Øh Appears in the ¿9 Annual International Symposium on Microarchitecture Distributed Microarchitectural Protocols in the TRIPS Prototype Processor Karthikeyan Sankaralingam Ramadass Nagarajan Robert McDonald Ý Rajagopalan DesikanÝ Saurabh Drolia M.S. Govindan Paul Gratz Divya Gulati Heather HansonÝ ChangkyuKim HaimingLiu NityaRanganathan Simha Sethumadhavan Sadia SharifÝ Premkishore Shivakumar Stephen W. Keckler Doug Burger Department of Computer Sciences ÝDepartment of Electrical and Computer Engineering The University of Texas at Austin
[email protected] www.cs.utexas.edu/users/cart Abstract are clients on one or more micronets. Higher-level mi- croarchitectural protocols direct global control across the Growing on-chip wire delays will cause many future mi- micronets and tiles in a manner invisible to software. croarchitectures to be distributed, in which hardware re- In this paper, we describe the tile partitioning, micronet sources within a single processor become nodes on one or connectivity, and distributed protocols that provide global more switched micronetworks. Since large processor cores services in the TRIPS processor, including distributed fetch, will require multiple clock cycles to traverse, control must execution, flush, and commit. Prior papers have described be distributed, not centralized. This paper describes the this approach to exploiting parallelism as well as high-level control protocols in the TRIPS processor, a distributed, tiled performanceresults [15, 3], but have not described the inter- microarchitecture that supports dynamic execution. It de- tile connectivity or protocols. Tiled architectures such as tails each of the five types of reused tiles that compose the RAW [23] use static orchestration to manage global oper- processor, the control and data networks that connect them, ations, but in a dynamically scheduled, distributed archi- and the distributed microarchitectural protocols that imple- tecture such as TRIPS, hardware protocols are required to ment instruction fetch, execution, flush, and commit.