Pohlsepia Mazonensis, an Early 'Octopus' from the Carboniferous of Illinois

Total Page:16

File Type:pdf, Size:1020Kb

Pohlsepia Mazonensis, an Early 'Octopus' from the Carboniferous of Illinois POHLSEPIA MAZONENSIS, AN EARLY `OCTOPUS' FROM THE CARBONIFEROUS OF ILLINOIS, USA by JOANNE KLUESSENDORF and PETER DOYLE ABSTRACT. Pohlsepia mazonensis gen. et sp. nov. from the Mazon Creek Konservat LagerstaÈtte (Carboniferous) of Illinois is an exceptionally preserved soft-bodied fossil coleoid, with well-de®ned body and arms. Lacking an internal shell and possessing eight subequal and two modi®ed arms, Pohlsepia can be compared with both the living cirrate octopods and the decabrachian sepiardarids, both of which lack a well-developed internal skeleton. Given its sac-like body, lack of a well-de®ned head and presence of ®ns, Pohlsepia can be safely compared with modern cirrate octopods. It is the oldest known completely soft-bodied coleoid and as such has great signi®cance with respect to the phylogeny of the group, given that both the octobrachian and decabrachian clades have previously been thought to have evolved in the Jurassic. KEY WORDS: Coleoidea, Octobrachia, Konservat LagerstaÈtte, Mazon Creek, Carboniferous. T HE preservation of cephalopods with the soft parts intact is relatively uncommon in the fossil record, and is common only within the Coleoidea, a group which includes belemnoids and the familiar living squid, cuttle®sh and octopods. The majority of known records are of Mesozoic coleoids, and these have effectively been derived mostly from the Jurassic and Cretaceous Konservat LagerstaÈtten of Europe and the Middle East. A notable exception to this is the Upper Carboniferous Mazon Creek fauna of Illinois, USA, which famously preserves the soft parts of a wide range of phyla within sideritic concretions. Although many cephalopods have been recovered from the Mazon Creek fauna, soft parts are rare even here, and this deposit has yielded specimens of some of the oldest coleoids with soft-part preservation, including the ten-armed Jeletzkya douglassae (Johnson and Richardson 1968; Saunders and Richardson 1979), the origins of which have been much debated, and at least one other possible teuthid form (Allison 1987). The specimen described herein is one of the best preserved cephalopods recovered from the Mazon Creek fauna, and is preserved with arms, indistinct head, and body intact. It is unlike Jeletzkya douglassae, which has been interpreted as a belemnoid, although this is still in debate (D. T. Donovan, pers. comm. 1999), and although it has some morphological similarity to the specimen described by Allison (1987), the excellence of its preservation, and the absence of any shelly material, either externally or internally, provides an important record of great phylogenetic signi®cance. The aim of this paper is, therefore, to describe in detail the specimen, to compare it with known taxa, and to discuss its wider phylogenetic signi®cance. STRATIGRAPHY AND DEPOSITIONAL SETTING The Mazon Creek LagerstaÈtte occurs within the Upper Carboniferous (Westphalian D: Pennsylvanian in North America) Francis Creek Shale Member of the Carbondale Formation in north-eastern Illinois. The Francis Creek Shale was deposited in a deltaic setting where high sedimentation rates effected rapid burial that resulted in the extraordinary fossil preservation within early diagenetic siderite concretions. Two biotic associations occur in this LagerstaÈtte: the Braidwood biota contains terrestrial plants and a variety of freshwater terrestrial organisms; and the Essex biota, which is dominated by a planktonic and nektonic taxa representation of nearshore marine to brackish water conditions (Richardson and Johnson 1971). The distribution patterns of these biotas delineate the limit of marine conditions and the transition to a swamp environment (Richardson and Johnson 1971). The type area for the Essex biota is the former Pit Eleven strip mine of the Peabody Coal Company in Will and Kankakee counties, Illinios (Johnson and Richardson [Palaeontology, Vol. 43, Part 5, 2000, pp. 919±926] q The Palaeontological Association 920 PALAEONTOLOGY, VOLUME 43 1966; Richardson and Johnson 1971). Most Mazon Creek cephalopods, including the specimen described herein, were collected from the Essex biota at Pit Eleven (see Saunders and Richardson 1979). SYSTEMATIC PALAEONTOLOGY Class Cephalopoda Cuvier, 1797 Subclass Coleoidea Bather, 1888 Order ?Cirroctopoda Young, 1989 Genus Pohlsepia gen. nov. Derivation of name. The genus is named in honour of James Pohl of Minnesota, formerly of Belgium, Wisconsin, who collected and donated the specimen to the Field Museum of Natural History. Jim regularly accompanied his father Joe Pohl, noted fossil collector, dairy farmer, and adventurer, on collecting trips to the strip mines of Illinois. Both Jim and Joe have collected many new taxa from the Mazon Creek LagerstaÈtte, which they have shared with the scienti®c community and generously donated to museums. Type species. Pohlsepia mazonensis sp. nov. Diagnosis. Shell absent; mantle subcircular in outline and sac-like; dorsal mantle fused to indistinct head; ten circumoral appendages comprise eight equal arms and two arms modi®ed as tentacles; lobate ®ns longer than wide and free. Pohlsepia mazonensis gen. et sp. nov. Text-®gure 1 Derivation of name. The new species is named for the well known Mazon Creek LagerstaÈtte where the holotype was found. Diagnosis. As for genus. Type specimen. PE51727, Field Museum of Natural History, Chicago, Illinois, USA. Description of holotype. The specimen (Text-®g. 1) is exceptionally well preserved, providing a ventral view of its low relief, and is represented as a slight colour difference within the dark greyish brown siderite concretion, which is 80 mm long and 50 mm wide. Light coloured features in the concretion to the left posterior (and possibly to the right anterior) of the specimen probably represent ¯uids expressed from the animal after burial. Distinct body, head and arms can be distinguished, as well as a number of internal and delicate external features. The body of the coleoid, which has been compressed dorsoventrally, is subcircular and 35 mm wide at its broadest point, with two distinct and symmetrical ®ns at its anterior. These ®ns are narrow and con®ned to the posterior margin of the coleoid. The mantle appears to have crumpled slightly, causing the posterior ®ns to tilt slightly to the anterior. An internal feature to the posterior of the coleoid may be interpreted as either an ink sac or a gut trace; ink sacs are common in Mesozoic coleoids, and the ¯ask-like form of the trace is reminiscent of these. However, it is unusual for TEXT-FIG. 1. A, Pohlsepia mazonensis, gen. et sp. nov., holotype, in siderite concretion, Upper Carboniferous (Westphalian D), Francis Creek Shale Member, Carbondale Formation, near Braidwood, Will County, Illinois; ´ 1´9. B, drawing of Pohlsepia mazonensis gen. et sp. nov.; ´ 1´9. Abbreviations: e, eye; ef, expressed ¯uid; f, ®n; fu, funnel; is?, ink sac (or gut trace); m, mandibles; ma, modi®ed arm (tentacle); r, radula. KLUESSENDORF AND DOYLE: CARBONIFEROUS `OCTOPUS' 921 922 PALAEONTOLOGY, VOLUME 43 the ink not to be preserved, as the melanin of coleoid ink is stable. A similar feature was also described from Allison's specimen of an unknown coleoid (Allison 1987). The specimen shows no sign of any internal shell or phragmocone. The head is identi®able but indistinct from the body, and possesses mandibular architecture, eyes, a funnel and arms. Mandibles and radula are preserved in the head region as strong impressions. The mandibles are articulated, although crushed and dif®cult to identify, and the radula is preserved in situ between them. Radula are commonly preserved in many of the Mazon Creek cephalopods. However, unlike these, the present specimen has its radula obscured by matrix and is otherwise unidenti®able. A short funnel may be visible at the anterior centre of the head, indicating the ventral aspect of the view, and is distinct and broadly central although no cartilagenous locking apparatus is present. The eyes are preserved as small patches of dark pigment which are spaced on either side of the well-de®ned head, and the dark pigmentation is a typical feature of eyes in Mazon Creek vertebrates. The arm crown is indistinct, although its component arms are clearly circumoral, and both short arms and longer modi®ed arms (tentacles) may be distinguished. Only the right appendages are well preserved (left as seen in the ventral view), and comprise what appears to be four short arms (only three are de®nitely visible) and one longer tentacle. No hooks are present and suckers are not visible. Comparison with Jeletzkya douglassae. Jeletzkya douglassae is a well-known coleoid from the Mazon Creek fauna (Johnson and Richardson 1968; Saunders and Richardson 1979) but may be distinguished from the current specimen on the following characteristics: an arm crown comprising ten subequal arms; distinct arm-hooks; a torpedo-like body shape; and an indistinct shell. These features have led to a general acceptance that this taxon represents the soft-body parts of a belemnoid, although whether a true belemnite or an aulacocerid is still under debate (Doyle et al. 1994; Pignatti and Mariotti 1995; D. T. Donovan, pers. comm. 1999). Pohlsepia mazonensis is distinct from this taxon in the presence of a differentiated arm crown, the absence of hooks and an internal shell, and in the subcircular body shape. Comparison with Allison's specimen. Allison (1987) has described a ten-armed coleoid from the Mazon Creek fauna which he did not name. The specimen is poorly preserved and is elongate, with the head and arms extended. The body is globular and preserves posterior lateral ®ns which are similar in morphology to that of the specimen currently under investigation. No mandibles or radula are preserved or described, but identi®able eyes and possible ink sac or internal gut trace are amongst the features discussed. The ten arms are elongate and lacking their anterior tips. However, it is possible that they are differentiated and in this way are similar to the specimen currently under discussion. In general terms, Allison's specimen may be safely compared with the current one and is in all probability representative of Pohlsepia.
Recommended publications
  • CEPHALOPODS 688 Cephalopods
    click for previous page CEPHALOPODS 688 Cephalopods Introduction and GeneralINTRODUCTION Remarks AND GENERAL REMARKS by M.C. Dunning, M.D. Norman, and A.L. Reid iving cephalopods include nautiluses, bobtail and bottle squids, pygmy cuttlefishes, cuttlefishes, Lsquids, and octopuses. While they may not be as diverse a group as other molluscs or as the bony fishes in terms of number of species (about 600 cephalopod species described worldwide), they are very abundant and some reach large sizes. Hence they are of considerable ecological and commercial fisheries importance globally and in the Western Central Pacific. Remarks on MajorREMARKS Groups of CommercialON MAJOR Importance GROUPS OF COMMERCIAL IMPORTANCE Nautiluses (Family Nautilidae) Nautiluses are the only living cephalopods with an external shell throughout their life cycle. This shell is divided into chambers by a large number of septae and provides buoyancy to the animal. The animal is housed in the newest chamber. A muscular hood on the dorsal side helps close the aperture when the animal is withdrawn into the shell. Nautiluses have primitive eyes filled with seawater and without lenses. They have arms that are whip-like tentacles arranged in a double crown surrounding the mouth. Although they have no suckers on these arms, mucus associated with them is adherent. Nautiluses are restricted to deeper continental shelf and slope waters of the Indo-West Pacific and are caught by artisanal fishers using baited traps set on the bottom. The flesh is used for food and the shell for the souvenir trade. Specimens are also caught for live export for use in home aquaria and for research purposes.
    [Show full text]
  • Siphuncular Structure in the Extant Spirula and in Other Coleoids (Cephalopoda)
    GFF ISSN: 1103-5897 (Print) 2000-0863 (Online) Journal homepage: http://www.tandfonline.com/loi/sgff20 Siphuncular Structure in the Extant Spirula and in Other Coleoids (Cephalopoda) Harry Mutvei To cite this article: Harry Mutvei (2016): Siphuncular Structure in the Extant Spirula and in Other Coleoids (Cephalopoda), GFF, DOI: 10.1080/11035897.2016.1227364 To link to this article: http://dx.doi.org/10.1080/11035897.2016.1227364 Published online: 21 Sep 2016. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=sgff20 Download by: [Dr Harry Mutvei] Date: 21 September 2016, At: 11:07 GFF, 2016 http://dx.doi.org/10.1080/11035897.2016.1227364 Siphuncular Structure in the Extant Spirula and in Other Coleoids (Cephalopoda) Harry Mutvei Department of Palaeobiology, Swedish Museum of Natural History, Box 50007, SE-10405 Stockholm, Sweden ABSTRACT ARTICLE HISTORY The shell wall in Spirula is composed of prismatic layers, whereas the septa consist of lamello-fibrillar nacre. Received 13 May 2016 The septal neck is holochoanitic and consists of two calcareous layers: the outer lamello-fibrillar nacreous Accepted 23 June 2016 layer that continues from the septum, and the inner pillar layer that covers the inner surface of the septal KEYWORDS neck. The pillar layer probably is a structurally modified simple prisma layer that covers the inner surface of Siphuncular structures; the septal neck in Nautilus. The pillars have a complicated crystalline structure and contain high amount of connecting rings; Spirula; chitinous substance.
    [Show full text]
  • The Pro-Ostracum and Primordial Rostrum at Early Ontogeny of Lower Jurassic Belemnites from North-Western Germany
    Coleoid cephalopods through time (Warnke K., Keupp H., Boletzky S. v., eds) Berliner Paläobiol. Abh. 03 079-089 Berlin 2003 THE PRO-OSTRACUM AND PRIMORDIAL ROSTRUM AT EARLY ONTOGENY OF LOWER JURASSIC BELEMNITES FROM NORTH-WESTERN GERMANY L. A. Doguzhaeva1, H. Mutvei2 & W. Weitschat3 1Palaeontological Institute of the Russian Academy of Sciences 117867 Moscow, Profsoyuznaya St., 123, Russia, [email protected] 2 Swedish Museum of Natural History, Department of Palaeozoology, S-10405 Stockholm, Sweden, [email protected] 3 Geological-Palaeontological Institute and Museum University of Hamburg, Bundesstrasse 55, D-20146 Hamburg, Germany, [email protected] ABSTRACT The structure of pro-ostracum and primordial rostrum is presented at early ontogenic stages in Lower Jurassic belemnites temporarily assigned to ?Passaloteuthis from north-western Germany. For the first time the pro-ostracum was observed in the first camerae of the phragmocone. The presence of a pro-ostracum in early shell ontogeny supports Naef”s opinion (1922) that belemnites had an internal skeleton during their entire ontogeny, starting from the earliest post-hatching stages. This interpretation has been previously questioned by several writers. The outer and inner surfaces of the juvenile pro-ostracum were studied. The gross morphology of these surfaces is similar to that at adult ontogenetic stages. Median sections reveal that the pro-ostracum consists of three thin layers: an inner and an outer prismatic layer separated by a fine lamellar, predominantly organic layer. These layers extend from the dorsal side of the conotheca to the ventral side. The information obtained herein confirms the idea that the pro-ostracum represents a structure not present in the shell of ectocochleate cephalopods (Doguzhaeva, 1999, Doguzhaeva et al.
    [Show full text]
  • Primer Registro De Los Géneros Actinotheca Xiao & Zou, 1984 Y
    PRIMER REGISTRO DE LOS GÉNEROS ACTINOTHECA XIAO Y ZOU, 1984, Y CONOTHECA MISSARZHEVSKY, 1969, EN EL CÁMBRICO INFERIOR DE LA PENÍNSULA IBÉRICA DAVID C. FERNÁNDEZ-REMOLAR1 | CENTRO DE ASTROBIOLOGÍA, TORREJÓN DE ARDOZ RESUMEN En este trabajo se describe el primer registro en la península Ibérica de los géneros Actinotheca Xiao y Zou, 1984, incluido en la familia Cupithecidae Duan, 1984, y Conotheca Missarzhevsky, 1969 (in ROZANOV et al., 1969), perteneciente a la familia Circothecidae Syssoiev, 1962, de la Clase Hyolitha Marek, 1963, que se obtuvieron por el muestreo de los niveles fosfáticos de la Formación Pedroche del Ovetiense Inferior en la Sierra de Córdoba. La correlación de estos niveles con otras regiones con asociaciones de fósiles fosfáticos por medio de la cronoestrati- grafía de arqueociatos indica que los materiales con Actinotheca y Conotheca de Córdoba se corresponderían con el techo de la Zona de Retecoscinus zegebarti o el muro de la Zona de Carinacyathus pinus, que se sitúan desde la parte inferior hasta la media del Atdabaniense de la Plataforma de Siberia. Esta posición es correlacionable con la Asociación III en Yunnan (China) y la parte baja de la Zona de Abadiella huoi de los Flinders Ranges (Australia), las cuales presentan algunos taxones afines a los presentes en la Sierra de Córdoba. Además, la comparación de las asociaciones de fósiles de la Sierra de Córdoba con aquéllas de restos fos- fáticos con la misma edad en otras regiones cámbricas sugiere que la capacidad de dispersión de Conotheca era mucho mayor que la de Actinotheca, el cual apa- rece casi exclusivamente limitado a materiales del Cámbrico Inferior de áreas gondwánicas.
    [Show full text]
  • First Record of Duvaliaex. Gr. Lata(Cephalopoda, Coleoidea) From
    First record of Duvalia ex. gr. lata (Cephalopoda, Coleiodea) from Mexico 527 BOLETÍN DE LA SOCIEDAD GEOLÓGICA MEXICANA VOLUMEN 65, NÚM. 3, 2013, P. 527-531 D GEOL DA Ó E G I I C C O A S 1904 M 2004 . C EX . ICANA A C i e n A ñ o s First record of Duvalia ex. gr. lata (Cephalopoda, Coleoidea) from Mexico Patrick Zell1,*, Seija Beckmann1, Wolfgang Stinnesbeck1, José Flores-Ventura2 1 Institute for Earth Sciences, Heidelberg University, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany. 2 Santa Engracia 257, Fracc. Santa Elena, Saltillo C.P. 25015, Coahuila, México. * [email protected] Abstract Here we present the first record of the belemniteDuvalia ex. gr. lata (Cephalopoda, Coleoidea) from Mexico. The unique individual, a well-preserved rostrum, was discovered in Early Cretaceous strata of the Sierra de Parras close to Viesca in southwestern Coahuila. Duvalia ex. gr. lata was previously known from the Mediterranean Tethys. Our report extends the paleogeographic distribution of Duvalia to the western hemisphere and supports the hypothesis that the Hispanic Corridor was open during the Early Cretaceous, allowing for marine faunal exchange and migration between the Gulf of Mexico and the European Tethys. Keywords: Duvalia, belemnite, Early Cretaceous, Mexico, Hispanic Corridor. Resumen Se reporta por primera vez el belemnite Duvalia ex. gr. lata (Cephalopoda, Coleoidea) en México. El único ejemplar, un rostro bien preservado, ha sido descubierto en capas del Cretácico Temprano de la Sierra de Parras,en las cercanías de Viesca, en el suroeste de Coahuila. Previamente, se conocía a Duvalia ex.
    [Show full text]
  • Contributions in BIOLOGY and GEOLOGY
    MILWAUKEE PUBLIC MUSEUM Contributions In BIOLOGY and GEOLOGY Number 51 November 29, 1982 A Compendium of Fossil Marine Families J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions in BIOLOGY and GEOLOGY Number 51 November 29, 1982 A COMPENDIUM OF FOSSIL MARINE FAMILIES J. JOHN SEPKOSKI, JR. Department of the Geophysical Sciences University of Chicago REVIEWERS FOR THIS PUBLICATION: Robert Gernant, University of Wisconsin-Milwaukee David M. Raup, Field Museum of Natural History Frederick R. Schram, San Diego Natural History Museum Peter M. Sheehan, Milwaukee Public Museum ISBN 0-893260-081-9 Milwaukee Public Museum Press Published by the Order of the Board of Trustees CONTENTS Abstract ---- ---------- -- - ----------------------- 2 Introduction -- --- -- ------ - - - ------- - ----------- - - - 2 Compendium ----------------------------- -- ------ 6 Protozoa ----- - ------- - - - -- -- - -------- - ------ - 6 Porifera------------- --- ---------------------- 9 Archaeocyatha -- - ------ - ------ - - -- ---------- - - - - 14 Coelenterata -- - -- --- -- - - -- - - - - -- - -- - -- - - -- -- - -- 17 Platyhelminthes - - -- - - - -- - - -- - -- - -- - -- -- --- - - - - - - 24 Rhynchocoela - ---- - - - - ---- --- ---- - - ----------- - 24 Priapulida ------ ---- - - - - -- - - -- - ------ - -- ------ 24 Nematoda - -- - --- --- -- - -- --- - -- --- ---- -- - - -- -- 24 Mollusca ------------- --- --------------- ------ 24 Sipunculida ---------- --- ------------ ---- -- --- - 46 Echiurida ------ - --- - - - - - --- --- - -- --- - -- - - ---
    [Show full text]
  • Facies, Phosphate, and Fossil Preservation Potential Across a Lower Cambrian Carbonate Shelf, Arrowie Basin, South Australia
    Palaeogeography, Palaeoclimatology, Palaeoecology 533 (2019) 109200 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Facies, phosphate, and fossil preservation potential across a Lower Cambrian T carbonate shelf, Arrowie Basin, South Australia ⁎ Sarah M. Jacqueta,b, , Marissa J. Bettsc,d, John Warren Huntleya, Glenn A. Brockb,d a Department of Geological Sciences, University of Missouri, Columbia, MO 65211, USA b Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia c Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia d Early Life Institute and Department of Geology, State Key Laboratory for Continental Dynamics, Northwest University, Xi'an 710069, China ARTICLE INFO ABSTRACT Keywords: The efects of sedimentological, depositional and taphonomic processes on preservation potential of Cambrian Microfacies small shelly fossils (SSF) have important implications for their utility in biostratigraphy and high-resolution Calcareous correlation. To investigate the efects of these processes on fossil occurrence, detailed microfacies analysis, Organophosphatic biostratigraphic data, and multivariate analyses are integrated from an exemplar stratigraphic section Taphonomy intersecting a suite of lower Cambrian carbonate palaeoenvironments in the northern Flinders Ranges, South Biominerals Australia. The succession deepens upsection, across a low-gradient shallow-marine shelf. Six depositional Facies Hardgrounds Sequences are identifed ranging from protected (FS1) and open (FS2) shelf/lagoonal systems, high-energy inner ramp shoal complex (FS3), mid-shelf (FS4), mid- to outer-shelf (FS5) and outer-shelf (FS6) environments. Non-metric multi-dimensional scaling ordination and two-way cluster analysis reveal an underlying bathymetric gradient as the main control on the distribution of SSFs.
    [Show full text]
  • Journal of Paleontology Gladius-Bearing Coleoids from The
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2015 Gladius-bearing coleoids from the Upper Cretaceous Lebanese Lagerstätten: diversity, morphology, and phylogenetic implications Jattiot, Romain ; Brayard, Arnaud ; Fara, Emmanuel ; Charbonnier, Sylvain DOI: https://doi.org/10.1017/jpa.2014.13 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-109764 Journal Article Published Version Originally published at: Jattiot, Romain; Brayard, Arnaud; Fara, Emmanuel; Charbonnier, Sylvain (2015). Gladius-bearing coleoids from the Upper Cretaceous Lebanese Lagerstätten: diversity, morphology, and phylogenetic implications. Journal of Paleontology, 89(01):148-167. DOI: https://doi.org/10.1017/jpa.2014.13 Journal of Paleontology http://journals.cambridge.org/JPA Additional services for Journal of Paleontology: Email alerts: Click here Subscriptions: Click here Commercial reprints: Click here Terms of use : Click here Gladius-bearing coleoids from the Upper Cretaceous Lebanese Lagerstätten: diversity, morphology, and phylogenetic implications Romain Jattiot, Arnaud Brayard, Emmanuel Fara and Sylvain Charbonnier Journal of Paleontology / Volume 89 / Issue 01 / January 2015, pp 148 - 167 DOI: 10.1017/jpa.2014.13, Published online: 09 March 2015 Link to this article: http://journals.cambridge.org/abstract_S0022336014000134 How to cite this article: Romain Jattiot, Arnaud Brayard, Emmanuel Fara and Sylvain Charbonnier (2015). Gladius-bearing coleoids from the Upper Cretaceous Lebanese Lagerstätten: diversity, morphology, and phylogenetic implications. Journal of Paleontology, 89, pp 148-167 doi:10.1017/jpa.2014.13 Request Permissions : Click here Downloaded from http://journals.cambridge.org/JPA, IP address: 46.127.66.96 on 10 Mar 2015 Journal of Paleontology, 89(1), 2015, p.
    [Show full text]
  • An Inventory of Belemnites Documented in Six Us National Parks in Alaska
    Lucas, S. G., Hunt, A. P. & Lichtig, A. J., 2021, Fossil Record 7. New Mexico Museum of Natural History and Science Bulletin 82. 357 AN INVENTORY OF BELEMNITES DOCUMENTED IN SIX US NATIONAL PARKS IN ALASKA CYNTHIA D. SCHRAER1, DAVID J. SCHRAER2, JUSTIN S. TWEET3, ROBERT B. BLODGETT4, and VINCENT L. SANTUCCI5 15001 Country Club Lane, Anchorage AK 99516; -email: [email protected]; 25001 Country Club Lane, Anchorage AK 99516; -email: [email protected]; 3National Park Service, Geologic Resources Division, 1201 Eye Street, Washington, D.C. 20005; -email: justin_tweet@ nps.gov; 42821 Kingfisher Drive, Anchorage, AK 99502; -email: [email protected];5 National Park Service, Geologic Resources Division, 1849 “C” Street, Washington, D.C. 20240; -email: [email protected] Abstract—Belemnites (order Belemnitida) are an extinct group of coleoid cephalopods, known from the Jurassic and Cretaceous periods. We compiled detailed information on 252 occurrences of belemnites in six National Park Service (NPS) areas in Alaska. This information was based on published literature and maps, unpublished U.S. Geological Survey internal fossil reports (“Examination and Report on Referred Fossils” or E&Rs), the U.S. Geological Survey Mesozoic locality register, the Alaska Paleontological Database, the NPS Paleontology Archives and our own records of belemnites found in museum collections. Few specimens have been identified and many consist of fragments. However, even these suboptimal specimens provide evidence that belemnites are present in given formations and provide direction for future research. Two especially interesting avenues for research concern the time range of belemnites in Alaska. Belemnites are known to have originated in what is now Europe in the Early Jurassic Hettangian and to have a well-documented world-wide distribution in the Early Jurassic Toarcian.
    [Show full text]
  • Quantifying Morphological Variability Through the Latest Ontogeny Of
    QUANTIFYING MORPHOLOGICAL VARIABILITY THROUGH THE LATEST ONTOGENY OF HOPLOSCAPHITES (JELETZKYTES) FROM THE LATE CRETACEOUS WESTERN INTERIOR USING GEOGRAPHIC INFORMATION SYSTEMS AS A MORPHOMETRIC TOOL Mathew J. Knauss A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2013 Committee: Margaret M. Yacobucci, Advisor Enrique Gomezdelcampo Sheila Roberts © 2013 Mathew J. Knauss All Rights Reserved iii ABSTRACT Margaret M. Yacobucci, Advisor Ammonoids are known for their intraspecific and interspecific morphological variation through ontogeny, particularly in shell shape and ornamentation. Many shell features covary and individual shell elements (e.g., tubercles, ribs, etc.) are difficult to homologize, which make qualitative descriptions and widely-used morphometric tools inappropriate for quantifying these complex morphologies. However, spatial analyses such as those applied in geographic information systems (GIS) allow for quantification and visualization of global shell form. Here, I present a GIS-based methodology in which the variability of complex shell features is assessed in order to evaluate evolutionary patterns in a Cretaceous ammonoid clade. I applied GIS-based techniques to sister species from the Late Cretaceous Western Interior Seaway: the ancestral and more variable Hoploscaphites spedeni, and descendant and less variable H. nebrascensis. I created digital models exhibiting the shells’ lateral surfaces using photogrammetric software and imported the reconstructions into a GIS environment. I used the number of discrete aspect patches and the 3D to 2D area ratios of the lateral surface as terrain roughness indices. These 3D analyses exposed the overlapping morphological ranges of H. spedeni and H.
    [Show full text]
  • Variability of Conch Morphology in a Cephalopod Species from the Cambrian to Ordovician Transition Strata of Siberia
    Variability of conch morphology in a cephalopod species from the Cambrian to Ordovician transition strata of Siberia JERZY DZIK Dzik, J. 2020. Variability of conch morphology in a cephalopod species from the Cambrian to Ordovician transition strata of Siberia. Acta Palaeontologica Polonica 65 (1): 149–165. A block of stromatolitic limestone found on the Angara River shore near Kodinsk, Siberia, derived from the exposed nearby Ust-kut Formation, has yielded a sample of 146 ellesmeroceratid nautiloid specimens. A minor contribution to the fossil assemblage from bellerophontid and hypseloconid molluscs suggests a restricted abnormal salinity environment. The associated shallow-water low diversity assemblage of the conodonts Laurentoscandodus triangularis and Utahconus(?) eurypterus indicates an age close to the Furongian–Tremadocian boundary. Echinoderm sclerites, trilobite carapaces, and hexactinellid sponge spicules were found in another block from the transitional strata between the Ust-kut and overlying ter- rigenous Iya Formation; these fossils indicate normal marine salinity. The conodont L. triangularis is there associated with Semiacontiodus iowensis and Cordylodus angulatus. This means that the stromatolitic strata with cephalopods are older than the early Tremadocian C. angulatus Zone but not older than the Furongian C. proavus Zone. The sample of nautiloid specimens extracted from the block shows an unimodal variability in respect to all recognizable aspects of their morphol- ogy. The material is probably conspecific with the poorly known Ruthenoceras elongatum from the same strata and region. Key words: Cephalopoda, Nautiloidea, Endoceratida, Ellesmeroceratina, evolution, Furongian, Tremadocian, Russia. Jerzy Dzik [[email protected]], Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818 War- szawa, Poland and Faculty of Biology, Biological and Chemical Centre, University of Warsaw, Żwirki i Wigury 101, 02-096, Warszawa, Poland.
    [Show full text]
  • Kostromateuthis Roemeri Gen
    A rare coleoid mollusc from the Upper Jurassic of Central Russia LARISA A. DOGUZHAEVA Doguzhaeva, L.A. 2000. Arare coleoid mollusc from the Upper Jurassic of Central Rus- sia. -Acta Palaeontologica Polonica 45,4,389-406. , The shell of the coleoid cephalopod mollusc Kostromateuthis roemeri gen. et sp. n. from the lower Kirnmeridgian of Central Russia consists of the slowly expanding orthoconic phragmocone and aragonitic sheath with a rugged surface, a weakly developed post- alveolar part and a long, strong, probably dorsal groove. The sheath lacks concentric struc- ture common for belemnoid rostra. It is formedby spherulites consisting of the needle-like crystallites, and is characterized by strong porosity and high content of originally organic matter. Each spherulite has a porous central part, a solid periphery and an organic cover. Tubular structures with a wall formed by the needlelike crystallites are present in the sheath. For comparison the shell ultrastructure in Recent Spirula and Sepia, as well as in the Eocene Belemnosis were studied with SEM. Based on gross morphology and sheath ultrastructure K. memeri is tentatively assigned to Spirulida and a monotypic family Kostromateuthidae nov. is erected for it. The Mesozoic evolution of spirulids is discussed. Key words : Cephalopoda, Coleoidea, Spirulida, shell ultrastructure, Upper Jurassic, Central Russia. krisa A. Doguzhaeva [[email protected]], Paleontological Institute of the Russian Acad- emy of Sciences, Profsoyuznaya 123, 117647 Moscow, Russia. Introduction The mainly soft-bodied coleoids (with the exception of the rostrum-bearing belem- noids) are not well-represented in the fossil record of extinct cephalopods that results in scanty knowledge of the evolutionary history of Recent coleoids and the rudimen- tary understanding of higher-level phylogenetic relationships of them (Bonnaud et al.
    [Show full text]