Veicoli Su Rotaia

Total Page:16

File Type:pdf, Size:1020Kb

Veicoli Su Rotaia Veicoli su rotaia Ing. Maurizio Fantini – Novembre 2014 . Veicoli su rotaia • La ferrovia (strada ferrata), sistema di trasporto terrestre a guida vincolata, esiste da quasi 190 anni: la prima in Inghilterra nel 1825 (in Italia nel 1839). • La rete ferroviaria mondiale ha oggi uno sviluppo di 1.300.000 km circa. • Bastano pochi dati per comprendere le peculiarità della ferrovia: la possibilità di trasportare 60.000 passeggeri all’ora per direzione (servizi urbani e suburbani) , di trasportare 1100 passeggeri a 300 km/h (collegamenti ad alta velocità), di effettuare convogli merci di oltre 30.000 t. Veicoli su rotaia • I maggiori vantaggi del trasporto su rotaia rispetto agli altri sistemi: - i bassi consumi energetici, grazie alle ridotte resistenze al moto; - il basso inquinamento; - la guida direzionale affidata alla stessa via (sistema di guida molto semplice rispetto a quello di altri sistemi guidati); - la possibilità di concentrare elevate potenze motrici; - la sicurezza , le ferrovie in particolare quelle europee, rappresentano il sistema di trasporto più sicuro. ** Secondo dati di fonte giapponese, l’energia necessaria per trasportare un passeggero per un km con un treno ad alta velocità (Shinkansen serie 700) è di 64 kcalorie, un terzo dell’energia necessaria a un autobus di linea, circa un sesto di quella assorbita da un aereo di recente generazione, un decimo di quella necessaria ad un’auto privata. ** Per quanto riguarda l’emissione di CO2 per pass.-km, rispetto al treno AV, l’autobus è 7 volte più inquinante, l’aereo 10 volte e l’auto privata oltre 16 volte. Veicoli su rotaia • Nella definizione di un sistema di trasporto è la capacità di traffico, in termini di passeggeri (passeggeri-km) e/o di merci (tonnellate-km) che determina la sua convenienza economica; occorre tuttavia tenere presente anche altri fattori, quali l’impatto ambientale, che possono orientare la scelta sul sistema ferroviario. • La sede ferroviaria occupa poco territorio; basti pensare che la superficie impegnata dall’intera linea ad alta velocità Parigi-Lione, lunga 450 km, è inferiore a quella occupata dall’aeroporto di Parigi Roissy. • Le dimensioni contenute e le caratteristiche intrinseche al sistema ferroviario hanno favorito la realizzazione di grandi opere, come il tunnel sotto la Manica (costituito da due gallerie principali di 50 km ed una galleria ausiliaria), il tunnel sottomarino del Seikan, in Giappone, lungo 53,8 km ed il traforo di base del San Gottardo costituito da due gallerie di 57 km, completato recentemente. Veicoli su rotaia Veicoli su rotaia Veicoli su rotaia Gli elementi che costituiscono la ferrovia • Il binario: è costituito da due rotaie appoggiate su traverse (di legno trattato, di cemento o acciaio), ancorate a queste per mezzo di attacchi; le traverse appoggiano sulla massicciata o ballast ,costituita da pietrisco, o su piattaforme di cemento provviste di elementi elastici per limitare le vibrazioni. • Le rotaie sono unificate esistono di vari tipi : es. 36 kg/m, 50 kg/m, 60 kg/m. Le rotaie sono costituite da spezzoni uniti da giunti di dilatazione, ora vengono saldate, grazie ai nuovi attacchi ed al maggiore numero di traverse. Le rotaie ferroviarie sono a fungo, quelle tranviarie a gola. L’insieme di rotaie e traverse è comunemente chiamato armamento (ferroviario). Il filo superiore della rotaia viene normalmente chiamato piano del ferro (p.d.f.) • Lo scartamento : distanza tra le facce interne delle rotaie Scartamento normale 1435 mm (tranviario italiano 1445 mm), ridotto 1000 mm (950 mm in Italia), 1067 mm, largo 1520 mm (Russia), 1600 mm (Brasile, Irlanda), 1668 mm (Spagna, Portogallo). Lo scartamento normale riguarda circa il 60% della rete mondiali. Vi sono treni a scartamento variabile (es, Talgo RD) • Lo scambio o deviatoio è l’elemento che consente il cambio di direzione, presenta in corrispondenza del cuore una discontinuità (spazio nocivo). Sulle linee ad alta velocità gli scambi sono a ‘cuore mobile’. • La sagoma limite: è l’ingombro massimo entro cui deve rimanere il rotabile; con lo scartamento è l’elemento base per consentire l’interoperabilità dei rotabili (in Europa fiche UIC 505- sagoma limite dinamica). Veicoli su rotaia Veicoli su rotaia Veicoli su rotaia Binario e sala ferroviaria Veicoli su rotaia Ruota ferroviaria Veicoli su rotaia Sistemi di trazione Esistono due sistemi di trazione: elettrica e termica (vapore, diesel, turbina a gas). Il treno è nato grazie alla macchina a vapore; oggi questo tipo di trazione si trova in alcuni servizi turistici. Fino a poche decine d’anni fa in India e in Cina venivano ancora prodotte locomotive a vapore. La scelta del sistema di trazione è normalmente funzione del traffico. La trazione elettrica è nata sperimentalmente negli USA nel 1869 e dieci anni dopo in Germania. Inizialmente venne utilizzata per i sistemi urbani, con tensione di 500-600 V in corrente continua (tranvie di Parigi e Berlino nel 1881 e metropolitana di Londra 1890). All’inizio del ‘900 venne sperimentata l’alimentazione in corrente alternata. In Italia nel 1902 vennero elettrificate in tensione alternata trifase le linee della Valtellina. Attualmente esistono nel mondo circa 220.000 km di linee elettrificate. La trazione elettrica consente di realizzare locomotive di elevata potenza (ai cerchioni),fino a 7 MW (su 4 assi). L’alimentazione può essere effettuata da linea di contatto aerea (monofilare o a catenaria) o da terza rotaia. Oggi esistono principalmente 4 sistemi di elettrificazione ferroviaria, due in alternata e due in continua: 1500 V cc, 3000 V cc, 15kV 16 2/3 Hz , 25kV 50 Hz L’elettrificazione urbana è a 600 V / 750 V cc (questa con alimentazione a terza rotaia è presente anche sulla rete ferroviaria inglese a sud di Londra). I valori di tensione sopra indicati sono nominali; la tensione alla linea di contatto varia tra un valore minimo e un valore massimo stabilito dalle norme (es. la IEC n. 38 indica per la corrente continua, variazioni di tensione - 33% + 20%). Le nuove linee ad alta velocità sono elettrificate in alternata (potenze elevate con minore numero di sottostazioni e migliore captazione, grazie alla linea di contatto più leggera). Ricordiamo che la potenza è data dal prodotto della tensione per la corrente (P=VI). Veicoli su rotaia I vantaggi della trazione elettrica si possono così sintetizzare: - Grande capacità di sovraccarico dei motori elettrici e quindi dei mezzi di trazione - Possibilità di installare a bordo potenze unitarie elevate - Elevate prestazioni in termini di accelerazione d’avviamento e di decelerazione di frenatura e quindi di velocità commerciale, elementi fondamentali nel trasporto urbano e suburbano a frequenti fermate - Elevate prestazioni in termini di massa dei singoli convogli e di velocità, caratteristiche importanti su linee acclivi, come quelle di valico - Elevate potenzialità nel traffico viaggiatori e merci e ad alta velocità (conseguenza dei punti precedenti - Possibilità di ricorrere nelle centrali elettriche a fonti energetiche diverse (es. energia idraulica) - Economia di esercizio - Assenza di gas di scarico, particolarmente nocivi nei percorsi in galleria - Riduzione della rumorosità . Veicoli su rotaia La trazione diesel ha avuto le prime applicazioni ferroviarie dopo il 1920. In Italia le prime automotrici (Littorine) sono apparse fra il 1920-1930. Inizialmente i mezzi erano di bassa potenza, con cambio meccanico ad ingranaggi di tipo automobilistico. Trasmissioni più diffuse: elettrica, idraulica La trasmissione elettrica, la più diffusa, consente la realizzazione di mezzi di trazione di elevata potenza dotati di motori elettrici. Le locomotive diesel-elettriche possono avere una potenza installata (riferita al motore diesel) superiore a 4 MW . La trazione diesel è molto diffusa al di fuori dell’Europa (dove la maggior parte delle linee è elettrificata). Su un parco mondiale di oltre 80.000 locomotive il 65% è a trazione diesel, di queste circa il 45% opera in Nord America (Stati Uniti e Canada). La trasmissione idraulica è diffusa nei mezzi leggeri e nelle locomotive fino a un massimo di 2 MW di potenza. Come motore termico a volte viene impiegata la turbina a gas (di solito turbine d’elicottero); grazie alla sua potenza massica superiore a quella di un motore diesel è possibile realizzare mezzi di trazione di potenza elevata, mantenendo limitata la massa per asse. Tra il 1970 e il 1980 in Francia sono stati realizzati dei treni automotori a turbina a gas (turbotreni), per collegamenti intercity; turbotreni sono stati forniti dall’industria francese negli Stati Uniti, in Iran e in Egitto. Veicoli su rotaia Il progetto di un rotabile ferroviario Elementi che condizionano il progetto: -Lo scartamento della rete -La sagoma limite -.Le Norme di riferimento (unificazione, interoperabilità - STI) -Le caratteristiche della linea/rete: massa massima per asse , tracciato (curve, pendenze, traghettamento,ecc.) -Il sistema di trazione -Il sistema di frenatura -Compatibilità coi rotabili esistenti (accoppiamenti meccanici, elettrici, ecc.) -Condizioni climatiche Veicoli su rotaia . Tram-Treno Avanto SNCF Veicoli su rotaia Classificazione dei rotabili Si distinguono in trainanti (locomotive) e trainati (materiale rimorchiato). Il materiale rimorchiato si suddivide in veicoli per il trasporto di persone (carrozze o vetture ad uno o a due piani) e per il trasporto merci (carri di varia tipologia: pianali per trasporto containers, chiusi a pareti scorrevoli, cisterna, frigorifero, tramoggia, per trasporto automobili, ecc.). La maggior parte del materiale rimorchiato è dotata di carrelli a due assi, esistono anche carri merci a due assi. Vi sono delle vetture passeggeri dotate di cabina di guida ad un’estremità (vetture semipilota) che consentono dei servizi navetta o push-pull. Le locomotive si distinguono per il tipo di trazione (elettrica, termica). Le locomotive di produzione. più recente sono e 4 e a 6 assi motori, normalmente sono dotate di 2 carrelli a due o a tre assi o di 3 carrelli a due assi. Le locomotive da manovra possono essere anche ad assi rigidi (a due e a tre assi). La potenza nominale o continuativa di una locomotiva elettrica è quella misurata all’uscita degli alberi dei motori elettrici.
Recommended publications
  • AGV FULL SPEED AHEAD INTO the 21ST CENTURY in the 21St Century, Very High Speed Rail Is Emerging As a Leading Means of Travel for Distances of up to 1000Km
    AGV FULL SPEED AHEAD INTO THE 21ST CENTURY In the 21st century, very high speed rail is emerging as a leading means of travel for distances of up to 1000km. The AGV in final assembly in our La Rochelle facility: placing the lead car on bogies ALSTOM’S 21ST CENTURY RESPONSE INTERNATIONAL OPPORTUNITY KNOCKS AGV, INNOVATION WITH A CLEAR PURPOSE Clean-running very high speed rail offers clear economic and The AGV is designed for the world’s expanding market in very high environmental advantages over fossil-fuel powered transportation. speed rail. It allows you to carry out daily operations at 360 km/h in total It also guarantees much greater safety and security along with high safety, while providing passengers with a broad new range of onboard operational flexibility: a high speed fleet can be easily configured and amenities. reconfigured in its operator’s service image, whether it is being acquired With responsible energy consumption a key considera- to create a new rail service or to complement or compete with rail and The single-deck AGV, along with the double-deck TGV Duplex, bring tion in transportation, very high speed rail is emerging airline operations. operators flexibility and capacity on their national or international itineraries. Solidly dependable, the AGV delivers life-long superior as a serious contender for market-leading positions in Major technological advances in rail are helping to open these new performance (15% lower energy consumption over competition) while business prospects. As new national and international opportunities assuring lower train ownership costs from initial investment through the competition between rail, road and air over distances arise, such advances will enable you to define the best direction for your operating and maintenance.
    [Show full text]
  • Pioneering the Application of High Speed Rail Express Trainsets in the United States
    Parsons Brinckerhoff 2010 William Barclay Parsons Fellowship Monograph 26 Pioneering the Application of High Speed Rail Express Trainsets in the United States Fellow: Francis P. Banko Professional Associate Principal Project Manager Lead Investigator: Jackson H. Xue Rail Vehicle Engineer December 2012 136763_Cover.indd 1 3/22/13 7:38 AM 136763_Cover.indd 1 3/22/13 7:38 AM Parsons Brinckerhoff 2010 William Barclay Parsons Fellowship Monograph 26 Pioneering the Application of High Speed Rail Express Trainsets in the United States Fellow: Francis P. Banko Professional Associate Principal Project Manager Lead Investigator: Jackson H. Xue Rail Vehicle Engineer December 2012 First Printing 2013 Copyright © 2013, Parsons Brinckerhoff Group Inc. All rights reserved. No part of this work may be reproduced or used in any form or by any means—graphic, electronic, mechanical (including photocopying), recording, taping, or information or retrieval systems—without permission of the pub- lisher. Published by: Parsons Brinckerhoff Group Inc. One Penn Plaza New York, New York 10119 Graphics Database: V212 CONTENTS FOREWORD XV PREFACE XVII PART 1: INTRODUCTION 1 CHAPTER 1 INTRODUCTION TO THE RESEARCH 3 1.1 Unprecedented Support for High Speed Rail in the U.S. ....................3 1.2 Pioneering the Application of High Speed Rail Express Trainsets in the U.S. .....4 1.3 Research Objectives . 6 1.4 William Barclay Parsons Fellowship Participants ...........................6 1.5 Host Manufacturers and Operators......................................7 1.6 A Snapshot in Time .................................................10 CHAPTER 2 HOST MANUFACTURERS AND OPERATORS, THEIR PRODUCTS AND SERVICES 11 2.1 Overview . 11 2.2 Introduction to Host HSR Manufacturers . 11 2.3 Introduction to Host HSR Operators and Regulatory Agencies .
    [Show full text]
  • HO Scale Price List 2019
    GAUGEMASTER HO Scale price list 2019 Prices correct at time of going to press and are subject to change at any time Post free option is available for orders above a value of £15 to mainland UK addresses*. Non-mainland UK orders are posted at cost. Orders to non-EC destinations are VAT free. *Except orders containing one or more items above a length of 600mm and below a total order value of £25. Order conforming to this exception will be charged carriage at cost (not to exceed £4.95) Gaugemaster Controls Ltd Gaugemaster House Ford Road Arundel West Sussex BN18 0BN Tel - (01903) 884321 Fax - (01903) 884377 [email protected] [email protected] [email protected] Printed: 06/09/2019 KEY TO PRICE LISTS The following legends appear at the front of the Product Name for certain entries: * : New Item not yet available # : Not in production, stock available #D# : Discontinued, few remaining #P# : New Item, limited availability www.gaugemaster.com Registered in England No: 2714470. Registered Office: Gaugemaster House, Ford Road, Arundel, West Sussex, BN18 0BN. Directors: R K Taylor, D J Taylor. Bankers: Royal Bank of Scotland PLC, South Street, Chichester, West Sussex, England. Sort Code: 16-16-20 Account No: 11318851 VAT reg: 587 8089 71 1 Contents Atlas 3 Magazines/Books 38 Atlas O 5 Marklin 38 Bachmann 5 Marklin Club 42 Busch 5 Mehano 43 Cararama 8 Merten 43 Dapol 9 Model Power 43 Dapol Kits 9 Modelcraft 43 DCC Concepts 9 MRC 44 Deluxe Materials 11 myWorld 44 DM Toys 11 Noch 44 Electrotren 11 Oxford Diecast 53 Faller 12
    [Show full text]
  • Finansijski Rasteretiti Privredu ISSN 0350-5340 Godina LVI Broj 1 Januar 2020
    Predsjednik PKCG, Vlastimir Golubović Finansijski rasteretiti privredu ISSN 0350-5340 Godina LVI Broj 1 Januar 2020. Broj ISSN 0350-5340 Godina LVI Dr Zoran Vukčević Sanja Ćalasan Dragan Turčinović Investiciono - razvojni fond Pivara Trebjesa Tunik Milijardu eura "Trebjesin" pivski Eko kapi plasirali u razvoj pečat prepoznatljiv iz blaga privrede u svijetu prirode Na osnovu člana 8 Pravilnika o nagradama Privredne komore Crne Gore, objavljuje se KONKURS ZA DODJELU NAGRADA PRIVREDNE KOMORE CRNE GORE ZA 2019. GODINU Nagrade se dodjeljuju u sljedećim kategorijama: 1. Nagrada za uspješno poslovanje (članice Komore) 2. Nagrada za društvenu odgovornost (članice Komore) 3. Nagrada za inovativnost (članice Komore, pojedinci ili grupe) 4. Nagrada za unapređenje menadžmenta (članice Komore, pojedinci) POZIVAMO! Članice Komore, organe Komore, odbore udruženja i druge oblike organizovanja u Komori, privredne asocijacije, institucije i pojedince da daju predloge za nagrade Komore za 2019. godinu. Nagrade će biti dodijeljene na Dan Privredne komore Crne Gore, 21. aprila 2020. godine. Detaljnija objašnjenja, kriterijumi i upitnici dostupni su na internet adresi: www.privrednakomora.me Predlozi se dostavljaju do 16. marta 2020. godine, u pisanoj formi, na adresu: Privredna komora Crne Gore, ul. Novaka Miloševa 29/II, Podgorica 81000, faksom: 020 230 493 ili e-mailom: [email protected] Kontakt telefon: 020 230 545 IMPRESUM 3 Broj 1 Januar 2020. Sadržaj Na osnovu člana 8 Pravilnika o nagradama Privredne komore Crne Gore, objavljuje se KONKURS ZA DODJELU NAGRADA PRIVREDNE KOMORE CRNE GORE ZA 2019. GODINU Izdavač: Nagrade se dodjeljuju u sljedećim kategorijama: Privredna komora Crne Gore Novaka Miloševa 29/II Podgorica 81000, Crna Gora 1. Nagrada za uspješno poslovanje Tel: +382 20 230 545 (članice Komore) e-mail: [email protected] http://www.privrednakomora.me 2.
    [Show full text]
  • Usability of the Sip Protocol Within Smart Home Solutions
    4 55 Jakub Hrabovsky - Pavel Segec - Peter Paluch Peter Czimmermann - Stefan Pesko - Jan Cerny Marek Moravcik - Jozef Papan USABILITY OF THE SIP PROTOCOL UNIFORM WORKLOAD DISTRIBUTION WITHIN SMART HOME SOLUTIONS PROBLEMS 13 59 Ivan Cimrak - Katarina Bachrata - Hynek Bachraty Lubos Kucera, Igor Gajdac, Martin Mruzek Iveta Jancigova - Renata Tothova - Martin Busik SIMULATION OF PARAMETERS Martin Slavik - Markus Gusenbauer OBJECT-IN-FLUID FRAMEWORK INFLUENCING THE ELECTRIC VEHICLE IN MODELING OF BLOOD FLOW RANGE IN MICROFLUIDIC CHANNELS 64 21 Peter Pechac - Milan Saga - Ardeshir Guran Jaroslav Janacek - Peter Marton - Matyas Koniorczyk Leszek Radziszewski THE COLUMN GENERATION AND TRAIN IMPLEMENTATION OF MEMETIC CREW SCHEDULING ALGORITHMS INTO STRUCTURAL OPTIMIZATION 28 Martina Blaskova - Rudolf Blasko Stanislaw Borkowski - Joanna Rosak-Szyrocka 70 SEARCHING CORRELATIONS BETWEEN Marek Bruna - Dana Bolibruchova - Petr Prochazka COMMUNICATION AND MOTIVATION NUMERICAL SIMULATION OF MELT FILTRATION PROCESS 36 Michal Varmus - Viliam Lendel - Jakub Soviar Josef Vodak - Milan Kubina 75 SPORTS SPONSORING – PART Radoslav Konar - Marek Patek - Michal Sventek OF CORPORATE STRATEGY NUMERICAL SIMULATION OF RESIDUAL STRESSES AND DISTORTIONS 42 OF T-JOINT WELDING FOR BRIDGE Viliam Lendel - Stefan Hittmar - Wlodzimierz Sroka CONSTRUCTION APPLICATION Eva Siantova IDENTIFICATION OF THE MAIN ASPECTS OF INNOVATION MANAGEMENT 81 AND THE PROBLEMS ARISING Alexander Rengevic – Darina Kumicakova FROM THEIR MISUNDERSTANDING NEW POSSIBILITIES OF ROBOT ARM MOTION SIMULATION
    [Show full text]
  • Case of High-Speed Ground Transportation Systems
    MANAGING PROJECTS WITH STRONG TECHNOLOGICAL RUPTURE Case of High-Speed Ground Transportation Systems THESIS N° 2568 (2002) PRESENTED AT THE CIVIL ENGINEERING DEPARTMENT SWISS FEDERAL INSTITUTE OF TECHNOLOGY - LAUSANNE BY GUILLAUME DE TILIÈRE Civil Engineer, EPFL French nationality Approved by the proposition of the jury: Prof. F.L. Perret, thesis director Prof. M. Hirt, jury director Prof. D. Foray Prof. J.Ph. Deschamps Prof. M. Finger Prof. M. Bassand Lausanne, EPFL 2002 MANAGING PROJECTS WITH STRONG TECHNOLOGICAL RUPTURE Case of High-Speed Ground Transportation Systems THÈSE N° 2568 (2002) PRÉSENTÉE AU DÉPARTEMENT DE GÉNIE CIVIL ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE PAR GUILLAUME DE TILIÈRE Ingénieur Génie-Civil diplômé EPFL de nationalité française acceptée sur proposition du jury : Prof. F.L. Perret, directeur de thèse Prof. M. Hirt, rapporteur Prof. D. Foray, corapporteur Prof. J.Ph. Deschamps, corapporteur Prof. M. Finger, corapporteur Prof. M. Bassand, corapporteur Document approuvé lors de l’examen oral le 19.04.2002 Abstract 2 ACKNOWLEDGEMENTS I would like to extend my deep gratitude to Prof. Francis-Luc Perret, my Supervisory Committee Chairman, as well as to Prof. Dominique Foray for their enthusiasm, encouragements and guidance. I also express my gratitude to the members of my Committee, Prof. Jean-Philippe Deschamps, Prof. Mathias Finger, Prof. Michel Bassand and Prof. Manfred Hirt for their comments and remarks. They have contributed to making this multidisciplinary approach more pertinent. I would also like to extend my gratitude to our Research Institute, the LEM, the support of which has been very helpful. Concerning the exchange program at ITS -Berkeley (2000-2001), I would like to acknowledge the support of the Swiss National Science Foundation.
    [Show full text]
  • High Speed Rail and Sustainability High Speed Rail & Sustainability
    High Speed Rail and Sustainability High Speed Rail & Sustainability Report Paris, November 2011 2 High Speed Rail and Sustainability Author Aurélie Jehanno Co-authors Derek Palmer Ceri James This report has been produced by Systra with TRL and with the support of the Deutsche Bahn Environment Centre, for UIC, High Speed and Sustainable Development Departments. Project team: Aurélie Jehanno Derek Palmer Cen James Michel Leboeuf Iñaki Barrón Jean-Pierre Pradayrol Henning Schwarz Margrethe Sagevik Naoto Yanase Begoña Cabo 3 Table of contnts FOREWORD 1 MANAGEMENT SUMMARY 6 2 INTRODUCTION 7 3 HIGH SPEED RAIL – AT A GLANCE 9 4 HIGH SPEED RAIL IS A SUSTAINABLE MODE OF TRANSPORT 13 4.1 HSR has a lower impact on climate and environment than all other compatible transport modes 13 4.1.1 Energy consumption and GHG emissions 13 4.1.2 Air pollution 21 4.1.3 Noise and Vibration 22 4.1.4 Resource efficiency (material use) 27 4.1.5 Biodiversity 28 4.1.6 Visual insertion 29 4.1.7 Land use 30 4.2 HSR is the safest transport mode 31 4.3 HSR relieves roads and reduces congestion 32 5 HIGH SPEED RAIL IS AN ATTRACTIVE TRANSPORT MODE 38 5.1 HSR increases quality and productive time 38 5.2 HSR provides reliable and comfort mobility 39 5.3 HSR improves access to mobility 43 6 HIGH SPEED RAIL CONTRIBUTES TO SUSTAINABLE ECONOMIC DEVELOPMENT 47 6.1 HSR provides macro economic advantages despite its high investment costs 47 6.2 Rail and HSR has lower external costs than competitive modes 49 6.3 HSR contributes to local development 52 6.4 HSR provides green jobs 57
    [Show full text]
  • Global Competitiveness in the Rail and Transit Industry
    Global Competitiveness in the Rail and Transit Industry Michael Renner and Gary Gardner Global Competitiveness in the Rail and Transit Industry Michael Renner and Gary Gardner September 2010 2 GLOBAL COMPETITIVENESS IN THE RAIL AND TRANSIT INDUSTRY © 2010 Worldwatch Institute, Washington, D.C. Printed on paper that is 50 percent recycled, 30 percent post-consumer waste, process chlorine free. The views expressed are those of the authors and do not necessarily represent those of the Worldwatch Institute; of its directors, officers, or staff; or of its funding organizations. Editor: Lisa Mastny Designer: Lyle Rosbotham Table of Contents 3 Table of Contents Summary . 7 U.S. Rail and Transit in Context . 9 The Global Rail Market . 11 Selected National Experiences: Europe and East Asia . 16 Implications for the United States . 27 Endnotes . 30 Figures and Tables Figure 1. National Investment in Rail Infrastructure, Selected Countries, 2008 . 11 Figure 2. Leading Global Rail Equipment Manufacturers, Share of World Market, 2001 . 15 Figure 3. Leading Global Rail Equipment Manufacturers, by Sales, 2009 . 15 Table 1. Global Passenger and Freight Rail Market, by Region and Major Industry Segment, 2005–2007 Average . 12 Table 2. Annual Rolling Stock Markets by Region, Current and Projections to 2016 . 13 Table 3. Profiles of Major Rail Vehicle Manufacturers . 14 Table 4. Employment at Leading Rail Vehicle Manufacturing Companies . 15 Table 5. Estimate of Needed European Urban Rail Investments over a 20-Year Period . 17 Table 6. German Rail Manufacturing Industry Sales, 2006–2009 . 18 Table 7. Germany’s Annual Investments in Urban Mass Transit, 2009 . 19 Table 8.
    [Show full text]
  • Trainset Presentation
    4/15/2015 California High-Speed Rail Common Level Boarding and Tier III Trainsets Peninsula Corridor Joint Powers Board Level Boarding Workshop May 2015 1 Advantages of Common Level Boarding • Improved operations at common stations (TTC, Millbrae, Diridon) • Improved passenger circulation • Improved safety • Improved Reliability and Recovery Capabilities • Significantly reduced infrastructure costs • Improved system operations • Accelerated schedule for Level Boarding at all stations 2 1 4/15/2015 Goals for Commuter Trainset RFP • Ensure that Caltrain Vehicle Procurement does not preclude future Common Level Boarding Options • Ensure that capacity of an electrified Caltrain system is maximized • Identify strategies that maintain or enhance Caltrain capacity during transition to high level boarding • Develop transitional strategies for future integrated service 3 Request for Expressions of Interest • In January 2015 a REOI was released to identify and receive feedback from firms interested in competing to design, build, and maintain the high-speed rail trainsets for use on the California High-Speed Rail System. • The Authority’s order will include a base order and options up to 95 trainsets. 4 2 4/15/2015 Technical Requirements - Trainsets • Single level EMU: • Capable of operating in revenue service at speeds up to 354 km/h (220 mph), and • Based on a service-proven trainset in use in commercial high speed passenger service at least 300 km/h (186 mph) for a minimum of five years. 5 Technical Requirements - Trainsets • Width between 3.2 m (10.5 feet) to 3.4 m (11.17 feet) • Maximum Length of 205 m (672.6 feet). • Minimum of 450 passenger seats • Provide level boarding with a platform height above top of rail of 1219 mm – 1295 mm (48 inches – 51 inches) 6 3 4/15/2015 Submittal Information • Nine Expressions of Interest (EOI) have been received thus far.
    [Show full text]
  • Unit VI Superconductivity JIT Nashik Contents
    Unit VI Superconductivity JIT Nashik Contents 1 Superconductivity 1 1.1 Classification ............................................. 1 1.2 Elementary properties of superconductors ............................... 2 1.2.1 Zero electrical DC resistance ................................. 2 1.2.2 Superconducting phase transition ............................... 3 1.2.3 Meissner effect ........................................ 3 1.2.4 London moment ....................................... 4 1.3 History of superconductivity ...................................... 4 1.3.1 London theory ........................................ 5 1.3.2 Conventional theories (1950s) ................................ 5 1.3.3 Further history ........................................ 5 1.4 High-temperature superconductivity .................................. 6 1.5 Applications .............................................. 6 1.6 Nobel Prizes for superconductivity .................................. 7 1.7 See also ................................................ 7 1.8 References ............................................... 8 1.9 Further reading ............................................ 10 1.10 External links ............................................. 10 2 Meissner effect 11 2.1 Explanation .............................................. 11 2.2 Perfect diamagnetism ......................................... 12 2.3 Consequences ............................................. 12 2.4 Paradigm for the Higgs mechanism .................................. 12 2.5 See also ...............................................
    [Show full text]
  • How Acela Trainsets Are Made: Inside the Alstom Facility Written by William C
    VOLUME 50 NUMBER 9 DISTRICT 2 - CHAPTER WEBSITE: WWW.NRHS1.ORG SEPTEMBER 2019 HOW ACELA TRAINSETS ARE MADE: INSIDE THE ALSTOM FACILITY WRITTEN BY WILLIAM C. VANTUONO, EDITOR-IN-CHIEF, RAILWAY AGE RAILWAY AGE AT THE ALSTOM MANUFACTURING FACILITY, HORNELL, N.Y., JUNE 12, 2019: Alstom Transportation is building the next generation of high-speed trainsets for Amtrak‘s Northeast Corridor Acela Express service. The new equipment is scheduled to enter service sometime in 2021 between Washington, D.C. and Boston. Amtrak says that this equipment will provide a smoother and more comfortable ride than what it is replacing. Each trainset will have 378 seats, with such amenities as personal power outlets, USB ports and adjustable reading lights. There will be an onboard information system providing real-time information such as location, train speed and conductor announcements. Part of the full ADA accessibility will be spacious restrooms with a 60-inch-diameter turning radius to accommodate people in wheelchairs. Amtrak will be implementing an advance seat reservation system. Food service is described as “contemporary, offering easy access and greater selection.” Twenty-eight of these trainsets are under construction, and Amtrak has created a microsite with photos and facts about the new trainsets. They are much lighter than the current equipment, with 17-metric-ton axle loads. The power cars are constructed of carbon steel; the coaches of aluminum. The trainsets meet FRA Tier III Passenger Equipment Safety Standards; Standards for Alternative Compliance and High-Speed Trainsets. Here is a close look at this equipment under construction. POWER CAR UNDER CONSTRUCTION.
    [Show full text]
  • Hyperloop, ¿El Transporte Del Futuro? Comparativa Y Análisis Dinámico
    HYPERLOOP, ¿EL TRANSPORTE DEL FUTURO? Jorge Martínez García COMPARATIVA Y 29 de junio de 2020 Tutores: ANÁLISIS DINÁMICO María Dolores Gómez Pulido Roberto Revilla Angulo Trabajo Final de Máster ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS UNIVERSIDAD POLITÉCNICA DE MADRID Máster Universitario en Ingeniería de Caminos, Canales, y Puertos Hyperloop, ¿el transporte del futuro? Comparativa y análisis dinámico Contenido Índice de Tablas ............................................................................................................................. 4 Índice de Figuras ............................................................................................................................ 5 1 Resumen ................................................................................................................................ 7 2 Agradecimientos .................................................................................................................... 8 3 Introducción .......................................................................................................................... 9 4 Estado del arte ..................................................................................................................... 10 4.1 Sistema de propulsión y suspensión ............................................................................ 12 4.2 Velocidad ..................................................................................................................... 15 4.3 Tamaño del
    [Show full text]