(Coleoidea) and Their Phylogenetic Implications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Siphuncular Structure in the Extant Spirula and in Other Coleoids (Cephalopoda)
GFF ISSN: 1103-5897 (Print) 2000-0863 (Online) Journal homepage: http://www.tandfonline.com/loi/sgff20 Siphuncular Structure in the Extant Spirula and in Other Coleoids (Cephalopoda) Harry Mutvei To cite this article: Harry Mutvei (2016): Siphuncular Structure in the Extant Spirula and in Other Coleoids (Cephalopoda), GFF, DOI: 10.1080/11035897.2016.1227364 To link to this article: http://dx.doi.org/10.1080/11035897.2016.1227364 Published online: 21 Sep 2016. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=sgff20 Download by: [Dr Harry Mutvei] Date: 21 September 2016, At: 11:07 GFF, 2016 http://dx.doi.org/10.1080/11035897.2016.1227364 Siphuncular Structure in the Extant Spirula and in Other Coleoids (Cephalopoda) Harry Mutvei Department of Palaeobiology, Swedish Museum of Natural History, Box 50007, SE-10405 Stockholm, Sweden ABSTRACT ARTICLE HISTORY The shell wall in Spirula is composed of prismatic layers, whereas the septa consist of lamello-fibrillar nacre. Received 13 May 2016 The septal neck is holochoanitic and consists of two calcareous layers: the outer lamello-fibrillar nacreous Accepted 23 June 2016 layer that continues from the septum, and the inner pillar layer that covers the inner surface of the septal KEYWORDS neck. The pillar layer probably is a structurally modified simple prisma layer that covers the inner surface of Siphuncular structures; the septal neck in Nautilus. The pillars have a complicated crystalline structure and contain high amount of connecting rings; Spirula; chitinous substance. -
Contributions in BIOLOGY and GEOLOGY
MILWAUKEE PUBLIC MUSEUM Contributions In BIOLOGY and GEOLOGY Number 51 November 29, 1982 A Compendium of Fossil Marine Families J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions in BIOLOGY and GEOLOGY Number 51 November 29, 1982 A COMPENDIUM OF FOSSIL MARINE FAMILIES J. JOHN SEPKOSKI, JR. Department of the Geophysical Sciences University of Chicago REVIEWERS FOR THIS PUBLICATION: Robert Gernant, University of Wisconsin-Milwaukee David M. Raup, Field Museum of Natural History Frederick R. Schram, San Diego Natural History Museum Peter M. Sheehan, Milwaukee Public Museum ISBN 0-893260-081-9 Milwaukee Public Museum Press Published by the Order of the Board of Trustees CONTENTS Abstract ---- ---------- -- - ----------------------- 2 Introduction -- --- -- ------ - - - ------- - ----------- - - - 2 Compendium ----------------------------- -- ------ 6 Protozoa ----- - ------- - - - -- -- - -------- - ------ - 6 Porifera------------- --- ---------------------- 9 Archaeocyatha -- - ------ - ------ - - -- ---------- - - - - 14 Coelenterata -- - -- --- -- - - -- - - - - -- - -- - -- - - -- -- - -- 17 Platyhelminthes - - -- - - - -- - - -- - -- - -- - -- -- --- - - - - - - 24 Rhynchocoela - ---- - - - - ---- --- ---- - - ----------- - 24 Priapulida ------ ---- - - - - -- - - -- - ------ - -- ------ 24 Nematoda - -- - --- --- -- - -- --- - -- --- ---- -- - - -- -- 24 Mollusca ------------- --- --------------- ------ 24 Sipunculida ---------- --- ------------ ---- -- --- - 46 Echiurida ------ - --- - - - - - --- --- - -- --- - -- - - --- -
An Inventory of Belemnites Documented in Six Us National Parks in Alaska
Lucas, S. G., Hunt, A. P. & Lichtig, A. J., 2021, Fossil Record 7. New Mexico Museum of Natural History and Science Bulletin 82. 357 AN INVENTORY OF BELEMNITES DOCUMENTED IN SIX US NATIONAL PARKS IN ALASKA CYNTHIA D. SCHRAER1, DAVID J. SCHRAER2, JUSTIN S. TWEET3, ROBERT B. BLODGETT4, and VINCENT L. SANTUCCI5 15001 Country Club Lane, Anchorage AK 99516; -email: [email protected]; 25001 Country Club Lane, Anchorage AK 99516; -email: [email protected]; 3National Park Service, Geologic Resources Division, 1201 Eye Street, Washington, D.C. 20005; -email: justin_tweet@ nps.gov; 42821 Kingfisher Drive, Anchorage, AK 99502; -email: [email protected];5 National Park Service, Geologic Resources Division, 1849 “C” Street, Washington, D.C. 20240; -email: [email protected] Abstract—Belemnites (order Belemnitida) are an extinct group of coleoid cephalopods, known from the Jurassic and Cretaceous periods. We compiled detailed information on 252 occurrences of belemnites in six National Park Service (NPS) areas in Alaska. This information was based on published literature and maps, unpublished U.S. Geological Survey internal fossil reports (“Examination and Report on Referred Fossils” or E&Rs), the U.S. Geological Survey Mesozoic locality register, the Alaska Paleontological Database, the NPS Paleontology Archives and our own records of belemnites found in museum collections. Few specimens have been identified and many consist of fragments. However, even these suboptimal specimens provide evidence that belemnites are present in given formations and provide direction for future research. Two especially interesting avenues for research concern the time range of belemnites in Alaska. Belemnites are known to have originated in what is now Europe in the Early Jurassic Hettangian and to have a well-documented world-wide distribution in the Early Jurassic Toarcian. -
Upper Triassic Corals and Carbonate Reef Facies from the Martin Bridge and Hurwal Formations, Wallowa Terrane (Oregon)
University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2010 UPPER TRIASSIC CORALS AND CARBONATE REEF FACIES FROM THE MARTIN BRIDGE AND HURWAL FORMATIONS, WALLOWA TERRANE (OREGON) Megan Ruth Rosenblatt The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Rosenblatt, Megan Ruth, "UPPER TRIASSIC CORALS AND CARBONATE REEF FACIES FROM THE MARTIN BRIDGE AND HURWAL FORMATIONS, WALLOWA TERRANE (OREGON)" (2010). Graduate Student Theses, Dissertations, & Professional Papers. 1354. https://scholarworks.umt.edu/etd/1354 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. UPPER TRIASSIC CORALS AND CARBONATE REEF FACIES FROM THE MARTIN BRIDGE AND HURWAL FORMATIONS, WALLOWA TERRANE (OREGON) By MEGAN RUTH ROSENBLATT Bachelor of Science, College of Charleston, Charleston SC, 2006 Thesis Presented in partial fulfillment of the requirements for the degree of Master of Science in Geosciences The University of Montana Missoula, MT December 2010 Approved by: Perry Brown, Associate Provost for Graduate Education Graduate School George Stanley, Ph.D., Chair Geosciences Marc Hendrix, Ph.D. Geosciences Jon Graham, Ph.D. Mathematical Sciences i ACKNOWLEDGEMENTS I would like to thank the National Science Foundation for field and laboratory funding from a grant awarded to George Stanley. For tuition and salary as a Research Assistant I would like to thank the Innovative Technology Experiences for Students and Teachers (ITEST) section of the National Science Foundation; a grant awarded to Heather Almquist and George Stanley. -
X. Paleontology, Biostratigraphy
BIBLIOGRAPHY OF THE GEOLOGY OF INDONESIA AND SURROUNDING AREAS Edition 7.0, July 2018 J.T. VAN GORSEL X. PALEONTOLOGY, BIOSTRATIGRAPHY www.vangorselslist.com X. PALEONTOLOGY, BIOSTRATIGRAPHY X. PALEONTOLOGY, BIOSTRATIGRAPHY ................................................................................................... 1 X.1. Quaternary-Recent faunas-microfloras and distribution ....................................................................... 60 X.2. Tertiary ............................................................................................................................................. 120 X.3. Jurassic- Cretaceous ........................................................................................................................ 161 X.4. Triassic ............................................................................................................................................ 171 X.5. Paleozoic ......................................................................................................................................... 179 X.6. Quaternary Hominids, Mammals and associated stratigraphy ........................................................... 191 This chapter X of the Bibliography 7.0 contains 288 pages with >2150 papers. These are mainly papers of a more general or regional nature. Numerous additional paleontological papers that deal with faunas/ floras from specific localities are listed under those areas in this Bibliography. It is organized in six sub-chapters: - X.1 on modern and sub-recent -
Pre-Tertiary Stratigraphy and Upper Triassic Paleontology of the Union District Shoshone Mountains Nevada
Pre-Tertiary Stratigraphy and Upper Triassic Paleontology of the Union District Shoshone Mountains Nevada GEOLOGICAL SURVEY PROFESSIONAL PAPER 322 Pre-Tertiary Stratigraphy and Upper Triassic Paleontology of the Union District Shoshone Mountains Nevada By N. J. SILBERLING GEOLOGICAL SURVEY PROFESSIONAL PAPER 322 A study of upper Paleozoic and lower Mesozoic marine sedimentary and volcanic rocks, with descriptions of Upper Triassic cephalopods and pelecypods UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. CONTENTS Page Page Abstract_ ________________________________________ 1 Paleontology Continued Introduction _______________________________________ 1 Systematic descriptions-------------------------- 38 Class Cephalopoda___--_----_---_-_-_-_-_--_ 38 Location and description of the area ______________ 2 Order Ammonoidea__-__-_______________ 38 Previous work__________________________________ 2 Genus Klamathites Smith, 1927_ __ 38 Fieldwork and acknowledgments________________ 4 Genus Mojsisovicsites Gemmellaro, 1904 _ 39 Stratigraphy _______________________________________ 4 Genus Tropites Mojsisovics, 1875_____ 42 Genus Tropiceltites Mojsisovics, 1893_ 51 Cambrian (?) dolomite and quartzite units__ ______ 4 Genus Guembelites Mojsisovics, 1896__ 52 Pablo formation (Permian?)____________________ 6 Genus Discophyllites Hyatt, -
Cephalopod Reproductive Strategies Derived from Embryonic Shell Size
Biol. Rev. (2017), pp. 000–000. 1 doi: 10.1111/brv.12341 Cephalopod embryonic shells as a tool to reconstruct reproductive strategies in extinct taxa Vladimir Laptikhovsky1,∗, Svetlana Nikolaeva2,3,4 and Mikhail Rogov5 1Fisheries Division, Cefas, Lowestoft, NR33 0HT, U.K. 2Department of Earth Sciences Natural History Museum, London, SW7 5BD, U.K. 3Laboratory of Molluscs Borissiak Paleontological Institute, Russian Academy of Sciences, Moscow, 117997, Russia 4Laboratory of Stratigraphy of Oil and Gas Bearing Reservoirs Kazan Federal University, Kazan, 420000, Russia 5Department of Stratigraphy Geological Institute, Russian Academy of Sciences, Moscow, 119017, Russia ABSTRACT An exhaustive study of existing data on the relationship between egg size and maximum size of embryonic shells in 42 species of extant cephalopods demonstrated that these values are approximately equal regardless of taxonomy and shell morphology. Egg size is also approximately equal to mantle length of hatchlings in 45 cephalopod species with rudimentary shells. Paired data on the size of the initial chamber versus embryonic shell in 235 species of Ammonoidea, 46 Bactritida, 13 Nautilida, 22 Orthocerida, 8 Tarphycerida, 4 Oncocerida, 1 Belemnoidea, 4 Sepiida and 1 Spirulida demonstrated that, although there is a positive relationship between these parameters in some taxa, initial chamber size cannot be used to predict egg size in extinct cephalopods; the size of the embryonic shell may be more appropriate for this task. The evolution of reproductive strategies in cephalopods in the geological past was marked by an increasing significance of small-egged taxa, as is also seen in simultaneously evolving fish taxa. Key words: embryonic shell, initial chamber, hatchling, egg size, Cephalopoda, Ammonoidea, reproductive strategy, Nautilida, Coleoidea. -
Doguzhaeva Etal 2014 Embryo
Embryonic shell structure of Early–Middle Jurassic belemnites, and its significance for belemnite expansion and diversification in the Jurassic LARISA A. DOGUZHAEVA, ROBERT WEIS, DOMINIQUE DELSATE AND NINO MARIOTTI Doguzhaeva, L.A., Weis, R., Delsate, D. & Mariotti N. 2014: Embryonic shell structure of Early–Middle Jurassic belemnites, and its significance for belemnite expansion and diversification in the Jurassic. Lethaia, Vol. 47, pp. 49–65. Early Jurassic belemnites are of particular interest to the study of the evolution of skel- etal morphology in Lower Carboniferous to the uppermost Cretaceous belemnoids, because they signal the beginning of a global Jurassic–Cretaceous expansion and diver- sification of belemnitids. We investigated potentially relevant, to this evolutionary pat- tern, shell features of Sinemurian–Bajocian Nannobelus, Parapassaloteuthis, Holcobelus and Pachybelemnopsis from the Paris Basin. Our analysis of morphological, ultrastruc- tural and chemical traits of the earliest ontogenetic stages of the shell suggests that modified embryonic shell structure of Early–Middle Jurassic belemnites was a factor in their expansion and colonization of the pelagic zone and resulted in remarkable diversification of belemnites. Innovative traits of the embryonic shell of Sinemurian– Bajocian belemnites include: (1) an inorganic–organic primordial rostrum encapsulating the protoconch and the phragmocone, its non-biomineralized compo- nent, possibly chitin, is herein detected for the first time; (2) an organic rich closing membrane which was under formation. It was yet perforated and possessed a foramen; and (3) an organic rich pro-ostracum earlier documented in an embryonic shell of Pliensbachian Passaloteuthis. The inorganic–organic primordial rostrum tightly coat- ing the protoconch and phragmocone supposedly enhanced protection, without increase in shell weight, of the Early Jurassic belemnites against explosion in deep- water environment. -
Sepkoski, J.J. 1992. Compendium of Fossil Marine Animal Families
MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. Department of the Geophysical Sciences University of Chicago Chicago, Illinois 60637 Milwaukee Public Museum Contributions in Biology and Geology Rodney Watkins, Editor (Reviewer for this paper was P.M. Sheehan) This publication is priced at $25.00 and may be obtained by writing to the Museum Gift Shop, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Orders must also include $3.00 for shipping and handling ($4.00 for foreign destinations) and must be accompanied by money order or check drawn on U.S. bank. Money orders or checks should be made payable to the Milwaukee Public Museum. Wisconsin residents please add 5% sales tax. In addition, a diskette in ASCII format (DOS) containing the data in this publication is priced at $25.00. Diskettes should be ordered from the Geology Section, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Specify 3Y. inch or 5Y. inch diskette size when ordering. Checks or money orders for diskettes should be made payable to "GeologySection, Milwaukee Public Museum," and fees for shipping and handling included as stated above. Profits support the research effort of the GeologySection. ISBN 0-89326-168-8 ©1992Milwaukee Public Museum Sponsored by Milwaukee County Contents Abstract ....... 1 Introduction.. ... 2 Stratigraphic codes. 8 The Compendium 14 Actinopoda. -
Abstracts and Program. – 9Th International Symposium Cephalopods ‒ Present and Past in Combination with the 5Th
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/265856753 Abstracts and program. – 9th International Symposium Cephalopods ‒ Present and Past in combination with the 5th... Conference Paper · September 2014 CITATIONS READS 0 319 2 authors: Christian Klug Dirk Fuchs University of Zurich 79 PUBLICATIONS 833 CITATIONS 186 PUBLICATIONS 2,148 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Exceptionally preserved fossil coleoids View project Paleontological and Ecological Changes during the Devonian and Carboniferous in the Anti-Atlas of Morocco View project All content following this page was uploaded by Christian Klug on 22 September 2014. The user has requested enhancement of the downloaded file. in combination with the 5th International Symposium Coleoid Cephalopods through Time Abstracts and program Edited by Christian Klug (Zürich) & Dirk Fuchs (Sapporo) Paläontologisches Institut und Museum, Universität Zürich Cephalopods ‒ Present and Past 9 & Coleoids through Time 5 Zürich 2014 ____________________________________________________________________________ 2 Cephalopods ‒ Present and Past 9 & Coleoids through Time 5 Zürich 2014 ____________________________________________________________________________ 9th International Symposium Cephalopods ‒ Present and Past in combination with the 5th International Symposium Coleoid Cephalopods through Time Edited by Christian Klug (Zürich) & Dirk Fuchs (Sapporo) Paläontologisches Institut und Museum Universität Zürich, September 2014 3 Cephalopods ‒ Present and Past 9 & Coleoids through Time 5 Zürich 2014 ____________________________________________________________________________ Scientific Committee Prof. Dr. Hugo Bucher (Zürich, Switzerland) Dr. Larisa Doguzhaeva (Moscow, Russia) Dr. Dirk Fuchs (Hokkaido University, Japan) Dr. Christian Klug (Zürich, Switzerland) Dr. Dieter Korn (Berlin, Germany) Dr. Neil Landman (New York, USA) Prof. Pascal Neige (Dijon, France) Dr. -
325015 1 En Bookbackmatter 357..405
Appendix © Springer India 2017 357 S. Jain, Fundamentals of Invertebrate Palaeontology, Springer Geology, DOI 10.1007/978-81-322-3658-0 358 Ch. no. Species name Age Locality Chapter Fig. no. Fig. no. 2 Otavia antiqua Brian et al. Cryogenian-Ediacaran Namibia, South Africa Sponges 1 1 2 Sycetta sagittifera Haeckel Recent South India Sponges 3 6 2 Archaeocyaths atlanticus Billings Early Cambrian West coast, USA Sponges 7 3–4 2 Ajacicyathus nevadensis Oklulitch Early Cambrian West coast, USA Sponges 7 5 2 Ethmophyllum whitneyi Meek Cambrian British Columbia, Canada Sponges 7 6–7 2 Pycnoidocyathus occidentalis (Raymond) Early Cambrian British Columbia, Canada Sponges 7 8 2 Protospongia fenestrate Salter Middle Cambrian (Burgess) British Columbia, Canada Sponges 8 1 2 Chancelloria eros Walcott Middle Cambrian (Burgess) British Columbia, Canada Sponges 8 2 2 Eiffelia globosa Walcott Middle Cambrian (Burgess) British Columbia, Canada Sponges 8 3 2 Choia carteri Walcott Middle Cambrian (Burgess) British Columbia, Canada Sponges 8 4 2 Brachiospongia digitata (Owen) Middle Ordovician Kentucky, USA Sponges 9 1 2 Hindia parva Ulrich Middle Ordovician Minnesota, USA Sponges 9 2–3 2 Ischadites iowensis (Owen) Middle Ordovician Kentucky, USA Sponges 9 4 2 Receptaculites oweni Hall Middle Ordovician Kentucky, USA Sponges 9 5 2 Astaeospongia meniscus (Roemer) Middle Silurian (Niagaran) Tennessee, USA Sponges 10 1–2 2 Prismodictya prismatica (Hall) Late Devonian New York, USA Sponges 10 3 2 Prismodictya telum (Hall) Late Devonian New York, USA Sponges 10 -
The Early Evolutionary History of Belemnites: New Data from Japan
The Early Evolutionary History of Belemnites: New Data from Japan Yasuhiro Iba1*, Shin-ichi Sano2,Jo¨ rg Mutterlose3 1 Department of Natural History Sciences, Hokkaido University, Sapporo, Japan, 2 Fukui Prefectural Dinosaur Museum, Katsuyama, Japan, 3 Institute of Geology, Mineralogy and Geophysics, Ruhr-University Bochum, Bochum, Germany Abstract Belemnites (Order Belemnitida), a very successful group of Mesozoic coleoid cephalopods, dominated the world’s oceans throughout the Jurassic and Cretaceous. According to the current view, the phylogenetically earliest belemnites are known from the lowermost Jurassic (Hettangian, 201–199 Ma) of northern Europe. They are of low diversity and have small sized rostra without clear grooves. Their distribution is restricted to this area until the Pliensbachian (191–183 Ma). Here we describe two new belemnite taxa of the Suborder Belemnitina from the Sinemurian (199–191 Ma) of Japan: Nipponoteuthis katana gen et sp. nov., which represents the new family Nipponoteuthidae, and Eocylindroteuthis (?) yokoyamai sp. nov. This is the first reliable report of Sinemurian belemnites outside of Europe and the earliest record of typical forms of Belemnitina in the world. The Sinemurian belemnites from Japan have small to large rostra with one deep and long apical groove. Morphologically these forms are completely different from coeval European genera of Hettangian–Sinemurian age. These new findings suggest that three groups of Belemnitina existed in the Hettangian–Sinemurian: 1) European small forms, 2) Japanese very large forms, and 3) the typical forms with a distinctive apical groove, reported here. The Suborder Belemnitina therefore did not necessarily originate in the Hettangian of northern Europe. The new material from Japan documents that the suborder Belemnitina had a much higher diversity in the early Jurassic than previously thought, and it also shows strong endemisms from the Sinemurian onwards.