2012 December Vol. 49 No 584 SIR

Total Page:16

File Type:pdf, Size:1020Kb

2012 December Vol. 49 No 584 SIR ISSN 0950-138X FOUNDED 1964 MONTHLY (6411) Tamaga 2012 December Vol. 49 No 584 SIR PATRICK MOORE (1923-2012) Photograph by Martin Mobberley (1999 December) The Astronomer Volume 49 No 584 2012 December page C1 2) Occultation by (388) Charybdis, 2012 Dec 3: Montse Campas and Ramon Naves(Spain) 3) Comet 168P/Hergenrother, 2012 Nov 22: Alexander Baransky (Ukraine) The Astronomer Volume 49 No 584 2012 December page C2 Vol 49 No 584 THE ASTRONOMER 2012 December Editor Guy M Hurst, 16, Westminster Close, Basingstoke, Hants, RG22 4PP, England. (Comets, photographic notes, deep sky, cover material & general articles) Telephone National 01256471074 Mobile Telephone: 07905332226 International +441256471074 Internet [email protected] (primary) or [email protected] (secondary) Facebook: facebook.com/guy.hurst1 World Wide Web: http://www.theastronomer.org Secretary: Bob Dryden, 21 Cross Road, Cholsey, Oxon, OX10 9PE (new subs, address changes, magazine, circulars renewals and catalogue purchases) Internet:: [email protected] Tel:(01491) 201620 Assistant Editors: Nick James 11 Tavistock Road, Chelmsford, Essex, CM1 6JL Internet [email protected] Tel:(01245) 354366 Denis Buczynski, Templecroft, Tarbatness Road,Portmahomack, Near Tain, Ross-Shire IV20 1RD Internet: [email protected] Tel: 01862 871187 Aurora: Tom McEwan, Kersland House, 14 Kersland Road, Glengarnock, Ayrshire, KA14 3BA Tel: (01505) 683908 (voice) [email protected] Meteors: Tony Markham, 20 Hillside Drive. Leek, Staffs, ST13 8JQ Internet: [email protected] Tel:(01538)381174 Planets, asteroids & Lunar: Dr.Mark Kidger, Herschel Science Centre, European Space Agency, European Space Astronomy Centre, P.O.Box - Apdo. de correos 78, 28691 Villanueva de la Canada, Madrid, Spain FAX:+34 91 813 1218 Internet: [email protected] Tel: +34 91 813 1256 Solar:: Peter Meadows, 6 Chelmerton Avenue, Great Baddow, Chelmsford, Essex, CM2 9RE Internet: [email protected] Tel:(01245)475885 Variables: Gary Poyner, 67 Ellerton Road, Kingstanding, Birmingham, B44 0QE Internet: [email protected] Tel: 07876 077855 Production: Margaret & Colin Roberts Nova/Supernova Patrol: enquiries to main Editor. DEADLINE: 5th of month of publication. (Reports and Cover material) We recommend overseas contributors send their reports by E-Mail or FAX if possible. MAGAZINE SUB (PAPER): UK £25.00; Eire & Europe £34.00; Rest of World £43.00 (airmail) per year. Sample copies: £2.00 each. MAGAZINE (pdf): £19 for UK and all world zones GOLD SUBSCRIPTION (PAPER MAG): Magazine plus e-circulars UK £42.00; Europe £54; Rest of World £64.00 per year. All subscriptions can be paid for up to two years in advance. GOLD SUBSCRIPTION (pdf): Magazine pdf only plus e-circulars £36 (UK and all world zones) USA RESIDENTS may pay by personal cheque in dollars: Please contact Bob Dryden for current rates. OVERSEAS SUBSCRIBERS may credit subscription monies to our bankers direct. Contact Secretary for details. BACK ISSUES: £2.00 each, post paid. Send wants to Secretary. PAPER CHARTS, VIDEOS, CD ROMs & CATALOGUE SALES: Contact Secretary for details. ADVERTS: Text lines- 75p per line (width 60 characters); Professionally printed- whole page £50; 1/2, £25; 1/4, £15 per issue. Discount for 3 or more in series. Payment in advance. WWW advertising also available. Contact Editor. CIRCULARS SUBSCRIPTIONS: The circulars provide the fastest service for discoveries and news of novae, comets, supernovae, asteroids, variables and any other object of interest. Chart information is sometimes included. There are approximately 100 circulars issued per year. Annual cost £25 per year. DISCOVERIES: can be reported to the Editor on (01256) 471074. If answering machine response only PLEASE LEAVE MESSAGE ON TAPE and in addition, contact Nick James (01245) 354366, Denis Buczynski 01862 871187 or Peter Birtwhistle (01488) 648103 Above numbers are available all night. Please e-mail as attachments, charts or photos to the Editor's number immediately . VARIABLE STAR ALERTS to be reported to Gary Poyner, VS editor. Details above. RESULTS: in TA are preliminary unless otherwise stated. They should also be sent to the body responsible for the ultimate analysis of the object. Copyright: The Astronomer This magazine is protected by copyright. Distribution of any part (pdf or paper editions) is strictly forbidden without the prior written permission of the editor. 198 EDITORIAL: The Inheritance of Rich Astronomical History As I was taking a rare night off from variable stars and comets yesterday, (with apologies to appropriate BAA Directors!), I contemplated how relaxing it was to visit other peoples’ observatories with students and be taken on a ‘conducted’ tour of deep sky objects or, as most amateurs informally call them, the ‘fuzzies’. I was indebted to Ian Bruce and Brian Colthorpe for looking after us as their observatories. However for several people present it was also their first chance to try their hand at observing a whole range of such objects and of considerable variation in difficulty for the visual observer. It was during these observations, which for most of the time I have made many times over the years, that I allowed myself a pause at the telescopes to contemplate those observers in historical times particularly where they were the discoverers. There is a vast difference between being shown target objects and in this case with a GOTO device, holding the coordinates and the observers of the past who had no prior knowledge of their existence when that passed over an eyepiece field and spotted them. It is argued that going back a few hundred years, observers had a huge advantage through lack of the light pollution which most of us suffered today wherever we are in the world. However against this simplistic comparison with today’s astronomers, those in the past did not necessarily have the same quality optics even if of similar aperture. Also various aspects of the weather such as haze and all the recent dampness many of us have experienced were still present. Some famous observers of the past restricted themselves to a small number of nights per year which were not only clear but of high quality. One object I had not seen for a long time on a visual basis was the Crab Nebula. Although one of the most written about objects in astronomical literature and historically linked to the famous supernova event of 1054, I knew it is not an easy object even in telescopes of, say, 0.26-m aperture today. In fact several students had trouble seeing it at all until we stressed the idea of using averted vision. And yet this remnant of the supernova was discovered by John Bevis as long ago as 1731, a doctor observing from England. I wonder how easy it would have been for John to detect this rather faint smudge visually without prior knowledge. If you have several cloudy nights it can be very frustrating to the active observer. Could I recommend you buy a book relating to the history of astronomy and familiarise yourself on the rich history we have inherited. It will also reveal that whilst we look at their amazing astronomical observations, if we look back far enough we see that famous characters as far back as Pythagoras had much wider interests than purely astronomy. Even though it seems logical to next consider his famous theorem, it is now known this was in use by the Babylonians, we find Pythagoras was fascinated by music and even taught that subject. These days we often refer to the famous astronomers as polymaths of which many feature on an informal list such as Galileo, Copernicus and Aristotle, the latter perhaps one of the greatest known. The widening of our knowledge of all their activities is certainly a reminder of our rich history and worth contemplating whilst observing those ‘fuzzy’ objects. Have a great Christmas! Guy M Hurst, Editor The Astronomer Vol 49 No 584 2012 December 199 SIR PATRICK MOORE (1923-2012) As this issue was going to press, we have received the sad news that Patrick Moore died on Dec 9, 2012 at the age of 89 and will publish an obituary in the next issue. Our condolences to his family and friends. Richard Henry Chambers (1931-2012) It is with deep regret that I have to also report the death of Dick Chambers on Wednesday 2012 November 21, aged 81, at Greenwich and Bexley Cottage Hospice. He had been a recipient of ‘The Astronomer’ magazine for many years, on behalf of Crayford Manor House Astronomical Society. The editor was aware of his serious state of health on meeting him recently at the BAA Annual Meeting in London in October. I was most impressed by his bravery in attending such a meeting under the circumstances but he seemed determined to say a farewell to his colleagues and friends. The BAA advise that donations are invited to the Greenwich and Bexley Cottage Hospice, 185 Bostall Hill, Abbey Wood, London, SE2 0GB Our condolences to all his family and friends. Circulars Service (continues from the listing in TA Vol 49 No 583 page 171 [2012]): Date Cat Circular Subject 121111 3 E-Circular 2867 Nova Aquilae 2012; SN 2012eu; SN 2012ew 121116 3 E-Circular 2868 Possible SN in PGC 214858 (Ron Arbour) 121119 3 E-Circular 2869 MASTER OT J061017.75+414545.7 – New cataclysmic Variable; SN 2012ex in UGC 838; SN 2012ey in PGC 9159; SN 2012ez; SN 2012fa; SN 2012fb 121123 3 E-Circular 2870 MASTWER OT J064643.02+412059.1 – new cataclysmic variable; MASTER OT J061017.75+414545.7; SN 2012fc in PGC 70602; SN 2012fd in ESO 488-G51; SN 2012fe 121125 3 E-Circular 2871 Comet P/2012 US_27 (Siding
Recommended publications
  • Insidethisissue
    Publications and Products of April / avril 2005 Volume/volume 99 Number/numéro 2 [711] The Royal Astronomical Society of Canada Observer’s Calendar — 2005 The award-winning RASC Observer's Calendar is your annual guide Created by the Royal Astronomical Society of Canada and richly illustrated by photographs from leading amateur astronomers, the calendar pages are packed with detailed information including major lunar and planetary conjunctions, The Journal of the Royal Astronomical Society of Canada Le Journal de la Société royale d’astronomie du Canada meteor showers, eclipses, lunar phases, and daily Moonrise and Moonset times. Canadian and US holidays are highlighted. Perfect for home, office, or observatory. Individual Order Prices: $16.95 Cdn/ $13.95 US RASC members receive a $3.00 discount Shipping and handling not included. The Beginner’s Observing Guide Extensively revised and now in its fifth edition, The Beginner’s Observing Guide is for a variety of observers, from the beginner with no experience to the intermediate who would appreciate the clear, helpful guidance here available on an expanded variety of topics: constellations, bright stars, the motions of the heavens, lunar features, the aurora, and the zodiacal light. New sections include: lunar and planetary data through 2010, variable-star observing, telescope information, beginning astrophotography, a non-technical glossary of astronomical terms, and directions for building a properly scaled model of the solar system. Written by astronomy author and educator, Leo Enright; 200 pages, 6 colour star maps, 16 photographs, otabinding. Price: $19.95 plus shipping & handling. Skyways: Astronomy Handbook for Teachers Teaching Astronomy? Skyways Makes it Easy! Written by a Canadian for Canadian teachers and astronomy educators, Skyways is Canadian curriculum-specific; pre-tested by Canadian teachers; hands-on; interactive; geared for upper elementary, middle school, and junior-high grades; fun and easy to use; cost-effective.
    [Show full text]
  • 2012 年發表 53 篇 1. Chang,Chan-Kao , Lai,Shao-Yu
    2012 年發表 53 篇 1. Chang,Chan-Kao , Lai,Shao-Yu , Ko,Chung-Ming, et al. , Information on the Milky Way from the 2MASS All Sky Star Count: Bimodal Color Distributions ,The Astrophysical Journal, Volume 759, Issue 2, 94, 10 p..( 2012) 2. Chen,W.P. , Hu,S.C.-L. , Errmann,R., et al. , A Possible Detection of Occultation by a Proto-planetary Clump in GM Cephei ,The Astrophysical Journal, Volume 751, Issue 2, 118, 5 p..( 2012) 3. Hwang,Chorng-Yuan , Tsai,Mengchun, Star Formation in the Central Kiloparsec of Nearby Active Galaxies ,Journal of Physics: Conference Series, Volume 372, Issue 1, id. 0120..( 2012) 4. Ip, W.-H., ENA diagnostics of auroral activity at Mars ,Planetary and Space Science, v. 63, pp. 83, (2012) 5. J.M. Nester and C.-H. Wang, Can torsion be treated as just another tensor field? ,International Journal of Modern Physics: Conference Series, v. 7, pp. 158, (2012) 6. Lee, C.-H., Riffeser, A., Koppenhoefer, J., et al., PAndromeda?First Results from the High-cadence Monitoring of M31 with Pan-STARRS 1 ,The Astronomical Journal, Volume 143, Issue 4, article id. 89, 16 pp. (2012) 7. Lin, Z.-Y., Lara, L. M., Vincent, J. B., and Ip, W.-H., Physical studies of 81P/Wild 2 from the last two apparitions ,Astronomy and Astrophysics, v. 537, pp. A101, (2012) 8. Ngeow, C.-C., On the Application of Wesenheit Function in Deriving Distance to Galactic Cepheids ,The Astrophysical Journal, v. 747, pp. 50, (2012) 9. Ngeow, C.-C., Kanbur, S. M., Bellinger, E. P., et al., Period- luminosity relations for Cepheid variables: from mid-infrared to multi- phase, Astrophysics and Space Science, v.
    [Show full text]
  • Celebrating the Wonder of the Night Sky
    Celebrating the Wonder of the Night Sky The heavens proclaim the glory of God. The skies display his craftsmanship. Psalm 19:1 NLT Celebrating the Wonder of the Night Sky Light Year Calculation: Simple! [Speed] 300 000 km/s [Time] x 60 s x 60 m x 24 h x 365.25 d [Distance] ≈ 10 000 000 000 000 km ≈ 63 000 AU Celebrating the Wonder of the Night Sky Milkyway Galaxy Hyades Star Cluster = 151 ly Barnard 68 Nebula = 400 ly Pleiades Star Cluster = 444 ly Coalsack Nebula = 600 ly Betelgeuse Star = 643 ly Helix Nebula = 700 ly Helix Nebula = 700 ly Witch Head Nebula = 900 ly Spirograph Nebula = 1 100 ly Orion Nebula = 1 344 ly Dumbbell Nebula = 1 360 ly Dumbbell Nebula = 1 360 ly Flame Nebula = 1 400 ly Flame Nebula = 1 400 ly Veil Nebula = 1 470 ly Horsehead Nebula = 1 500 ly Horsehead Nebula = 1 500 ly Sh2-106 Nebula = 2 000 ly Twin Jet Nebula = 2 100 ly Ring Nebula = 2 300 ly Ring Nebula = 2 300 ly NGC 2264 Nebula = 2 700 ly Cone Nebula = 2 700 ly Eskimo Nebula = 2 870 ly Sh2-71 Nebula = 3 200 ly Cat’s Eye Nebula = 3 300 ly Cat’s Eye Nebula = 3 300 ly IRAS 23166+1655 Nebula = 3 400 ly IRAS 23166+1655 Nebula = 3 400 ly Butterfly Nebula = 3 800 ly Lagoon Nebula = 4 100 ly Rotten Egg Nebula = 4 200 ly Trifid Nebula = 5 200 ly Monkey Head Nebula = 5 200 ly Lobster Nebula = 5 500 ly Pismis 24 Star Cluster = 5 500 ly Omega Nebula = 6 000 ly Crab Nebula = 6 500 ly RS Puppis Variable Star = 6 500 ly Eagle Nebula = 7 000 ly Eagle Nebula ‘Pillars of Creation’ = 7 000 ly SN1006 Supernova = 7 200 ly Red Spider Nebula = 8 000 ly Engraved Hourglass Nebula
    [Show full text]
  • ESO Annual Report 2004 ESO Annual Report 2004 Presented to the Council by the Director General Dr
    ESO Annual Report 2004 ESO Annual Report 2004 presented to the Council by the Director General Dr. Catherine Cesarsky View of La Silla from the 3.6-m telescope. ESO is the foremost intergovernmental European Science and Technology organi- sation in the field of ground-based as- trophysics. It is supported by eleven coun- tries: Belgium, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Sweden, Switzerland and the United Kingdom. Created in 1962, ESO provides state-of- the-art research facilities to European astronomers and astrophysicists. In pur- suit of this task, ESO’s activities cover a wide spectrum including the design and construction of world-class ground-based observational facilities for the member- state scientists, large telescope projects, design of innovative scientific instruments, developing new and advanced techno- logies, furthering European co-operation and carrying out European educational programmes. ESO operates at three sites in the Ataca- ma desert region of Chile. The first site The VLT is a most unusual telescope, is at La Silla, a mountain 600 km north of based on the latest technology. It is not Santiago de Chile, at 2 400 m altitude. just one, but an array of 4 telescopes, It is equipped with several optical tele- each with a main mirror of 8.2-m diame- scopes with mirror diameters of up to ter. With one such telescope, images 3.6-metres. The 3.5-m New Technology of celestial objects as faint as magnitude Telescope (NTT) was the first in the 30 have been obtained in a one-hour ex- world to have a computer-controlled main posure.
    [Show full text]
  • Aqueous Alteration on Main Belt Primitive Asteroids: Results from Visible Spectroscopy1
    Aqueous alteration on main belt primitive asteroids: results from visible spectroscopy1 S. Fornasier1,2, C. Lantz1,2, M.A. Barucci1, M. Lazzarin3 1 LESIA, Observatoire de Paris, CNRS, UPMC Univ Paris 06, Univ. Paris Diderot, 5 Place J. Janssen, 92195 Meudon Pricipal Cedex, France 2 Univ. Paris Diderot, Sorbonne Paris Cit´e, 4 rue Elsa Morante, 75205 Paris Cedex 13 3 Department of Physics and Astronomy of the University of Padova, Via Marzolo 8 35131 Padova, Italy Submitted to Icarus: November 2013, accepted on 28 January 2014 e-mail: [email protected]; fax: +33145077144; phone: +33145077746 Manuscript pages: 38; Figures: 13 ; Tables: 5 Running head: Aqueous alteration on primitive asteroids Send correspondence to: Sonia Fornasier LESIA-Observatoire de Paris arXiv:1402.0175v1 [astro-ph.EP] 2 Feb 2014 Batiment 17 5, Place Jules Janssen 92195 Meudon Cedex France e-mail: [email protected] 1Based on observations carried out at the European Southern Observatory (ESO), La Silla, Chile, ESO proposals 062.S-0173 and 064.S-0205 (PI M. Lazzarin) Preprint submitted to Elsevier September 27, 2018 fax: +33145077144 phone: +33145077746 2 Aqueous alteration on main belt primitive asteroids: results from visible spectroscopy1 S. Fornasier1,2, C. Lantz1,2, M.A. Barucci1, M. Lazzarin3 Abstract This work focuses on the study of the aqueous alteration process which acted in the main belt and produced hydrated minerals on the altered asteroids. Hydrated minerals have been found mainly on Mars surface, on main belt primitive asteroids and possibly also on few TNOs. These materials have been produced by hydration of pristine anhydrous silicates during the aqueous alteration process, that, to be active, needed the presence of liquid water under low temperature conditions (below 320 K) to chemically alter the minerals.
    [Show full text]
  • Orders of Magnitude (Length) - Wikipedia
    03/08/2018 Orders of magnitude (length) - Wikipedia Orders of magnitude (length) The following are examples of orders of magnitude for different lengths. Contents Overview Detailed list Subatomic Atomic to cellular Cellular to human scale Human to astronomical scale Astronomical less than 10 yoctometres 10 yoctometres 100 yoctometres 1 zeptometre 10 zeptometres 100 zeptometres 1 attometre 10 attometres 100 attometres 1 femtometre 10 femtometres 100 femtometres 1 picometre 10 picometres 100 picometres 1 nanometre 10 nanometres 100 nanometres 1 micrometre 10 micrometres 100 micrometres 1 millimetre 1 centimetre 1 decimetre Conversions Wavelengths Human-defined scales and structures Nature Astronomical 1 metre Conversions https://en.wikipedia.org/wiki/Orders_of_magnitude_(length) 1/44 03/08/2018 Orders of magnitude (length) - Wikipedia Human-defined scales and structures Sports Nature Astronomical 1 decametre Conversions Human-defined scales and structures Sports Nature Astronomical 1 hectometre Conversions Human-defined scales and structures Sports Nature Astronomical 1 kilometre Conversions Human-defined scales and structures Geographical Astronomical 10 kilometres Conversions Sports Human-defined scales and structures Geographical Astronomical 100 kilometres Conversions Human-defined scales and structures Geographical Astronomical 1 megametre Conversions Human-defined scales and structures Sports Geographical Astronomical 10 megametres Conversions Human-defined scales and structures Geographical Astronomical 100 megametres 1 gigametre
    [Show full text]
  • The Minor Planet Bulletin, It Is a Pleasure to Announce the Appointment of Brian D
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 33, NUMBER 1, A.D. 2006 JANUARY-MARCH 1. LIGHTCURVE AND ROTATION PERIOD Observatory (Observatory code 926) near Nogales, Arizona. The DETERMINATION FOR MINOR PLANET 4006 SANDLER observatory is located at an altitude of 1312 meters and features a 0.81 m F7 Ritchey-Chrétien telescope and a SITe 1024 x 1024 x Matthew T. Vonk 24 micron CCD. Observations were conducted on (UT dates) Daniel J. Kopchinski January 29, February 7, 8, 2005. A total of 37 unfiltered images Amanda R. Pittman with exposure times of 120 seconds were analyzed using Canopus. Stephen Taubel The lightcurve, shown in the figure below, indicates a period of Department of Physics 3.40 ± 0.01 hours and an amplitude of 0.16 magnitude. University of Wisconsin – River Falls 410 South Third Street Acknowledgements River Falls, WI 54022 [email protected] Thanks to Michael Schwartz and Paulo Halvorcem for their great work at Tenagra Observatory. (Received: 25 July) References Minor planet 4006 Sandler was observed during January Schmadel, L. D. (1999). Dictionary of Minor Planet Names. and February of 2005. The synodic period was Springer: Berlin, Germany. 4th Edition. measured and determined to be 3.40 ± 0.01 hours with an amplitude of 0.16 magnitude. Warner, B. D. and Alan Harris, A. (2004) “Potential Lightcurve Targets 2005 January – March”, www.minorplanetobserver.com/ astlc/targets_1q_2005.htm Minor planet 4006 Sandler was discovered by the Russian astronomer Tamara Mikhailovna Smirnova in 1972. (Schmadel, 1999) It orbits the sun with an orbit that varies between 2.058 AU and 2.975 AU which locates it in the heart of the main asteroid belt.
    [Show full text]
  • NSF-GV6703 PUB DATE 30 Jun 73 NOTE 32P
    DOCONSWT 1130$! 096 124 as013 025 AUTHOR Reeder, R. P. TTTLP Sky Study. INSTITUTION Delaware State Dept. of Public Instruction, Dover.; Del Mod System, Dover, Del. SPONS AGENCY National Science Foundation, Washington, D.C. RPPORT NO NSF-GV6703 PUB DATE 30 Jun 73 NOTE 32p. RIPS PRICE MF-$0.75 HC-$1.85 PLUS POSTAGE oPSCRIPTORS *Autoinstructional Programs; Behavioral Objectives; *Earth Science; *General Science; *Middle Schools; Science Education; *Secondary School Science; Teacher Developed Materials; Units of Study (Subject Fields) IDENTIFIERS *Del Mod System ABSTRACT This autoinstructional unit deals with the study of stars, constellations, and planets as part of a General Science and/or Earth Science program for students in high or middle school. Twelve behavioral objectives are identified. The equipment needed, the time suggested as adequate, and a sample of a final test that can be administered are included in the monograph. The script uses slides and an accompanying worksheet to facilitate the learning experience. A bibliography of four references is given. (EB) eq N 1 tottoamtmt Ott tot Kt, t to ototAtoalt I itittAllt NatIONAL INt ittUtt IDUCCItON tut\oot to HA httl Piet: 't I)I to It wA9 itl c I I P. tut:Y !'1 kulNiOte Ni01011,1 A, 0,4(1,0,t4 I\.1IS 011 %IAIt DO he" WC( 55AW *101,4 ICIAL twool ,,h- It of I1 A htlh1100t ,st LU SKY STUDY Prepared By R. P. Reeder Science TatcheA NEWARK SCHOOL DISTRICT June 30, 1973 Rtinted aad daumi.aated hAuugh the obice oti the Vet Mud Compocat CookdiAatn tin the State Depahtment o6 Pubtic In..6thuctZon, John G.
    [Show full text]
  • Absolute Magnitudes of Asteroids and a Revision of Asteroid Albedo Estimates from WISE Thermal Observations ⇑ Petr Pravec A, , Alan W
    Icarus 221 (2012) 365–387 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Absolute magnitudes of asteroids and a revision of asteroid albedo estimates from WISE thermal observations ⇑ Petr Pravec a, , Alan W. Harris b, Peter Kušnirák a, Adrián Galád a,c, Kamil Hornoch a a Astronomical Institute, Academy of Sciences of the Czech Republic, Fricˇova 1, CZ-25165 Ondrˇejov, Czech Republic b 4603 Orange Knoll Avenue, La Cañada, CA 91011, USA c Modra Observatory, Department of Astronomy, Physics of the Earth, and Meteorology, FMFI UK, Bratislava SK-84248, Slovakia article info abstract Article history: We obtained estimates of the Johnson V absolute magnitudes (H) and slope parameters (G) for 583 main- Received 27 February 2012 belt and near-Earth asteroids observed at Ondrˇejov and Table Mountain Observatory from 1978 to 2011. Revised 27 July 2012 Uncertainties of the absolute magnitudes in our sample are <0.21 mag, with a median value of 0.10 mag. Accepted 28 July 2012 We compared the H data with absolute magnitude values given in the MPCORB, Pisa AstDyS and JPL Hori- Available online 13 August 2012 zons orbit catalogs. We found that while the catalog absolute magnitudes for large asteroids are relatively good on average, showing only little biases smaller than 0.1 mag, there is a systematic offset of the cat- Keywords: alog values for smaller asteroids that becomes prominent in a range of H greater than 10 and is partic- Asteroids ularly big above H 12. The mean (H H) value is negative, i.e., the catalog H values are Photometry catalog À Infrared observations systematically too bright.
    [Show full text]
  • Ultralight Bosonic Field Mass Bounds from Astrophysical Black Hole Spin
    Ultralight Bosonic Field Mass Bounds from Astrophysical Black Hole Spin Matthew J. Stott Theoretical Particle Physics and Cosmology Group, Department of Physics, Kings College London, University of London, Strand, London, WC2R 2LS, United Kingdom∗ (Dated: September 16, 2020) Black Hole measurements have grown significantly in the new age of gravitation wave astronomy from LIGO observations of binary black hole mergers. As yet unobserved massive ultralight bosonic fields represent one of the most exciting features of Standard Model extensions, capable of providing solutions to numerous paradigmatic issues in particle physics and cosmology. In this work we explore bounds from spinning astrophysical black holes and their angular momentum energy transfer to bosonic condensates which can form surrounding the black hole via superradiant instabilities. Using recent analytical results we perform a simplified analysis with a generous ensemble of black hole parameter measurements where we find superradiance very generally excludes bosonic fields in −14 −11 −20 the mass ranges; Spin-0: f3:8 × 10 eV ≤ µ0 ≤ 3:4 × 10 eV; 5:5 × 10 eV ≤ µ0 ≤ 1:3 × −16 −21 −20 −15 −11 10 eV; 2:5×10 eV ≤ µ0 ≤ 1:2×10 eVg, Spin-1: f6:2×10 eV ≤ µ1 ≤ 3:9×10 eV; 2:8× −22 −16 −14 −11 −20 10 eV ≤ µ1 ≤ 1:9×10 eVg and Spin-2: f2:2×10 eV ≤ µ2 ≤ 2:8×10 eV; 1:8×10 eV ≤ −16 −22 −21 µ2 ≤ 1:8 × 10 eV; 6:4 × 10 eV ≤ µ2 ≤ 7:7 × 10 eVg respectively. We also explore these bounds in the context of specific phenomenological models, specifically the QCD axion, M-theory models and fuzzy dark matter sitting at the edges of current limits.
    [Show full text]
  • Annual General Meeting, 2002 October 30 Held at the Scientific Societies' Lecture Theatre, 23 Savile Row, London W1
    Annual General Meeting, 2002 October 30 held at the Scientific Societies' Lecture Theatre, 23 Savile Row, London W1 Guy Hurst, President Ron Johnson, Nick Hewitt and Nick James, Secretaries The President opened the Annual General Meeting, and invited Dr Hewitt to read the minutes of the 2001 AGM. These were approved by the audience, and signed. Mr Hurst expressed his gratitude to Mr David Freedman, auditor, and Mr Roy Dowsett, accountant, for the smooth running of the recent audit. Mr David Tucker was invited to present the accounts. Mr Tucker reported that the accounts had been published in the 2002 October Journal. In summary, the past year had seen widespread falls on the stock market, resulting in a reduction in the value of the Association's investments. The revaluation of these had resulted in a £25,004 loss, although this could be viewed as a paper loss since no actual money had been lost. It was reported that in the time between the publication of the accounts and the AGM, a further £15,000 reduction had been seen in the Association's investments. Mr Tucker pointed out that the BAA invests a relatively small proportion of its funds on the stock market, and hence the losses were minimal compared to those experienced by many other organisations. The number of subscriptions received was down by 76 people relative to the previous year, and Council were anxious to reverse this trend. Mr Tucker reported that a number of Officers were considering possible recruitment campaigns. The treasurer reported that in the previous year a generous bequest had funded an extensive £12,000 modernisation of the Association's offices, including a new computer system.
    [Show full text]
  • 2013 Annual Progress Report and 2014 Program Plan of the Gemini Observatory
    2013 Annual Progress Report and 2014 Program Plan of the Gemini Observatory Association of Universities for Research in Astronomy, Inc. Table&of&Contents& 1 Executive Summary ......................................................................................... 1! 2 Introduction and Overview .............................................................................. 4! 3 Science Highlights ........................................................................................... 5! 3.1! First Results using GeMS/GSAOI ..................................................................... 5! 3.2! Gemini NICI Planet-Finding Campaign ............................................................. 6! 3.3! The Sun’s Closest Neighbor Found in a Century ........................................... 7! 3.4! The Surprisingly Low Black Hole Mass of an Ultraluminous X-Ray Source 7! 3.5! GRB 130606A ...................................................................................................... 8! 3.6! Observing the Accretion Disk of the Active Galaxy NGC 1275 ..................... 9! 4 Operations ...................................................................................................... 10! 4.1! Gemini Publications and User Relationships ................................................ 10! 4.2! Operations Summary ....................................................................................... 11! 4.3! Instrumentation ................................................................................................ 11! 4.4!
    [Show full text]