Clinical Anatomic Considerations of the Zygomaticus Minor Muscle Based on the Morphology and Insertion Pattern
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diagnosis of Zygomaticus Muscle Paralysis Using Needle
Case Report Ann Rehabil Med 2013;37(3):433-437 pISSN: 2234-0645 • eISSN: 2234-0653 http://dx.doi.org/10.5535/arm.2013.37.3.433 Annals of Rehabilitation Medicine Diagnosis of Zygomaticus Muscle Paralysis Using Needle Electromyography With Ultrasonography Seung Han Yoo, MD, Hee Kyu Kwon, MD, Sang Heon Lee, MD, Seok Jun Lee, MD, Kang Wook Ha, MD, Hyeong Suk Yun, MD Department of Rehabilitation Medicine, Korea University College of Medicine, Seoul, Korea A 22-year-old woman visited our clinic with a history of radiofrequency volumetric reduction for bilateral masseter muscles at a local medical clinic. Six days after the radiofrequency procedure, she noticed a facial asymmetry during smiling. Physical examination revealed immobility of the mouth drawing upward and laterally on the left. Routine nerve conduction studies and needle electromyography (EMG) in facial muscles did not suggest electrodiagnostic abnormalities. We assumed that the cause of facial asymmetry could be due to an injury of zygomaticus muscles, however, since defining the muscles through surface anatomy was difficult and it was not possible to identify the muscles with conventional electromyographic methods. Sono-guided needle EMG for zygomaticus muscle revealed spontaneous activities at rest and small amplitude motor unit potentials with reduced recruitment patterns on volition. Sono-guided needle EMG may be an optimal approach in focal facial nerve branch injury for the specific localization of the injury lesion. Keywords Ultrasonography-guided, Zygomaticus, Needle electromyography INTRODUCTION are performed in only the three or four muscles [2]. Also, anatomic variation and tiny muscle size pose difficulties Facial palsy is a common form of neuropathy due to to electrodiagnostic tests in the target muscles. -
An Anatomic Study on the Upper Lip Elevator Muscles in Koreans for Application of Botulinum Toxin
An Anatomic Study on the Upper Lip Elevator Muscles in Koreans for Application of Botulinum Toxin Woo-Sang Hwang The Graduate School Yonsei University Department of Dental Science An Anatomic Study on the Upper Lip Elevator Muscles in Koreans for Application of Botulinum Toxin A Masters Thesis Submitted to the Department of Dental Science And the Graduate School of Yonsei University in partial fulfillment of the requirements for the degree of Master of Dental Science Woo-Sang Hwang July 2007 This certifies that the masters thesis of Woo-Sang Hwang is approved. Thesis Supervisor : Kee-Joon Lee Hyoung-Seon Baik Hee-Jin Kim The Graduate School Yonsei University July 2007 감사의 글 이 논문이 완성되기까지 따뜻한 배려와 함께 세심한 지도와 격려를 아끼지 않으신 이기준 지도 교수님께 먼저 깊은 감사를 드립니다. 귀중한 시간을 내주시어 부족한 논문을 살펴주신 백형선 교수님, 김희진 교수님께 감사드리며 교정학을 공부할 수 있도록 기회를 주시고 제가 이 자리에 설 수 있도록 인도해주신 손병화 교수님, 박영철 교수님, 황충주 교수님, 유형석 교수님, 차정열 교수님, 김경호 교수님, 최광철 교수님, 정주령 선생님께도 감사드립니다. 바쁜 와중에도 연구 방법과 세부적인 사항에 대해 많은 도움과 조언을 해주신 허경석, 허미선 선생님을 비롯한 해부학 교실 선생님들께 감사의 말씀을 드립니다. 이 논문이 나오기까지 격려해주고 조언해주었던 동기들, 이태연, 조용민, 서승아, 이한아, 정시내, 조선미 선생과 의국 선배님과 후배님 모두에게 이 자리를 빌어 감사의 마음을 전합니다. 마지막으로 항상 변함없는 사랑으로 돌봐주시고 저를 이끌어주신 아버지와 어머니, 대구에서 힘들게 군복무 중인 동생, 그리고 옆에서 항상 힘이 되어준 레미에게 감사의 마음을 전하며 이 작은 결실을 드립니다. 2007년 7 월 저자 씀 Table of Contents Tables and Figures ................................................................................................................... ii Abstract (English) ...................................................................................................................iii 1. Introduction .......................................................................................................................... 1 2. -
T1 – Trunk – Bisexual
T1 – Trunk, Bisexual 3B – B30 Torso - # 02 Page 1 of 2 T1 – Trunk, Bisexual 1. Frontal region 48. Frontal bone 2. Orbital region 49. Temporalis muscle 3. Temporal region 50. Ball of the eye (ocular bulb) 4. Nasal region 51. Zygomatic bone (cheekbone) 5. Infraorbital region 52. External carotid artery 6. Infratemporal region 53. Posterior belly of digastric muscle 7. Oral region 54. tongue 8. Parotideomasseteric region 55. Mental muscle 9. Buccal region 56. Anterior belly of digastric muscle 10. Chin region 57. Hyoid bone 11. Sternocleidomastoideus muscle 58. Thyroid cartilage 12. Right internal jugular vein 59. Cricothyroid muscle 13. Right common carotid artery 60. Thyroid gland 14. Superior thyroid artery 61. Inferior thyroid vein 15. Inferior belly of omohyoid muscle 62. Scalenus anterior muscle 16. Right subclavian artery 63. Trachea (windpipe) 17. Clavicle 64. Left subclavian vein 18. Right subclavian vein 65. Left brachiocephalic vein 19. Right brachiocephalic vein 66. Superior vena cava 20. Pectoralis major muscle 67. Ascending aorta 21. Pectoralis minor muscle 68. Bifurcation of trachea 22. Right superior lobar bronchus 69. Bronchus of left inferior lobe 23. Right inferior lobar bronchus 70. Thoracic part of aorta 24. ?Serratus anterior muscle 71. Esophagus (gullet) 25. Right lung 72. External intercostal muscles 26. Diaphragm 73. Foramen of vena cava 27. 7th rib 74. Abdominal part of esophagus 28. Costal part of diaphragm 75. Spleen 29. Diaphragm, lumber part 76. Hilum of spleen 30. Right suprarenal gland 77. Celiac trunk 31. Inferior vena cava 78. Left kidney 32. Renal pyramid 79. Left renal artery and vein 33. Renal pelvis 80. -
Atlas of the Facial Nerve and Related Structures
Rhoton Yoshioka Atlas of the Facial Nerve Unique Atlas Opens Window and Related Structures Into Facial Nerve Anatomy… Atlas of the Facial Nerve and Related Structures and Related Nerve Facial of the Atlas “His meticulous methods of anatomical dissection and microsurgical techniques helped transform the primitive specialty of neurosurgery into the magnificent surgical discipline that it is today.”— Nobutaka Yoshioka American Association of Neurological Surgeons. Albert L. Rhoton, Jr. Nobutaka Yoshioka, MD, PhD and Albert L. Rhoton, Jr., MD have created an anatomical atlas of astounding precision. An unparalleled teaching tool, this atlas opens a unique window into the anatomical intricacies of complex facial nerves and related structures. An internationally renowned author, educator, brain anatomist, and neurosurgeon, Dr. Rhoton is regarded by colleagues as one of the fathers of modern microscopic neurosurgery. Dr. Yoshioka, an esteemed craniofacial reconstructive surgeon in Japan, mastered this precise dissection technique while undertaking a fellowship at Dr. Rhoton’s microanatomy lab, writing in the preface that within such precision images lies potential for surgical innovation. Special Features • Exquisite color photographs, prepared from carefully dissected latex injected cadavers, reveal anatomy layer by layer with remarkable detail and clarity • An added highlight, 3-D versions of these extraordinary images, are available online in the Thieme MediaCenter • Major sections include intracranial region and skull, upper facial and midfacial region, and lower facial and posterolateral neck region Organized by region, each layered dissection elucidates specific nerves and structures with pinpoint accuracy, providing the clinician with in-depth anatomical insights. Precise clinical explanations accompany each photograph. In tandem, the images and text provide an excellent foundation for understanding the nerves and structures impacted by neurosurgical-related pathologies as well as other conditions and injuries. -
SŁOWNIK ANATOMICZNY (ANGIELSKO–Łacinsłownik Anatomiczny (Angielsko-Łacińsko-Polski)´ SKO–POLSKI)
ANATOMY WORDS (ENGLISH–LATIN–POLISH) SŁOWNIK ANATOMICZNY (ANGIELSKO–ŁACINSłownik anatomiczny (angielsko-łacińsko-polski)´ SKO–POLSKI) English – Je˛zyk angielski Latin – Łacina Polish – Je˛zyk polski Arteries – Te˛tnice accessory obturator artery arteria obturatoria accessoria tętnica zasłonowa dodatkowa acetabular branch ramus acetabularis gałąź panewkowa anterior basal segmental artery arteria segmentalis basalis anterior pulmonis tętnica segmentowa podstawna przednia (dextri et sinistri) płuca (prawego i lewego) anterior cecal artery arteria caecalis anterior tętnica kątnicza przednia anterior cerebral artery arteria cerebri anterior tętnica przednia mózgu anterior choroidal artery arteria choroidea anterior tętnica naczyniówkowa przednia anterior ciliary arteries arteriae ciliares anteriores tętnice rzęskowe przednie anterior circumflex humeral artery arteria circumflexa humeri anterior tętnica okalająca ramię przednia anterior communicating artery arteria communicans anterior tętnica łącząca przednia anterior conjunctival artery arteria conjunctivalis anterior tętnica spojówkowa przednia anterior ethmoidal artery arteria ethmoidalis anterior tętnica sitowa przednia anterior inferior cerebellar artery arteria anterior inferior cerebelli tętnica dolna przednia móżdżku anterior interosseous artery arteria interossea anterior tętnica międzykostna przednia anterior labial branches of deep external rami labiales anteriores arteriae pudendae gałęzie wargowe przednie tętnicy sromowej pudendal artery externae profundae zewnętrznej głębokiej -
Robust User Identification Based on Facial Action Units Unaffected By
Proceedings of the 51st Hawaii International Conference on System Sciences j 2018 Robust user identification based on facial action units unaffected by users’ emotions Ricardo Buettner Aalen University, Germany [email protected] Abstract—We report on promising results concerning the iden- we combine the biometric capture with a PIN request, which tification of a user just based on its facial action units. The is a rule in access validation systems [2,3], we reached a related Random Forests classifier which analyzed facial action very good false positive rate of only 7.633284e-06 (over unit activity captured by an ordinary webcam achieved very 99.999 percent specificity). good values for accuracy (97.24 percent) and specificity (99.92 On the basis of our results we can offer some interest- percent). In combination with a PIN request the degree of ing theoretical insights, e.g. which facial action units are specificity raised to over 99.999 percent. The proposed bio- the most predictive for user identification such as the lid metrical method is unaffected by a user’s emotions, easy to tightener (orbicularis oculi, pars palpebralis) and the upper use, cost efficient, non-invasive, and contact-free and can be lip raiser (levator labii superioris). In addition our work used in human-machine interaction as well as in secure access has practical implications as the proposed contactless user control systems. identification mechanism can be applied as a comfortable way to continuously recognize peo- 1. Introduction ple who are present in human-computer interaction settings, and Robust user identification is a precondition of modern an additional authentication mechanism in PIN entry human-computer interaction systems, in particular of au- systems. -
Atlas of Topographical and Pathotopographical Anatomy of The
Contents Cover Title page Copyright page About the Author Introduction Part 1: The Head Topographic Anatomy of the Head Cerebral Cranium Basis Cranii Interna The Brain Surgical Anatomy of Congenital Disorders Pathotopography of the Cerebral Part of the Head Facial Head Region The Lymphatic System of the Head Congenital Face Disorders Pathotopography of Facial Part of the Head Part 2: The Neck Topographic Anatomy of the Neck Fasciae, Superficial and Deep Cellular Spaces and their Relationship with Spaces Adjacent Regions (Fig. 37) Reflex Zones Triangles of the Neck Organs of the Neck (Fig. 50–51) Pathography of the Neck Topography of the neck Appendix A Appendix B End User License Agreement Guide 1. Cover 2. Copyright 3. Contents 4. Begin Reading List of Illustrations Chapter 1 Figure 1 Vessels and nerves of the head. Figure 2 Layers of the frontal-parietal-occipital area. Figure 3 Regio temporalis. Figure 4 Mastoid process with Shipo’s triangle. Figure 5 Inner cranium base. Figure 6 Medial section of head and neck Figure 7 Branches of trigeminal nerve Figure 8 Scheme of head skin innervation. Figure 9 Superficial head formations. Figure 10 Branches of the facial nerve Figure 11 Cerebral vessels. MRI. Figure 12 Cerebral vessels. Figure 13 Dural venous sinuses Figure 14 Dural venous sinuses. MRI. Figure 15 Dural venous sinuses Figure 16 Venous sinuses of the dura mater Figure 17 Bleeding in the brain due to rupture of the aneurism Figure 18 Types of intracranial hemorrhage Figure 19 Different types of brain hematomas Figure 20 Orbital muscles, vessels and nerves. Topdown view, Figure 21 Orbital muscles, vessels and nerves. -
T2 – Trunk, Bisexual
T2 – Trunk, Bisexual 3B – B40 Torso #04 Page 1 of 2 T2 – Trunk, Bisexual a. Deltoideus muscle 48. Vastus lateralis muscle b. Gluteus maximus muscle 49. Rectus femoris muscle 1. Sternocleidomastoideus muscle 50. Vastus medialis muscle 2. Superior belly of omohyoid muscle 51. Hyoid bone 3. Constrictor pharyngis inferior muscle 52. Left internal jugular vein 4. Sternohyoideus muscle 53. Left common carotid artery 5. Right external jugular vein 54. Thyroid cartilage 6. Scalenus medius muscle 55. Cricothyroid muscle 7. Trapezius muscle 56. Thyroid gland 8. Levator scapulae muscle 57. Trachea 9. Inferior belly of omohyoid muscle 58. Inferior thyroid vein 10. Brachial plexus 59. Clavicle 11. Scalenus anterior muscle 60. Left subclavian vein 12. Deltoideus muscle 61. Superior vena cava 13. Pectoralis major muscle 62. Ascending aorta 14. Internal intercostal muscles 63. Bronchus of left superior lobe 15. Rib 64. Bifurcation of trachea 16. Right superior lobar bronchus 65. Left principal bronchus 17. Right inferior lobar bronchus 66. Esophagus 18. Long head of biceps brachii muscle 67. Descending aorta 19. Short (medial) head of biceps brachii muscle 68. Bronchus of left inferior lobe 20. Long head of triceps brachii muscle 69. Cardiac impression of lung 21. Serratus anterior muscle 70. Diaphragm 22. Tendinous centre (phrenic centre) 71. Abdominal part of esophagus 23. Foramen of vena cava 72. Spleen 24. Costal part of diaphragm 73. Celiac trunk 25. Diaphragm, lumbar part 74. Hilum of spleen 26. Right suprarenal gland 75. Superior mesenteric artery 27. Inferior vena cava 76. Left kidney 28. Renal pyramid 77. Left renal vein 29. Renal calyx 78. -
FIPAT-TA2-Part-2.Pdf
TERMINOLOGIA ANATOMICA Second Edition (2.06) International Anatomical Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TA2, PART II Contents: Systemata musculoskeletalia Musculoskeletal systems Caput II: Ossa Chapter 2: Bones Caput III: Juncturae Chapter 3: Joints Caput IV: Systema musculare Chapter 4: Muscular system Bibliographic Reference Citation: FIPAT. Terminologia Anatomica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, 2019 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Anatomica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput II: OSSA Chapter 2: BONES Latin term Latin synonym UK English US English English synonym Other 351 Systemata Musculoskeletal Musculoskeletal musculoskeletalia systems systems -
Biomechanics of the Orofacial Motor System: Influence of Speaker-Specific Characteristics on Speech Production Pascal Perrier, Ralf Winkler
Biomechanics of the orofacial motor system: Influence of speaker-specific characteristics on speech production Pascal Perrier, Ralf Winkler To cite this version: Pascal Perrier, Ralf Winkler. Biomechanics of the orofacial motor system: Influence of speaker-specific characteristics on speech production. Susanne Fuchs, Daniel Pape, Caterina Petrone & Pascal Perrier. Individual Differences in Speech Production and Perception , 3, Peter Lang Publishing Group, pp.223- 254, 2015, Speech Production and Perception. hal-01242406 HAL Id: hal-01242406 https://hal.archives-ouvertes.fr/hal-01242406 Submitted on 12 Dec 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Perrier & Winkler – Speaker-specific biomechanics Biomechanics of the orofacial motor system: Influence of speaker-specific characteristics on speech production Pascal Perrier & Ralf Winkler 1 Abstract Orofacial biomechanics has been shown to influence the time signals of speech production and to impose constraints with which the central nervous system has to contend in order to achieve the goals of speech production. After a short explanation of the concept of biomechanics and its link with the variables usually measured in phonetics, two modeling studies are presented, which exemplify the influence of speaker-specific vocal tract morphology and muscle anatomy on speech production. -
Clinical Oral Anatomy Thomas Von Arx • Scott Lozanoff
Clinical Oral Anatomy Thomas von Arx • Scott Lozanoff Clinical Oral Anatomy A Comprehensive Review for Dental Practitioners and Researchers Thomas von Arx Scott Lozanoff University of Bern School of Dental Medicine Department of Anatomy Biochemistry & Department of Oral Surgery and Stomatology Physiology Bern John A. Burns School of Medicine Switzerland Honolulu Hawaii USA ISBN 978-3-319-41991-6 ISBN 978-3-319-41993-0 (eBook) DOI 10.1007/978-3-319-41993-0 Library of Congress Control Number: 2016958506 © Springer International Publishing Switzerland 2017 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. -
A Review of Facial Nerve Anatomy
A Review of Facial Nerve Anatomy Terence M. Myckatyn, M.D.1 and Susan E. Mackinnon, M.D.1 ABSTRACT An intimate knowledge of facial nerve anatomy is critical to avoid its inadvertent injury during rhytidectomy, parotidectomy, maxillofacial fracture reduction, and almost any surgery of the head and neck. Injury to the frontal and marginal mandibular branches of the facial nerve in particular can lead to obvious clinical deficits, and areas where these nerves are particularly susceptible to injury have been designated danger zones by previous authors. Assessment of facial nerve function is not limited to its extratemporal anatomy, however, as many clinical deficits originate within its intratemporal and intracranial components. Similarly, the facial nerve cannot be considered an exclusively motor nerve given its contributions to taste, auricular sensation, sympathetic input to the middle meningeal artery, and parasympathetic innervation to the lacrimal, submandibular, and sublingual glands. The constellation of deficits resulting from facial nerve injury is correlated with its complex anatomy to help establish the level of injury, predict recovery, and guide surgical management. KEYWORDS: Extratemporal, intratemporal, facial nerve, frontal nerve, marginal mandibular nerve The anatomy of the facial nerve is among the components of the facial nerve reminds the surgeon that most complex of the cranial nerves. In his initial descrip- the facial nerve is composed not exclusively of voluntary tion of the cranial nerves, Galen described the facial motor fibers but also of parasympathetics to the lacrimal, nerve as part of a distinct facial-vestibulocochlear nerve submandibular, and sublingual glands; sensory innerva- complex.1,2 Although the anatomy of the other cranial tion to part of the external ear; and contributions to taste nerves was accurately described shortly after Galen’s at the anterior two thirds of the tongue.