Bbm:978-1-4615-4837-9/1.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Bbm:978-1-4615-4837-9/1.Pdf INDEX Aalenian, 91, 98, 100, 101,395,396,402,423,428 Actinoptena, 497 Aalensis Biozone, 91, 93, 98,100 Actinosepia, 55 Acanthicum Zone (Chronozone), 321, 323, 466, 471, Adamsoceras, 144 472 holmi,144 Acanthoceras, 64, 65, 67, 74 oe/andicum, 144 amphibo/um, 62 Adaptation, 309 bellense, 62 Adaptive, 311 granerosense, 62 radiation, 59, 91,101,102,396,411,412 rhotomagense, 324 Ademic organisms, 407, 408, 412 var. clavatum, 324 AdmirandumlBiruncinatum Zone, 324, 328, 466, var. confusum, 324 476 var. subjlexuosum, 324 Adygeya,47,52,54,55 var. sussexiense, 324 adygensis, 54 aft'. sussexiense, 324 Adygeyidae, 54, 55 Acanthoceratid, -ae, 59, 61,62,63,64,67,68,69,70, Agathiceratidae, 300, 302, 309 71 Agetograptus, 497 Acantholissonia, 521,522,523,524,526,527,528, Aggregate crystal, 233 529 Agoniatites, 23, 26, 27, 37 gerthi, 524, 527 bicanaliculatus, 28, 32, 33, 39 Acanthompha/a, 321; see a/so Pseudowaagenia cf. bicanalicu/atus, 32 Acceleration, 69, 112 costu/atus, 39,40 Accretionary growth, 23, 25, 26, 36, 37, 42 umbona/e, 28 Accumulated elements, 398 cf. umbona/e, 32 Acernaspis, 495, 496 vanuxemi,28, 32, 36 Acetabulum, -la, -Iar (moieity), 204, 205, 207, 208, Agoniatitida, -ina, 23, 27,43 209,214,218 Akrosphaerorthoceras grega/e, 384, 388 Achoanitic, 227, 243, 247, 250; see also Septal neck A/amitocense, 474; see also Aspidoceras Acicular-prismatic layer, 52, 53 AlbertinumlDarwini Zone, 466, 474, 476, 486 Acmonoides (A.), 425 Albian, 62,425,426 Acompsoceras, 64, 65, 74 Aleksin horizon, 507 Acrei (A.), 425 Alispira gracilis, 495, 496 Aerobe/us, 423 Allochthonous shells, 407 Acrocoelites, 422,423,427, 428 Allometries, -ic, 18, 263 Actinocamax, 425, 430 Allotrioceratidae, 142, 144, 154 cobbani,425 Allumettoceras, 147 groen/andicus,425 Aloco/ytoceras, 93 manitobensis,425 Aluojan, 139, 144, 150 praecursor, 425 Alveolus, -oli, -olar, 162, 164, 166, 167, 189, 190, 196 Actinocerid, -a, 52, 137, 144, 154, 255, 256, 260, Ammonitella, -ae, 23, 24, 25, 26, 27,28, 29, 31, 32, 390 33,34,35,36,37,40,43,240,243,244,245, Actinoconites, 165 247,253,345,346,356,358,361,363 531 532 Index Ammonites, 3, 6, 7, 59, 61, 62, 63, 69, 71, 77, 78, 80, Anthracoceras, 82, 308, 350, 353, 356, 358 125, 126, 132,263,265,271,273,274,275, d~cus,82,350,353,356,358 276,277,278,279,280,281,282,283,284, Antibody, 190, 191, 192, 193, 194, 196 285,286,287,288,289,290,315,316,317, Antigen, 191, 192, 194, 196 321,324,328,329,330,335,336,337,338, Antisera, 191, 194 339,340,342,348,463,464,466,467,468, Apex, 5, 23, 27, 29, 30, 32,166,167,174,176,178, 471,472,474,476,477,478,480,481,482, 182,208,209,212,218,223,225,228,255, 484,485,486,487,521,523,524,526 256,267,336,367,369,371,374,377 Deshayesi, 439 Aphelaeceras arkansanum, 349, 352, 354 Regleyi, 93, 101 Apicicurvata (Ps.), 423 scissus, 93, 101 Apomorphic (character), 266 Ammonitic sutures, 278 Approximatus Biozone, 139 Ammonoid, -ea, 6, 23, 24, 25, 26, 27, 28, 32, 35, 36, Aptian, 54, 55, 230, 234, 239, 419, 425, 426, 430, 432, 37,39,40,43,44,59,60,61,67,69,70,71, 433,437,439,440,441,444,445,447,449, 77,78,80,81,82,83,85,86,87,91,231,233, 450,452,457,458,460 234,235,236,237,240,241,244,245,250, Aptychi, -chus, 6, 7, 339 251,252,253,255,259,260,263,273,274, Aquilonites, 515 275,276,289,295,296,297,298,299,300, Aranea, 198 301,303,304,305,307,308,309,310,311, Aravanites kirgizstanicus, 301 312,316,317,329,345,346,348,350,351, Arcanoceras, 512, 515 353,354,355,356,358,359,360,361,362, formosum,515 363,395,397,398,407,463,505,506,507, Archanarcestes, 23, 27 508,509,510,511,512,513,515,517 obesus, 29, 33, 40 Ammonitina, 233, 234, 235, 236, 237, 240, 241, 252, Architeuthis, 79 253,263,316,397,398,407 Arcobe/us, 423, 428 Amoeboceras horizon, 472 Arctic Province, 409, 423, 425 Amoebocytes, 176, 198 Arcticoceras, 125, 131,320 Amphichoanitic, 250 Arctocephalites,320 Amsbergites warslowensis, 515 Arctocephalitinae, 125, 132 Anaboly, 114 Arctoteuthis,429 Anaplanulites, 126 Arenig-Llanvirn, 137, 139 mutatus, 126 Argonauta, 5, 316 Anaptychi, 6 Arion hortensis, 198 Anarcestes, 27 Arionoceras, 391 lateseptatus, 28 affine, 384, 388 Anarcestida, -tina, 27, 43 repetitum, 384, 398 Ancistroceras, 148, 150 submoniliforme, 384, 385, 388 Ancyloceratina, 244, 250, 251 Arjamannia cf. cancel/atula, 496-497 Andalusphinctes,485 Arkanites relictus, 82, 87, 350, 351, 355, 356, 360 Andean (stratigraphy, ammonites), 480, 522 Arm, 3,4, 5, 7,8,9,10,79,203,204,205,207,208, Province, 410 211,212,214,216,342 Andkeras, 467,474,485 Amsbergian, 300, 507, 516 lenki, 466, 467, 474, 478 Arnsbergites, 512 monserrati, 466, 467, 474 Arnsberites warlovensis, 513 Andinum, 474; see also Aspidoceras Arteria branchialis, 190 Anisian, 167,317,330 siphonalis, 190 Anisotropic cloud, 269; see also Landmark Artus Biozone, 139 Ankyloceras, 230 Arundian, 507, 508 Annulate, 138, 144,146 Asbian, 507, 511 Annulosiphonate deposits, 146 Aserian, 139, 140, 142, 144, 146, 147, 148 Anova,281 Ashgillian, 367 Anoxic Asidoceras, 517 bottom waters, 431 nikolaevi, 509, 510, 515 conditions, 339, 342 Aspidoceras,474 environments, 244 haupti.474 oceanic zone, 498 rafaeli, 474, 477 shales, 256; see a/so Dysoxic shales rogoznicense, 474, 477 waters, 501 sesquinodosum, 323 Anthoceras, 144 Aspidoceratidae, -tinae, 320, 321, 323, 326, 327 Index 533 Astarte, 126 Bathmoceras, 142 Asteroconites, 165 Bathmoceratidae, 140, 154 Ataxioceras assemblage, 468 Bathonian, 319, 320, 423 Athabascan Province, 410 Baupliine, 71, 271 Atherstoni Zone (Subzone), 527, 528 Bavaricum Zone, 466, 476 Athleta Zone, 130, 132 Beak, 6, 7 Atokan, 83, 347, 348, 361 Beckeri Chronozone (Zone), 321, 322, 466, 471, 472 Atractites, 161, 163, 164, 165, 166, 167, 168,422,427 Belemnella, 425 alpinus, 164, 165 casimirovensis,425 claviger, 166 Belemnitella, 425 crassirostris, 166 americana, 425 intermedius, 163 bulbosa, 425 pusillus, 166 Belemnites, 51, 52, 55, 126, 223, 224, 228, 229, 230, Aturia,80 255,259,419,420,421,422,423,424,425, alabamensis, 80 426,427,428,429,430,431,432,433 Aulacoceras, 165 BelemnitelIidae, 430, 432, 433 ausseanum,168 Belemnitida, -tidae, -tina, 55, 162, 231, 422, 423, 424, Aulacoceratidae, -toidea, 162, 164, 165 427,428,429,432 Aulacocerida, -e, 55, 161, 162, 164, 165, 168,422, Belemnococeras, 165 427,431,433 Belemnoidea, 55 Aulacosphinctoides-Virgatosphinctes assemblage, 478 Be1emnopseidae, -ina, 424, 429, 431 Aulacoteuthis,425 Belemnops~,424,423,425,428,430,431 Ausseites, 163, 167, 168,422 madagascariensis, 426 Austral Realm, 419, 425, 429, 430, 431,432, 433 patagoniensis, 421, 426 Austroteuthis, 16~ Belemnoteuthina, 424 Autapomorphy, -ic, 8, 9, 59, 60, 64, 65, 67 Belemnoteuthis, 229, 424 Autochthonous shells, 407 Belosaepia, 51, 55 Autophagic vacuoles, 185 Belopteria, 55 Axinolobus quinni, 82 Belopterina, 55 Axonemes, 218 Benthic cephalopods, 203, 204, 216, 310, 384, 385 Bactritella, 47, 224 fauna, 390, 466 Bactrites, 49, 255, 256 foraminifera, 335 ausavensis, 228 Bentoceras, 150 postremus, 47, 48, 49, 54 proteus, 152 Bactritida, 43 Benueites, 328 Bactritimimus, 165 Bering Province, 409 Bactritoidea, 47, 49, 52 Berkhoceratid, -ae, 30 I, 3I0 Baculites, 251 Berriasella-Substeuroceras assemblage, 478 asper, 250 Berriase/la, 478, 482, 485 codynesis, 250 nitida,485 Bajarunia. 122 Berriasian, 425, 463, 464, 468, 476, 480, 481, 482, alexandri 117 484,485,486,487,488,522,528 dagysi, 122 Beyrichoceras, 512, 515 eiekitensis, 117 Zone, 507, 512 euomphala, 117, 122 -Goniatites Zone, 507, 508, 511, 513 Bajocian, 93, 319, 320, 406, 422, 423, 424, 428 Beyrichoceratoides, 509,510,512,515 Balderum horizon, 472 Bifoveoceras, 147 Baltoceratidae, 140, 146, 154 Bifrons Zone, 428 Baltoscandian, 139, 150 Billingenian, 139 Barrandeocerida, 148 Biodispersal, 407, 408 Barremian, 323,421,425,429,432, 521 Biogeographical dispersal, 408, 412 Basal cell, 189, 190, 196, 199 gradients, 41 I lamina, 173, 174, 176, 184, 186 pattern, 419 Baschkirites librovitchi, 350 Biometric method, 263, 264 Baseline, 265, 266, 267, 268, 269, 270 Biospecies, 317, 348 methods, 265, 268, 270 Biotope, 317 units, 266 Bipolar distribution, 431 Bassleroceratidae, 150, 152, 156 pattern, 432 S34 Index Bisatoceras secundum, 351 Cadoceras (cont.) Bisulcata (P.), 423 stenolobum, 126 Bivariate analysis, 263 subpatruum, 125, 129 Black shales, 493, 494, 496, 497, 498, 501, 508, 522 aff. tschemyschevi, "126 Blutdriise, 190, 198, 200 ex gr. tschernyschevi-simulans, 127 Bobrikihorizon, 507 Cadoceratinae, 131 BodeiSubzone,458 Cadochamoussetia, 12?, 126, 127, 128, 129, 130, 131, Boissieri Zone, 476 132, 133 Bolbozoe bohemica, 390 saratovensis, 125, 126, 129, 131, 132, 135 Bollandites, 512, 515 subpatruus, 125, 126, 127, 129, 130 -Bollandoceras assemblage, 510 surensis, 125, 126, 127, 128 -Bollandoceras Biozone, 507 Caecum, 7, 24, 25, 32, 33, 34, 35, 38, 39,43,243,245, Bollandoceras, 515 246,247,248,249,250,251,252,253,259 inopinum,515 Calarthoceras pseudocalamiteum, 384, 388 Boreal assemblages (faunas, ammonoids), 62, 109, Calliconites, 161, 162, 163, 165, 167, 168 110, III, 113, 118 dieneri. 167 realm (region), 93,109,114,348,409,410,419, Callidiscus Subzone, 437, 445, 450, 451, 457, 458, 459 423,425,429,430,431,432,433 Callinectes sapidus, 198 Boreoceras, 109, Ill, 114 Calliphylloceras, 329 apostolicum, III Callovian, 125, 126, 127, 128, 130, 131, 132, 133, demokidovi, III, 112, 114,117,118 234,238,320,421,423,424,428 mirabile, Ill, 122 Calloviense Zone, 320 ogonerense, 111, 117, 118 Calpionella, 476 planorbis, Ill, 112, 114, 117,118 alpina, 464, 482 Boreomeekoceras keyserlingi, 117 Calpionellopsis, 476 Box analysis (method), 276, 277 oblonga, 476 Brachial moiety, 214 simplex. 476 Bradfordensis Biochron, 91,100,101,102,395,396, Calveziconus lecalvezae, 335 397,398,401,402,403,405,406,408,409,412 Calycoceras.
Recommended publications
  • Abstract Book Progeo 2Ed 20
    Abstract Book BUILDING CONNECTIONS FOR GLOBAL GEOCONSERVATION Editors: G. Lozano, J. Luengo, A. Cabrera Internationaland J. Vegas 10th International ProGEO online Symposium ABSTRACT BOOK BUILDING CONNECTIONS FOR GLOBAL GEOCONSERVATION Editors Gonzalo Lozano, Javier Luengo, Ana Cabrera and Juana Vegas Instituto Geológico y Minero de España 2021 Building connections for global geoconservation. X International ProGEO Symposium Ministerio de Ciencia e Innovación Instituto Geológico y Minero de España 2021 Lengua/s: Inglés NIPO: 836-21-003-8 ISBN: 978-84-9138-112-9 Gratuita / Unitaria / En línea / pdf © INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA Ríos Rosas, 23. 28003 MADRID (SPAIN) ISBN: 978-84-9138-112-9 10th International ProGEO Online Symposium. June, 2021. Abstracts Book. Editors: Gonzalo Lozano, Javier Luengo, Ana Cabrera and Juana Vegas Symposium Logo design: María José Torres Cover Photo: Granitic Tor. Geosite: Ortigosa del Monte’s nubbin (Segovia, Spain). Author: Gonzalo Lozano. Cover Design: Javier Luengo and Gonzalo Lozano Layout and typesetting: Ana Cabrera 10th International ProGEO Online Symposium 2021 Organizing Committee, Instituto Geológico y Minero de España: Juana Vegas Andrés Díez-Herrero Enrique Díaz-Martínez Gonzalo Lozano Ana Cabrera Javier Luengo Luis Carcavilla Ángel Salazar Rincón Scientific Committee: Daniel Ballesteros Inés Galindo Silvia Menéndez Eduardo Barrón Ewa Glowniak Fernando Miranda José Brilha Marcela Gómez Manu Monge Ganuzas Margaret Brocx Maria Helena Henriques Kevin Page Viola Bruschi Asier Hilario Paulo Pereira Carles Canet Gergely Horváth Isabel Rábano Thais Canesin Tapio Kananoja Joao Rocha Tom Casadevall Jerónimo López-Martínez Ana Rodrigo Graciela Delvene Ljerka Marjanac Jonas Satkünas Lars Erikstad Álvaro Márquez Martina Stupar Esperanza Fernández Esther Martín-González Marina Vdovets PRESENTATION The first international meeting on geoconservation was held in The Netherlands in 1988, with the presence of seven European countries.
    [Show full text]
  • Or Early Callovian) Ammonites from Alaska and Montana
    Jurassic (Bathonian or Early Callovian) Ammonites From Alaska and Montana By RALPH W. IMLAY SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 374-C Descr$tions and illustrations of ctphalopods of possible late Middle Jurasric (Bathonian) age UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. CONTENTS Page Page C- 1 Age of the faunas-Continued C- 1 Callovian versus Bathonian in Greenland- - - - _ - - _ - - C-2 Callovian versus Bathonian in Alaska and Montana- -- - Stratigraphic summary- __ --______ _ - - - -- - ---.- -- -.- - - C-2 Paleogeographic considerations- - -_-- -- ---- ---- Cook Inlet region, Alaska -______--------.-.--..--c-2 Summation of the evidence- - - _._ _ - _ _ - - - - - - - - - - - - Iniskin Peninsula-_-_______----.--------~.--C-2 Comparisons with other faunas---------___----------- Peninsula north of Chinitna Bay----- __._ _ _._ - C-3 \Vestern interior of Canada- - - -- -- -____------- --- Talkeetna Mountains ----___-_ - - -- ---- - - -- - -- C-3 Arctic region-_-_---___-_----------------------- Western Montana- - -----__-----------------.---C-5 other regions--__-__-____----------------------- Rocky Mountain front north of the Sun River- (2-5 Geographic distribution ___-___ --- - ---------- ------ -- - Drummond area--- ---_____ _--- -- -.-- ---- -- - C-10 Summary of results- --_-____-_----_---_-_----------- Age ofthe faunas-----------_----------------------- GI0 Systematic descriptions--_ _ _ - _ - - - - - - - - - - - - - - - - - - - - - - - Evidence from Alaska---____________--------------C-10 Literature cited _-_-_---______----------------------- Evidence from Montana --_-_____ --- - - -- .--- --- - - C-12 Index---__--___-_-_------------------------------- ILLUSTRATIONS [Plates 1-3 follow index] PLATE 1. Holcophylloceras, Oecotraustes (Paroecotraustes) ?, and Arctocephalites (Cranocephalites). 2.
    [Show full text]
  • The Middle Jurassic of Western and Northern Europe: Its Subdivisions, Geochronology and Correlations
    The Middle Jurassic of western and northern Europe: its subdivisions, geochronology and correlations John H. Callomon The palaeogeographic settings of Denmark and East Greenland during the Middle Jurassic are outlined. They lay in the widespread epicontinental seas that covered much of Europe in the post-Triassic transgression. It was a period of continuing eustatic sea-level rise, with only distant connections to world oceans: to the Pacific, via the narrow Viking Straits between Greenland and Norway and hence the arctic Boreal Sea to the north; and to the subtropical Tethys, via some 1200 km of shelf-seas to the south. The sedimentary history of the region was strongly influenced by two factors: tectonism and climate. Two modes of tectonic movement governed basinal evolution: crustal extension lead- ing to subsidence through rifting, such as in the Viking and Central Grabens of the North Sea; and subcrustal thermal upwelling, leading to domal uplift and the partition of marine basins through emergent physical barriers, as exemplified by the Central North Sea Dome with its associated volcanics. The climatic gradient across the 30º of temperate latitude spanned by the European seas governed biotic diversity and biogeography, finding expression in rock-forming biogenic carbonates that dominate sediments in the south and give way to largely siliciclastic sediments in the north. Geochronology of unrivalled finesse is provided by standard chronostratigraphy based on the biostratigraphy of ammonites. The Middle Jurassic saw the onset of considerable bioprovincial endemisms in these guide-fossils, making it necessary to construct parallel standard zonations for Boreal, Subboreal or NW European and Submediterranean Provinces, of which the NW European zonation provides the primary international standard.
    [Show full text]
  • New and Poorly Known Perisphinctoidea (Ammonitina) from the Upper Tithonian of Le Chouet (Drôme, SE France)
    Volumina Jurassica, 2014, Xii (1): 113–128 New and poorly known Perisphinctoidea (Ammonitina) from the Upper Tithonian of Le Chouet (Drôme, SE France) Luc G. BULOT1, Camille FRAU2, William A.P. WIMBLEDON3 Key words: Ammonoidea, Ataxioceratidae, Himalayitidae, Neocomitidae, Upper Tithonian, Le Chouet, South-East France. Abstract. The aim of this paper is to document the ammonite fauna of the upper part of the Late Tithonian collected at the key section of Le Chouet (Drôme, SE France). Emphasis is laid on new and poorly known Ataxioceratidae, Himalayitidae and Neocomitidae from the upper part of the Tithonian. Among the Ataxioceratidae, a new account on the taxonomy and relationship between Paraulacosphinctes Schindewolf and Moravisphinctes Tavera is presented. Regarding the Himalayitidae, the range and content of Micracanthoceras Spath is discussed and two new genera are introduced: Ardesciella gen. nov., for a group of Mediterranean ammonites that is homoeomorphic with the Andean genus Corongoceras Spath, and Pratumidiscus gen. nov. for a specimen that shows morphological similarities with the Boreal genera Riasanites Spath and Riasanella Mitta. Finally, the occurrence of Neocomitidae in the uppermost Tithonian is documented by the presence of the reputedly Berriasian genera Busnardoiceras Tavera and Pseudargentiniceras Spath. INTRODUCTION known Perisphinctoidea from the Upper Tithonian of this reference section. Additional data on the Himalayitidae in- The unique character of the ammonite fauna of Le Chouet cluding the description and discussion of Boughdiriella (near Les Près, Drôme, France) (Fig. 1) has already been chouetensis gen. nov. sp. nov. are to be published elsewhere outlined by Le Hégarat (1973), but, so far, only a handful of (Frau et al., 2014).
    [Show full text]
  • Nautiloid Shell Morphology
    MEMOIR 13 Nautiloid Shell Morphology By ROUSSEAU H. FLOWER STATEBUREAUOFMINESANDMINERALRESOURCES NEWMEXICOINSTITUTEOFMININGANDTECHNOLOGY CAMPUSSTATION SOCORRO, NEWMEXICO MEMOIR 13 Nautiloid Shell Morphology By ROUSSEAU H. FLOIVER 1964 STATEBUREAUOFMINESANDMINERALRESOURCES NEWMEXICOINSTITUTEOFMININGANDTECHNOLOGY CAMPUSSTATION SOCORRO, NEWMEXICO NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY E. J. Workman, President STATE BUREAU OF MINES AND MINERAL RESOURCES Alvin J. Thompson, Director THE REGENTS MEMBERS EXOFFICIO THEHONORABLEJACKM.CAMPBELL ................................ Governor of New Mexico LEONARDDELAY() ................................................... Superintendent of Public Instruction APPOINTEDMEMBERS WILLIAM G. ABBOTT ................................ ................................ ............................... Hobbs EUGENE L. COULSON, M.D ................................................................. Socorro THOMASM.CRAMER ................................ ................................ ................... Carlsbad EVA M. LARRAZOLO (Mrs. Paul F.) ................................................. Albuquerque RICHARDM.ZIMMERLY ................................ ................................ ....... Socorro Published February 1 o, 1964 For Sale by the New Mexico Bureau of Mines & Mineral Resources Campus Station, Socorro, N. Mex.—Price $2.50 Contents Page ABSTRACT ....................................................................................................................................................... 1 INTRODUCTION
    [Show full text]
  • Decapode.Pdf
    We are pleased and honored to welcome at the Paléospace Museum of Villers-sur-Mer the “6th Symposium on Mesozoic and Cenozoic Decapod Crustaceans”. Villers-sur-Mer is a place universally known by specialists and amateurs of palaeontology due to its famous Vaches Noires cliffs. Villers-sur-Mer has also the distinction of being the only French seaside resort located on the Greenwich Meridian line. The Paléospace is a Museum funded in 2011 with the label Musée de France. Three main animations linked to the Time are presented: palaeontology, astronomy and nature with the neighbouring marsh. The museum is in a constant evolution. For instance, an exhibition specially dedicated to dinosaurs was opened two years ago and a planetarium will open next summer. Every year a very high quality temporary exhibition takes place during the summer period with very numerous animations during all the year. The Paléospace does not stop progressing in term of visitors (56 868 in 2015) and its notoriety is universally recognized both by the other museums as by the scientific community. We are very proud of these unexpected results. We thank the dynamism and the professionalism of the Paléospace team which is at the origin of this very great success. We wish you a very good stay at Villers-sur-Mer, a beautiful visit of the Paléospace and especially an excellent congress. Jean-Paul Durand, Mayor and President of Paléospace MOT DU MAIRE DE VILLERS-SUR-MER Nous sommes très heureux et très honorés d’accueillir à Villers-sur-Mer, le « 6e Symposium on Mesozoic and Cenozoic Decapod Crustaceans » dans le cadre du Paléospace.
    [Show full text]
  • The Human Imprint on the Unique Geological Landscape of the Western Caucasus
    Anna V. Mikhailenko et al. Geologos 26, 3 (2020): 233–244 DOI: 10.2478/logos-2020-0022 The human imprint on the unique geological landscape of the Western Caucasus Anna V. Mikhailenko1, Dmitry A. Ruban2,3*, Svetlana O. Zorina4, Konstantin I. Nikashin4, Natalia N. Yashalova5 1Institute of Earth Sciences, Southern Federal University, Zorge Street 40, Rostov-on-Don 344090, Russia 2K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Zemlyanoy Val Street 73, Moscow 109004, Russia 3Department of Hospitality Business, Higher School of Business, Southern Federal University, 23-ja Linija Street 43, Rostov-on-Don 344019, Russia (postal address: P.O. Box 7333, Rostov-on-Don 344056, Russia) 4 Institute of Geology and Petroleum Technologies, Kazan Federal University, Kremlyovskaya Street 18, Kazan, Republic of Tatarstan 420008, Russia 5Department of Economics and Management, Business School, Cherepovets State University, Sovetskiy Avenue 10, Cherepovets, Vologda Region 162600, Russia *corresponding author; e-mail: [email protected] Abstract Human intervention in the geological environment is commonly thought to pose a threat to geoheritage. However, new information from the Western Caucasus where unique geological features are concentrated in Mountainous Ady- geya, implies that man-made features in fact add value to geoheritage. Such features include a lengthy artificial niche in the Guama Gorge, accumulations of large artificial clasts along the road leading to the Lagonaki Highland and the Khadzhokh Quarry with the artificial Red Lake. These contribute to the regional uniqueness of geosites and can be classified as geomorphological, sedimentary, economical and hydro(geo)logical geoheritage types. Interestingly, these artificial features have natural analogues in the study area.
    [Show full text]
  • Stratigraphic Constraints on the Late Jurassic–Cretaceous Paleotectonic Interpretations of the Placetas Belt in Cuba, in C
    Pszczo´łkowski, A., and R. Myczyn´ ski, 2003, Stratigraphic constraints on the Late Jurassic–Cretaceous paleotectonic interpretations of the Placetas belt in Cuba, in C. Bartolini, R. T. Buffler, and J. Blickwede, eds., The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin 25 formation, and plate tectonics: AAPG Memoir 79, p. 545–581. Stratigraphic Constraints on the Late Jurassic–Cretaceous Paleotectonic Interpretations of the Placetas Belt in Cuba Andrzej Pszczo´łkowski Institute of Geological Sciences, Polish Academy of Sciences, Warszawa, Poland Ryszard Myczyn´ski Institute of Geological Sciences, Polish Academy of Sciences, Warszawa, Poland ABSTRACT he Placetas belt in north-central Cuba consists of Late Jurassic–Cretaceous rocks that were highly deformed during the Paleocene to middle Eocene T arc-continent collision. The Late Proterozoic marble and Middle Jurassic granite are covered by the shallow-marine arkosic clastic rocks of late Middle Jurassic(?) or earliest Late Jurassic(?) ages. These arkosic rocks may be older than the transgressive arkosic deposits of the Late Jurassic–earliest Cretaceous Con- stancia Formation. The Berriasian age of the upper part of the Constancia For- mation in some outcrops at Sierra Morena and in the Jarahueca area does not confirm the Late Jurassic (pre-Tithonian) age of all deposits of this unit in the Placetas belt. The Tithonian and Berriasian ammonite assemblages are similar in the Placetas belt of north-central Cuba and the Guaniguanico successions in western Cuba. We conclude that in all paleotectonic interpretations, the Placetas, Camajuanı´, and Guaniguanico stratigraphic successions should be considered as biogeographically and paleogeographically coupled during the Tithonian and the entire Cretaceous.
    [Show full text]
  • Schmitz, M. D. 2000. Appendix 2: Radioisotopic Ages Used In
    Appendix 2 Radioisotopic ages used in GTS2020 M.D. SCHMITZ 1285 1286 Appendix 2 GTS GTS Sample Locality Lat-Long Lithostratigraphy Age 6 2s 6 2s Age Type 2020 2012 (Ma) analytical total ID ID Period Epoch Age Quaternary À not compiled Neogene À not compiled Pliocene Miocene Paleogene Oligocene Chattian Pg36 biotite-rich layer; PAC- Pieve d’Accinelli section, 43 35040.41vN, Scaglia Cinerea Fm, 42.3 m above base of 26.57 0.02 0.04 206Pb/238U B2 northeastern Apennines, Italy 12 29034.16vE section Rupelian Pg35 Pg20 biotite-rich layer; MCA- Monte Cagnero section (Chattian 43 38047.81vN, Scaglia Cinerea Fm, 145.8 m above base 31.41 0.03 0.04 206Pb/238U 145.8, equivalent to GSSP), northeastern Apennines, Italy 12 28003.83vE of section MCA/84-3 Pg34 biotite-rich layer; MCA- Monte Cagnero section (Chattian 43 38047.81vN, Scaglia Cinerea Fm, 142.8 m above base 31.72 0.02 0.04 206Pb/238U 142.8 GSSP), northeastern Apennines, Italy 12 28003.83vE of section Eocene Priabonian Pg33 Pg19 biotite-rich layer; MASS- Massignano (Oligocene GSSP), near 43.5328 N, Scaglia Cinerea Fm, 14.7 m above base of 34.50 0.04 0.05 206Pb/238U 14.7, equivalent to Ancona, northeastern Apennines, 13.6011 E section MAS/86-14.7 Italy Pg32 biotite-rich layer; MASS- Massignano (Oligocene GSSP), near 43.5328 N, Scaglia Cinerea Fm, 12.9 m above base of 34.68 0.04 0.06 206Pb/238U 12.9 Ancona, northeastern Apennines, 13.6011 E section Italy Pg31 Pg18 biotite-rich layer; MASS- Massignano (Oligocene GSSP), near 43.5328 N, Scaglia Cinerea Fm, 12.7 m above base of 34.72 0.02 0.04 206Pb/238U
    [Show full text]
  • La Col·Lecció Paleontològica Gómez-Alba Del MGB-MCNB
    Treb. Mus. Geol. Barcelona, 19 (2013): 59-149 La col·lecció paleontològica Gómez-Alba del MGB-MCNB Jaume Gallemí1, Vicent Vicedo1, Gregori López2 i Luis Troya2 Abstract GALLEMÍ, J., VICEDO, V., LÓPEZ, G. & TROYA, L. The Gómez-Alba palaeontological collection of the MGB-MCNB. We present the catalogue of the palaeontological collection belonging to the late Dr. Julio Gómez-Alba, former curator of Palaeontology at Barcelona’s Museum of Geology, now integrated in Barcelona’s Natural History Museum Consortium. He proposed the donation of his collection to the city of Barcelona in November 2010 and the Barcelona’s Institute of Culture (ICUB) accepted it on the 11th February 2011. Formed by 4.990 specimens and 25 batches, it is not the col- lection of a palaeontological researcher but that of a general palaeontologist. Many items in this collection were figured in a field guide authored by Gómez-Alba (1988) dealing with the fossils of Spain and Europe. The catalogue is, apart from some minor corrections, the literal transcription of the database originally associated to the collection that –since its acceptation– has neither been updated nor revised. Key words: catalogue, collection, palaeontology, Gómez-Alba, MGB-MCNB. Resumen GALLEMÍ, J., VICEDO, V., LÓPEZ, G. y TROYA, L. La colección paleontológica Gómez-Alba del MGB-MCNB. Se presenta el catálogo de la colección paleontológica que había pertenecido al recientemente fallecido Dr. Julio Gómez-Alba, antiguo conservador de Paleontología del Museo de Geología de Barcelona, actualmente integrado en el Consorcio del Museo de Ciencias Naturales de Barcelona. La propuesta de donación de la colección a la ciudad de Barcelona se realizó en noviembre de 2010 y fue aceptada por el Instituto de Cultura de Barcelona (ICUB) en fecha 11 de febrero de 2011.
    [Show full text]
  • Phylogeny, Diversity, and Ecology of the Ammonoid Superfamily Acanthoceratoidea Through the Cenomanian and Turonian
    PHYLOGENY, DIVERSITY, AND ECOLOGY OF THE AMMONOID SUPERFAMILY ACANTHOCERATOIDEA THROUGH THE CENOMANIAN AND TURONIAN DAVID A.A. MERTZ A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2017 Committee: Margaret Yacobucci, Advisor Andrew Gregory Keith Mann © 2017 David Mertz All Rights Reserved iii ABSTRACT Margaret Yacobucci Both increased extinction and decreased origination, caused by rising oceanic anoxia and decreased provincialism, respectively, have been proposed as the cause of the Cenomanian Turonian (C/T) extinction event for ammonoids. Conflicting evidence exists for whether diversity actually dropped across the C/T. This study used the ammonoid superfamily Acanthoceratoidea as a proxy for ammonoids as a whole, particularly focusing on genera found in the Western Interior Seaway (WIS) of North America, including Texas. Ultimately, this study set out to determine 1) whether standing diversity decreased across the C/T boundary in the WIS, 2) whether decreased speciation or increased extinction in ammonoids led to a drop in diversity in the C/T extinction event, 3) how ecology of acanthoceratoid genera changed in relation to the C/T extinction event, and 4) whether these ecological changes indicate rising anoxia as the cause of the extinction. In answering these questions, three phylogenetic analyses were run that recovered the families Acanthoceratidae, Collignoniceratidae, and Vascoceratidae. Pseudotissotiidae was not recovered at all, while Coilopoceratidae was recovered but reclassified as a subfamily of Vascoceratidae. Seven genera were reclassified into new families and one genus into a new subfamily. After calibrating the trees with stratigraphy, I was able to determine that standing diversity dropped modestly across the C/T boundary and the Early/Middle Turonian boundary.
    [Show full text]
  • AALENIAN TMETOCERAS (AMMONOIDEA) from IBERIA Taxonomy, Habitats, and Evolution
    AALENIAN TMETOCERAS (AMMONOIDEA) FROM IBERIA Taxonomy, Habitats, and Evolution 1 2 3 S. R. Femandez-L6pez, M. H. Henriques, A. Linares, 1. Sandovae and M. S. Ureta1 'Dept. y UEI de Paleontologia Facultad de Ciencias Geo16gicas (UCM) elnstitutode Geologia Econ6mica (CSIC-UCM) 28040-Madrid, Spain 2Dept. Ci€mcias da Terra Centro de Geociencias Universidade de Coimbra 3049-Coimbra Codex, Portugal 3Dept. de Estratigrafia y Paleontologia Facultad de Ciencias Universidad de Granada 18071 Granada, Spain Abstract Several hundred Aalenian Tmetoceras from the Iberian Peninsula (N Lusitanian Basin, As­ turias, Basque-Cantabrian Basin, NE Cameros, NW Iberian Basin, Aragonese Platform, Tortosa Platform, Castilian Platform, Majorca and Betic Basin) have been reviewed. Two species of Aalenian Tmetoceras have been identified on the basis of morphological, bio­ chronological and palaeobiogeographical data: T. scissum and T. regleyi. T. scissum was dominant among the Tmetoceras populations developed in the Betic and Lusitanian basins during Opalinum, Murchisonae and Bradfordensis biochrons. Popu­ lations coniposed by evolute individuals of T. scissum inhabited shelfal or oceanic envi­ ronments. A chronocline, from rectiradiate and primitive forms to flexicostate and derived forms, can be recognized in these populations of T. scissum. In contrast, shallow epiconti­ nental platforms were inhabited by involute individuals of T. regleyi. This second species was phyletically derived from T. scissum, representing an adaptive radiation from popula­ tions of shelfal or oceanic basins to populations of epicontinental platforms. Asturias L��---:T NW Iberian Basin 14--=--�- Aragonese Platform +--Tortosa Platform 0� q@ Majorca SE Castilian Platform Central Castilian Platform Oriental sector of Median Subbetic Basin 250 km I Central sector with condensed sections of Median Subbetic Basin External Subbetic Basin Central sector with expanded sections of Median Subbetic Basin Figure 1.
    [Show full text]