Massive Black Holes in Galaxies

Total Page:16

File Type:pdf, Size:1020Kb

Massive Black Holes in Galaxies Michael Brockamp Massive Black Holes in Galaxies Massive Black Holes in Galaxies Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakult¨at der Rheinischen Friedrich-Wilhelms-Universit¨at Bonn vorgelegt von Michael Brockamp aus G¨utersloh Bonn, Juli 2014 Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakult¨at der Rheinischen Friedrich-Wilhelms-Universit¨at Bonn 1. Gutachter: Prof. Dr. Pavel Kroupa 2. Gutachter: Prof. Dr. Holger Baumgardt Tag der Promotion: 29.9.2014 Erscheinungsjahr: 2014 Erkl¨arung Ich versichere, daß ich die von mir vorgelegte Dissertation selbstst¨andig angefertigt, die benutzten Quellen und Hilfsmittel vollst¨andig angegeben und die Stellen der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; daß diese Dissertation noch keiner anderen Fakult¨at oder Universit¨at zur Pr¨ufung vorgelegen hat; daß sie - abgesehen von unten angegeben Erstautor-Publikationen - noch nicht ver¨offentlicht worden ist sowie, daß ich eine solche Ver¨offentlichung vor Abschluß des Promotionsverfahrens nicht vornehmen werde. Die Bestimmungen dieser Promotionsordnung sind mir bekannt. Die von mir vorgelegte Dissertation ist von Prof. Dr. Pavel Kroupa betreut worden. Bonn, Datum , (Michael Brockamp) Erstautor-Publikationen Brockamp, M., Baumgardt, H., & Kroupa, P. 2011, MNRAS, 418, 1308 (Kapitel 3 in dieser Dissertation) Brockamp, M., K¨upper, A. H. W., Thies, I., Baumgardt, H., & Kroupa, P. 2014, MNRAS, 441, 150 (Kapitel 4 in dieser Dissertation) Weitere Publikationen Mieske, S., K¨upper, A. H. W., & Brockamp, M. 2014, A&A, 565, L6 Peuten, M., Brockamp, M., K¨upper, A. H. W., & Kroupa, P. 2014, ApJ, in press Zusammenfassung Die vorliegende Doktorarbeit handelt von supermassereichen schwarzen L¨ochern (SMSL), ihrem Wachstum und dem Einfluss, den sie auf ihre Wirtsgalaxien und deren Kugelsternhaufensysteme aus¨uben. Um die geleistete Arbeit in einen umfassenden wissenschaftlichen Kontext einordnen zu k¨onnen, werden im ersten Teil dieser Dok- torarbeit die relevanten wissenschaftlichen Grundlagen dargelegt. Gleichzeitig wird ein umfangreicher Uberblick¨ ¨uber den gegenw¨artigen Stand der Forschung schwarzer L¨ocher vermittelt. Zun¨achst wird im Rahmen der allgemeinen Relativit¨atstheorie die Physik dieser Objekte betrachtet (Kapitel 1). Dabei wird auf eine aktuelle Arbeit von Andrew Hamilton Bezug genommen. Diese gestattet es, Eigenschaften schwarzer L¨ocher anschaulich und zugleich mathematisch korrekt zu erl¨autern. Im Anschluss werden alle m¨oglichen Bahnen in einer Schwarzschild Metrik diskutiert auf denen sich Objekte bewegen k¨onnen. So wird eine Verbindung zwischen der Physik schwarzer L¨ocher und den Prozessen, die zu ihrem Wachstum f¨uhren, hergestellt. Diverse SMSL Wachstumsprozesse werden erl¨autert (Kapitel 2), nachdem auf beobachtbare Skalierungsrelationen eingegangen wurde. So enth¨alt die Steigung, aber auch die statistische Streuung dieser empirischen SMSL Skalierungsrelationen, wertvolle Infor- mationen ¨uber den Ursprung und das Wachstum schwarzer L¨ocher. Im zweiten Teil dieser Doktorarbeit (Kapitel 3) stehen die Ergebnisse der eigenen Forschung im Vordergrund. Zun¨achst wird ein Wachstumsprozess betrachtet, bei dem Sterne durch Relaxation im Drehimpulsraum zu Trajektorien hin diffundieren, welche letztendlich im unmittelbaren Einflussbereich des SMSL m¨unden. Die Sterne werden dabei von Gezeitenkr¨aften zerrissen und ein Teil der stellaren Materie wird akkretiert. Bei der verwendeten Methode handelt es sich um direkte N-K¨orperrechnungen. Es wird gezeigt, dass die Einfallrate von Sternen nicht hoch genug ist, um das Wachstum sehr massereicher schwarzer L¨ocher signifikant zu beeinflussen. Dennoch k¨onnen von SMSL zerrupfte Sterne einen erheblichen Anteil am Wachstum schwarzer L¨ocher im unteren Massenbereich von 104-105M beigetragen haben. Interessanterweise scheint ⊙ die Masse des SMSL keinen großen Einfluss auf die Einfallrate von Sternen zu haben. Die Ergebnisse wurden im MNRAS Journal publiziert. Im darauf folgenden Kapitel 4 wird eine selbstentwickelte Software vorgestellt, welche den Einfluss von Galaxien, zentralen schwarzen L¨ochern und weiteren Ef- fekten auf die Erosionsrate von Kugelsternhaufensystemen untersucht. Zum ersten Mal konnte eine weitreichende Verallgemeinerung der dynamischen Reibungsformel von Chandrasekhar eingebaut werden. Diese basiert nicht mehr auf der Annahme einer Maxwellschen Geschwindigkeitsverteilung. Des Weiteren ber ¨ucksichtigt sie, dass der Beschleunigungsvektor der dynamischen Reibung nicht anti-parallel zum v Geschwindigkeitsvektor stehen muss. Bereits in den ersten Rechnungen mit dieser Software haben sich Hinweise auf eine neue Phase in der Entwicklung von Kugel- sternhaufensystemen finden lassen. So wird anf¨anglich eine große Anzahl von Kugelsternhaufen durch starke Gezeitenschocks innerhalb der Galaxie zerst¨ort. Der Einfluss massereicher schwarzer L¨ocher auf die zeitliche Erosionsrate und Gesam- tanzahl zerst¨orter Kugelsternhaufen wird diskutiert. Dar ¨uberhinaus lassen sich die flachen Anzahldichteprofile von Kugelsternhaufensystemen in elliptischen Galaxien, sowie das Nichtvorhandensein von Kugelsternhaufen in der kompakten Zwerggalaxie M 32, einer Satellitengalaxie der Andromedagalaxie, erkl¨aren. Die Ergebnisse wurden in einem zweiten Artikel im MNRAS Journal ver¨offentlicht. Im dritten und letzten Teil dieser Doktorarbeit wird zun¨achst die numerische Im- plementierung eines schwarzen Loches inklusive voll relativistischer Einfangbedin- gungen erl¨autert. Anhand der relativistischen Perihel-Pr¨azession des Merkurs und dem Verschmelzungsprozess zweier schwarzer L¨ocher getestet, wird die Strategie zur Durchf¨uhrung eines weiteren, zuk¨unftigen Projektes mit dieser Software vorgestellt. Dabei geht es um das Wachstum massereicher schwarzer L¨ocher durch stellare Tr¨ummerteile von erodierten Sternhaufen. Schlussendlich wird auch noch die Bedeu- tung bereits gewonnener Erkenntnisse f¨ur die sogenannte spezifische Frequenz von Kugelsternhaufen in elliptischen Galaxien diskutiert. vi Summary The main subjects of the underlying PhD study are supermassive black holes (SMBHs), their growth and the influence they exert on vast globular cluster systems. In the first part of this work I provide a comprehensive overview of black hole related research. In this way the own findings can be connected to a broader scientific background. Simultaneously, the current state of SMBH research is summarized. The physics behind black holes will be presented first (Chapter 1). This is done by introduc- ing a fully general relativistic concept for visualizing black holes. It was developed by Andrew Hamilton. Afterwards, I will discuss all possible trajectories in a non-rotating Schwarzschild metric. In this way the link between the physics of black holes and various SMBH growth processes, which belong to the domain of astrophysics, can be established. However, before summarizing different growth scenarios, the most important scaling relations are described (Chapter 2). The slope and intrinsic scatter of these empirical correlations contain information about the SMBH growth history. In the second part of this PhD study I focus on my own results. In Chapter 3, I will investigate the flux of stars which enter loss cone trajectories through angular momen- tum diffusion. The inferred results are based on direct N-body computations which are presented in Brockamp et al. (2011). Depending on the mass of the central SMBH, stars on loss cone orbits can either be swallowed as a whole, or tidally disrupted. In the latter case some fraction of the unbounded star becomes accreted. It is found that the tidal disruption rate of stars is nearly independent of the SMBH mass. Angular momentum diffusion is not sufficient to fuel the growth of the most massive black holes. However, it can influence the growth history of SMBHs in the lowest mass range spanning 104-105M . ⊙ In the following Chapter 4 I present a newly developed computer code, which is called MUESLI. It numerically integrates the equation of motion of individual globular clusters (GCs) in elliptical galaxies by taking GC disruption processes into account. MUESLI thus evaluates the erosion rate of whole globular cluster systems. Several aspects which influence the GC erosion rate like the tidal field of the host galaxy, SMBHs and dynamical friction (DF) are considered. For the first time an extensive generalization of Chandrasekhar‘s dynamical friction formula is implemented into N-body software. It does not only handle non-Maxwellian velocity distributions, but can also treat dynamical friction forces which are not anti-parallel to the velocity vector. Already the first computations indicated a new phase in the evolution of whole globular cluster systems. Depending on the strength of the tidal field of the host galaxy, a huge fraction of GCs is destroyed rapidly through tidal shocking. The influence of the central SMBH on the fraction of destroyed GCs is discussed. Additionally, the vii performed computations naturally explain the central shallow number density profiles of GCs systems as well as the non existence of GCs around the compact dwarf galaxy M 32, which is a satellite of the Andromeda galaxy. The presented results are based on Brockamp et al. (2014). The implementation of a relativistic SMBH with fully general relativistic capture con- ditions into
Recommended publications
  • Celebrating the Wonder of the Night Sky
    Celebrating the Wonder of the Night Sky The heavens proclaim the glory of God. The skies display his craftsmanship. Psalm 19:1 NLT Celebrating the Wonder of the Night Sky Light Year Calculation: Simple! [Speed] 300 000 km/s [Time] x 60 s x 60 m x 24 h x 365.25 d [Distance] ≈ 10 000 000 000 000 km ≈ 63 000 AU Celebrating the Wonder of the Night Sky Milkyway Galaxy Hyades Star Cluster = 151 ly Barnard 68 Nebula = 400 ly Pleiades Star Cluster = 444 ly Coalsack Nebula = 600 ly Betelgeuse Star = 643 ly Helix Nebula = 700 ly Helix Nebula = 700 ly Witch Head Nebula = 900 ly Spirograph Nebula = 1 100 ly Orion Nebula = 1 344 ly Dumbbell Nebula = 1 360 ly Dumbbell Nebula = 1 360 ly Flame Nebula = 1 400 ly Flame Nebula = 1 400 ly Veil Nebula = 1 470 ly Horsehead Nebula = 1 500 ly Horsehead Nebula = 1 500 ly Sh2-106 Nebula = 2 000 ly Twin Jet Nebula = 2 100 ly Ring Nebula = 2 300 ly Ring Nebula = 2 300 ly NGC 2264 Nebula = 2 700 ly Cone Nebula = 2 700 ly Eskimo Nebula = 2 870 ly Sh2-71 Nebula = 3 200 ly Cat’s Eye Nebula = 3 300 ly Cat’s Eye Nebula = 3 300 ly IRAS 23166+1655 Nebula = 3 400 ly IRAS 23166+1655 Nebula = 3 400 ly Butterfly Nebula = 3 800 ly Lagoon Nebula = 4 100 ly Rotten Egg Nebula = 4 200 ly Trifid Nebula = 5 200 ly Monkey Head Nebula = 5 200 ly Lobster Nebula = 5 500 ly Pismis 24 Star Cluster = 5 500 ly Omega Nebula = 6 000 ly Crab Nebula = 6 500 ly RS Puppis Variable Star = 6 500 ly Eagle Nebula = 7 000 ly Eagle Nebula ‘Pillars of Creation’ = 7 000 ly SN1006 Supernova = 7 200 ly Red Spider Nebula = 8 000 ly Engraved Hourglass Nebula
    [Show full text]
  • Orders of Magnitude (Length) - Wikipedia
    03/08/2018 Orders of magnitude (length) - Wikipedia Orders of magnitude (length) The following are examples of orders of magnitude for different lengths. Contents Overview Detailed list Subatomic Atomic to cellular Cellular to human scale Human to astronomical scale Astronomical less than 10 yoctometres 10 yoctometres 100 yoctometres 1 zeptometre 10 zeptometres 100 zeptometres 1 attometre 10 attometres 100 attometres 1 femtometre 10 femtometres 100 femtometres 1 picometre 10 picometres 100 picometres 1 nanometre 10 nanometres 100 nanometres 1 micrometre 10 micrometres 100 micrometres 1 millimetre 1 centimetre 1 decimetre Conversions Wavelengths Human-defined scales and structures Nature Astronomical 1 metre Conversions https://en.wikipedia.org/wiki/Orders_of_magnitude_(length) 1/44 03/08/2018 Orders of magnitude (length) - Wikipedia Human-defined scales and structures Sports Nature Astronomical 1 decametre Conversions Human-defined scales and structures Sports Nature Astronomical 1 hectometre Conversions Human-defined scales and structures Sports Nature Astronomical 1 kilometre Conversions Human-defined scales and structures Geographical Astronomical 10 kilometres Conversions Sports Human-defined scales and structures Geographical Astronomical 100 kilometres Conversions Human-defined scales and structures Geographical Astronomical 1 megametre Conversions Human-defined scales and structures Sports Geographical Astronomical 10 megametres Conversions Human-defined scales and structures Geographical Astronomical 100 megametres 1 gigametre
    [Show full text]
  • Ultralight Bosonic Field Mass Bounds from Astrophysical Black Hole Spin
    Ultralight Bosonic Field Mass Bounds from Astrophysical Black Hole Spin Matthew J. Stott Theoretical Particle Physics and Cosmology Group, Department of Physics, Kings College London, University of London, Strand, London, WC2R 2LS, United Kingdom∗ (Dated: September 16, 2020) Black Hole measurements have grown significantly in the new age of gravitation wave astronomy from LIGO observations of binary black hole mergers. As yet unobserved massive ultralight bosonic fields represent one of the most exciting features of Standard Model extensions, capable of providing solutions to numerous paradigmatic issues in particle physics and cosmology. In this work we explore bounds from spinning astrophysical black holes and their angular momentum energy transfer to bosonic condensates which can form surrounding the black hole via superradiant instabilities. Using recent analytical results we perform a simplified analysis with a generous ensemble of black hole parameter measurements where we find superradiance very generally excludes bosonic fields in −14 −11 −20 the mass ranges; Spin-0: f3:8 × 10 eV ≤ µ0 ≤ 3:4 × 10 eV; 5:5 × 10 eV ≤ µ0 ≤ 1:3 × −16 −21 −20 −15 −11 10 eV; 2:5×10 eV ≤ µ0 ≤ 1:2×10 eVg, Spin-1: f6:2×10 eV ≤ µ1 ≤ 3:9×10 eV; 2:8× −22 −16 −14 −11 −20 10 eV ≤ µ1 ≤ 1:9×10 eVg and Spin-2: f2:2×10 eV ≤ µ2 ≤ 2:8×10 eV; 1:8×10 eV ≤ −16 −22 −21 µ2 ≤ 1:8 × 10 eV; 6:4 × 10 eV ≤ µ2 ≤ 7:7 × 10 eVg respectively. We also explore these bounds in the context of specific phenomenological models, specifically the QCD axion, M-theory models and fuzzy dark matter sitting at the edges of current limits.
    [Show full text]
  • 2013 Annual Progress Report and 2014 Program Plan of the Gemini Observatory
    2013 Annual Progress Report and 2014 Program Plan of the Gemini Observatory Association of Universities for Research in Astronomy, Inc. Table&of&Contents& 1 Executive Summary ......................................................................................... 1! 2 Introduction and Overview .............................................................................. 4! 3 Science Highlights ........................................................................................... 5! 3.1! First Results using GeMS/GSAOI ..................................................................... 5! 3.2! Gemini NICI Planet-Finding Campaign ............................................................. 6! 3.3! The Sun’s Closest Neighbor Found in a Century ........................................... 7! 3.4! The Surprisingly Low Black Hole Mass of an Ultraluminous X-Ray Source 7! 3.5! GRB 130606A ...................................................................................................... 8! 3.6! Observing the Accretion Disk of the Active Galaxy NGC 1275 ..................... 9! 4 Operations ...................................................................................................... 10! 4.1! Gemini Publications and User Relationships ................................................ 10! 4.2! Operations Summary ....................................................................................... 11! 4.3! Instrumentation ................................................................................................ 11! 4.4!
    [Show full text]
  • The Most Massive Galaxies with Large Depleted Cores: Structural Parameter Relations and Black Hole Masses
    The Astrophysical Journal, 886:80 (23pp), 2019 December 1 https://doi.org/10.3847/1538-4357/ab4d4f © 2019. The American Astronomical Society. All rights reserved. The Most Massive Galaxies with Large Depleted Cores: Structural Parameter Relations and Black Hole Masses Bililign T. Dullo Departamento de Física de la Tierra y Astrofísica, Instituto de Física de Partículas y del Cosmos IPARCOS, Universidad Complutense de Madrid, E-28040 Madrid, Spain; [email protected] Received 2019 August 12; revised 2019 September 17; accepted 2019 October 8; published 2019 November 22 Abstract Luminous spheroids (MV −21.50 ± 0.75 mag) contain partially depleted cores with sizes (Rb) typically 0.02–0.5 kpc. However, galaxies with Rb>0.5 kpc are rare and poorly understood. Here, we perform detailed decompositions of the composite surface brightness profiles, extracted from archival Hubble Space Telescope and ground-based images, of 12 extremely luminous “large-core” galaxies that have Rb>0.5 kpc and MV−23.50±0.10 mag, fitting a core-Sérsic model to the galaxy spheroids. Using 28 “normal-core” (i.e., Rb < 0.5 kpc) galaxies and one “large-core” (i.e., Rb>0.5 kpc) galaxy from the literature, we constructed a final 12 sample of 41 core-Sérsic galaxies. We find that large-core spheroids (with stellar masses M*10 M☉) are not 10 12 simple high-mass extensions of the less luminous normal-core spheroids having M*∼8×10 –10 M☉. While ( 1.38 0.13) the two types follow the same strong relations between the spheroid luminosity LV and Rb Rb µ LV , and ( 1.08 0.09 ) the spheroid half-light radius Re Re µ LV , for ellipticals plus Brightest Cluster Galaxies , we discover a break in the core-Sérsic σ–LV relation occurring at MV∼−23.50±0.10 mag.
    [Show full text]
  • QUANTUM GRAVITY and the ROLE of CONSCIOUSNESS in PHYSICS Resolving the Contradictions Between Quantum Mechanics and Relativity
    1 QUANTUM CONSCIOUSNESS RESEARCH LIMITED QUANTUM GRAVITY and the ROLE of CONSCIOUSNESS in PHYSICS Resolving the contradictions between quantum mechanics and relativity Sky Darmos 2020/8/14 Explains/resolves accelerated expansion, quantum entanglement, information paradox, flatness problem, consciousness, non-Copernican structures, quasicrystals, dark matter, the nature of quantum spin, weakness of gravity, arrow of time, vacuum paradox, and much more. 2 Working titles: Physics of the Mind (2003 - 2006); The Conscious Universe (2013 - 2014). Presented theories (created and developed by Sky Darmos): Similar-worlds interpretation (2003); Space particle dualism theory* (2005); Conscious set theory (2004) (Created by the author independently but fundamentally dependent upon each other). *Inspired by Roger Penrose’s twistor theory (1967). Old names of these theories: Equivalence theory (2003); Discontinuity theory (2005); Relationism (2004). Contact information: Facebook: Sky Darmos WeChat: Sky_Darmos Email: [email protected] Cover design: Sky Darmos (2005) Its meaning: The German word “Elementarräume”, meaning elementary spaces, is written in graffiti style. The blue background looks like a 2-dimensional surface, but when we look at it through the two magnifying glasses at the bottom we see that it consists of 1-dimensional elementary “spaces” (circles). That is expressing the idea that our well known 3-dimensional space could in the same way be made of 2- dimensional sphere surfaces. The play with dimensionality is further extended by letting all the letters approach from a distant background where they appear as a single point (or point particle) moving through the pattern formed by these overlapping elementary spaces. The many circles originating from all angles in the letters represent the idea that every point (particle) gives rise to another elementary space (circle).
    [Show full text]
  • Cover Illustration by JE Mullat the BIG BANG and the BIG CRUNCH
    Cover Illustration by J. E. Mullat THE BIG BANG AND THE BIG CRUNCH From Public Domain: designed by Luke Mastin OBSERVATIONS THAT SEEM TO CONTRADICT THE BIG BANG MODEL WHILE AT THE SAME TIME SUPPORT AN ALTERNATIVE COSMOLOGY Forrest W. Noble, Timothy M. Cooper The Pantheory Research Organization Cerritos, California 90703 USA HUBBLE-INDEPENDENT PROCEDURE CALCULATING DISTANCES TO COSMOLOGICAL OBJECTS Joseph E. Mullat Project and Technical Editor: J. E. Mullat, Copenhagen 2019 ISBN‐13 978‐8740‐40‐411‐1 Private Publishing Platform Byvej 269 2650, Hvidovre, Denmark [email protected] The Postulate COSMOLOGY THAT CONTRADICTS THE BIG BANG THEORY The Standard and The Alternative Cosmological Models, Distances Calculation to Galaxies without Hubble Constant For the alternative cosmological models discussed in the book, distances are calculated for galaxies without using the Hubble constant. This proc‐ ess is mentioned in the second narrative and is described in detail in the third narrative. According to the third narrative, when the energy den‐ sity of space in the universe decreases, and the universe expands, a new space is created by a gravitational transition from dark energy. Although the Universe develops on the basis of this postulate about the appear‐ ance of a new space, it is assumed that matter arises as a result of such a gravitational transition into both new dark space and visible / baryonic matter. It is somewhat unimportant how we describe dark energy, call‐ ing it ether, gravitons, or vice versa, turning ether into dark energy. It should be clear to everyone that this renaming does not change the es‐ sence of this gravitational transition.
    [Show full text]
  • Arxiv:1905.07378V4 [Astro-Ph.CO] 19 Jan 2020 Cosmic Accelerated Expansion
    Black hole shadow with a cosmological constant for cosmological observers Javad T. Firouzjaee1∗ and Alireza Allahyari2y 1Department of Physics, K.N. Toosi University of Technology, Tehran 15875-4416, Iran, School of physics, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5531, Tehran, Iran 2School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5531, Tehran, Iran Abstract: We investigate the effect of the cosmological constant on the angular size of a black hole shadow. It is known that the accelerated expansion which is created by the cosmological constant changes the angular size of the black hole shadow for static observers. However, the shadow size must be calculated for the appropriate cosmological observes. We calculate the angular size of the shadow measured by cosmological comoving observers by projecting the shadow angle to this observer rest frame. We show that the shadow size tends to zero as the observer approaches the cosmological horizon. We estimate the angular size of the shadow for a typical supermassive black hole, e.g M87. It is found that the angular size of the shadow for cosmological observers and static observers is approximately the same at these scales of mass and distance. We present a catalog of supermassive black holes and calculate the effect of the cosmological constant on their shadow size and find that the effect could be 3 precent for distant known sources like the Phoenix Cluster supermassive black hole. I. INTRODUCTION Recent observations of black holes shadow at a wavelength of 1.3 mm spectrum succeeded in observing the first image of the black hole in the center of the galaxy M87 [1, 2].
    [Show full text]
  • The Full Appendices with All References
    Breakthrough Listen Exotica Catalog References 1 APPENDIX A. THE PROTOTYPE SAMPLE A.1. Minor bodies We classify Solar System minor bodies according to both orbital family and composition, with a small number of additional subtypes. Minor bodies of specific compositions might be selected by ETIs for mining (c.f., Papagiannis 1978). From a SETI perspective, orbital families might be targeted by ETI probes to provide a unique vantage point over bodies like the Earth, or because they are dynamically stable for long periods of time and could accumulate a large number of artifacts (e.g., Benford 2019). There is a large overlap in some cases between spectral and orbital groups (as in DeMeo & Carry 2014), as with the E-belt and E-type asteroids, for which we use the same Prototype. For asteroids, our spectral-type system is largely taken from Tholen(1984) (see also Tedesco et al. 1989). We selected those types considered the most significant by Tholen(1984), adding those unique to one or a few members. Some intermediate classes that blend into larger \complexes" in the more recent Bus & Binzel(2002) taxonomy were omitted. In choosing the Prototypes, we were guided by the classifications of Tholen(1984), Tedesco et al.(1989), and Bus & Binzel(2002). The comet orbital classifications were informed by Levison(1996). \Distant minor bodies", adapting the \distant objects" term used by the Minor Planet Center,1 refer to outer Solar System bodies beyond the Jupiter Trojans that are not comets. The spectral type system is that of Barucci et al. (2005) and Fulchignoni et al.(2008), with the latter guiding our Prototype selection.
    [Show full text]
  • Based on Space Particle Dualism Theory
    Academia Journal of Scientific Research 8(10): 290-319, October 2020 DOI: 10.15413/ajsr.2020.0124 ISSN 2315-7712 ©2020 Academia Publishing Research Paper Entropic expansion and the true age of the universe – based on space particle dualism theory Accepted 11th June, 2020 ABSTRACT Space particle dualism theory (SPD) is an overarching quantum theory of gravity, created and developed by the author in 2005. It is the first approach to quantum gravity which does not use Planck size entities as building blocks for space. Instead each particle carries a quantum of space which is a complex 2-sphere with a radius of 푅 with SPD is also the only approach to quantum gravity which doesn’t predict gravitons. In fact it does away with 푚1 푚2 conventional gravity all together, Newton’s famous law of gravity 퐹 = 퐺 is replaced by with and being the number of quarks 푛q1 and 푛q2 in two gravitational bodies. The principle behind this is that in SPD space is made of overlapping complex 2-spheres with a granular dimensionality, with 푛 denoting the number of connections from one elementary space to other elementary spaces (or surfaces). Charged particles emit virtual gauge bosons which carry their own elementary spaces That results in a higher granular dimensionality 퐷퐺 , with 푛 and a higher vacuum connectivity 푛퐸 around charged particles. More pathways lead through such charge containing regions of space. The various experimentally confirmed effects of special and general relativity can be explained using uniformly growing elementary spaces (SR) and uniformly changing granular dimensionality (GR). The fact that, unlike GR, in SPD gravity depends on density differences, and not on absolute values of mass or energy, the vacuum catastrophe is avoided and the flatness problem is solved.
    [Show full text]
  • 2012 December Vol. 49 No 584 SIR
    ISSN 0950-138X FOUNDED 1964 MONTHLY (6411) Tamaga 2012 December Vol. 49 No 584 SIR PATRICK MOORE (1923-2012) Photograph by Martin Mobberley (1999 December) The Astronomer Volume 49 No 584 2012 December page C1 2) Occultation by (388) Charybdis, 2012 Dec 3: Montse Campas and Ramon Naves(Spain) 3) Comet 168P/Hergenrother, 2012 Nov 22: Alexander Baransky (Ukraine) The Astronomer Volume 49 No 584 2012 December page C2 Vol 49 No 584 THE ASTRONOMER 2012 December Editor Guy M Hurst, 16, Westminster Close, Basingstoke, Hants, RG22 4PP, England. (Comets, photographic notes, deep sky, cover material & general articles) Telephone National 01256471074 Mobile Telephone: 07905332226 International +441256471074 Internet [email protected] (primary) or [email protected] (secondary) Facebook: facebook.com/guy.hurst1 World Wide Web: http://www.theastronomer.org Secretary: Bob Dryden, 21 Cross Road, Cholsey, Oxon, OX10 9PE (new subs, address changes, magazine, circulars renewals and catalogue purchases) Internet:: [email protected] Tel:(01491) 201620 Assistant Editors: Nick James 11 Tavistock Road, Chelmsford, Essex, CM1 6JL Internet [email protected] Tel:(01245) 354366 Denis Buczynski, Templecroft, Tarbatness Road,Portmahomack, Near Tain, Ross-Shire IV20 1RD Internet: [email protected] Tel: 01862 871187 Aurora: Tom McEwan, Kersland House, 14 Kersland Road, Glengarnock, Ayrshire, KA14 3BA Tel: (01505) 683908 (voice) [email protected] Meteors: Tony Markham, 20 Hillside Drive. Leek, Staffs, ST13 8JQ Internet: [email protected]
    [Show full text]
  • SNR MCQ Paper with Solutions
    1. Identify which of the following types of Supernovae is fictitious. A. Type 1 Supernova B. Type 2 Supernova C. Pair-instability Supernova D. Meganova E. All of the above are real categories of Supernovae 2. One night at an unknown location, the Moon was observed to be rising over the horizon. An observer reads off her broken watch and found that the time on her watch right then was 22:50. The phase of the Moon is a… A. Waxing crescent B. Waxing gibbous C. Waning crescent D. Waning gibbous E. Insufficient information to answer the question Solution: First of all, the question reads, “broken watch”. If that wasn’t a clear indication of the answer, the next hint is that the local time doesn’t necessarily correspond to the local solar time, just as in Singapore in which for economic purposes, we are GMT+8 whereas geographically we should be GMT+7. 3. Several statements are given about the Trojan Asteroid: I. Jupiter’s Trojan Asteroids are located approximately at the same distance from the Jupiter as compared to its distance to the Sun II. There are 3 different major classes of asteroid: metallic, carbonaceous and silicaceous; M-type, C-type and S-type respectively. III. Trojan Asteroids can orbit in the L4 and L5 of any planet because a small mass orbiting in L4 or L5 of two astronomical objects are always stable (L stands for Lagrangian point) Which of the above statement(s) is/are true? A. Option I only B. Option II only C. Options I and II D.
    [Show full text]