph fishes are reviewed. We recognize seven mono- phyletic terminal taxa among acanthomorphs: Lampridiformes, Polymixiiformes, Paracan- thopterygii, Stephanoberyciformes, Beryciformes, Zeiformes, and a new taxon named Smeg- mamorpha. The Percomorpha, as currently constituted, are polyphyletic, and the Perciformes are probably paraphyletic. The smegmamorphs comprise five subgroups: Synbranchiformes (Synbranchoidei and Mastacembeloidei), Mugilomorpha (Mugiloidei), Elassomatidae (Elas- soma), Gasterosteiformes, and Atherinomorpha. Monophyly of Lampridiformes is justified elsewhere; we have found no new characters to substantiate the monophyly of Polymixi- iformes (which is not in doubt) or Paracanthopterygii. Stephanoberyciformes uniquely share a modification of the extrascapular, and Beryciformes a modification of the anterior part of the supraorbital and infraorbital sensory canals, here named Jakubowski's organ. Our Zei- formes excludes the Caproidae, and characters are proposed to justify the monophyly of the group in that restricted sense. The Smegmamorpha are thought to be monophyletic principally because of the configuration of the first vertebra and its intermuscular bone. Within the Smegmamorpha, the Atherinomorpha and Mugilomorpha are shown to be monophyletic elsewhere. Our Gasterosteiformes includes the syngnathoids and the Pegasiformes
    [Show full text]
  • Open Water Processes of the San Francisco Estuary: from Physical Forcing to Biological Responses
    SAN FRANCISCO ESTUARYESTUARYESTUARY&WAT & WATERSHED&WATERSHEDERSHED Published for the San Francisco Bay-Delta SCIENCEScience Consortium by the John Muir Institute of the Environment SAN FRANCISO ESTUARY & WATERSHED SCIENCE VOLUME 2, ISSUE 1 FEBRUARY 2004 ARTICLE 1 Open Water Processes of the San Francisco Estuary: From Physical Forcing to Biological Responses WIM KIMMERER ROMBERG TIBURON CENTER SAN FRANCISCO STATE UNIVERSITY Copyright © 2003 by the authors, unless otherwise noted. This article is part of the collected publications of San Francisco Estuary and Watershed Science. San Francisco Estuary and Watershed Science is produced by the eScholarship Repository and bepress. FEBRUARY 2004 SAN FRANCISCO ESTUARYESTUARYESTUARY&WAT & WATERSHED&WATERSHEDERSHED Published for the San Francisco Bay-Delta SCIENCEScience Consortium by the John Muir Institute of the Environment Open Water Processes annual variation in freshwater flow; in particular, abundance of several estuarine-dependent species of of the San Francisco Estuary: fish and shrimp varies positively with flow, although From Physical Forcing the mechanisms behind these relationships are largely to Biological Responses unknown. The second theme is the importance of time scales in determining the degree of interaction WIM KIMMERER between dynamic processes. Physical effects tend to ROMBERG TIBURON CENTER dominate when they operate at shorter time scales SAN FRANCISCO STATE UNIVERSITY than biological processes; when the two time scales are similar, important interactions can arise between physical and biological variability. These interactions DEDICATION can be seen, for example, in the response of phyto- plankton blooms, with characteristic time scales of I dedicate this work to the memory days, to stratification events occurring during neap of Don Kelley.
    [Show full text]