Veicoli Su Rotaia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
AGV FULL SPEED AHEAD INTO the 21ST CENTURY in the 21St Century, Very High Speed Rail Is Emerging As a Leading Means of Travel for Distances of up to 1000Km
AGV FULL SPEED AHEAD INTO THE 21ST CENTURY In the 21st century, very high speed rail is emerging as a leading means of travel for distances of up to 1000km. The AGV in final assembly in our La Rochelle facility: placing the lead car on bogies ALSTOM’S 21ST CENTURY RESPONSE INTERNATIONAL OPPORTUNITY KNOCKS AGV, INNOVATION WITH A CLEAR PURPOSE Clean-running very high speed rail offers clear economic and The AGV is designed for the world’s expanding market in very high environmental advantages over fossil-fuel powered transportation. speed rail. It allows you to carry out daily operations at 360 km/h in total It also guarantees much greater safety and security along with high safety, while providing passengers with a broad new range of onboard operational flexibility: a high speed fleet can be easily configured and amenities. reconfigured in its operator’s service image, whether it is being acquired With responsible energy consumption a key considera- to create a new rail service or to complement or compete with rail and The single-deck AGV, along with the double-deck TGV Duplex, bring tion in transportation, very high speed rail is emerging airline operations. operators flexibility and capacity on their national or international itineraries. Solidly dependable, the AGV delivers life-long superior as a serious contender for market-leading positions in Major technological advances in rail are helping to open these new performance (15% lower energy consumption over competition) while business prospects. As new national and international opportunities assuring lower train ownership costs from initial investment through the competition between rail, road and air over distances arise, such advances will enable you to define the best direction for your operating and maintenance. -
Pioneering the Application of High Speed Rail Express Trainsets in the United States
Parsons Brinckerhoff 2010 William Barclay Parsons Fellowship Monograph 26 Pioneering the Application of High Speed Rail Express Trainsets in the United States Fellow: Francis P. Banko Professional Associate Principal Project Manager Lead Investigator: Jackson H. Xue Rail Vehicle Engineer December 2012 136763_Cover.indd 1 3/22/13 7:38 AM 136763_Cover.indd 1 3/22/13 7:38 AM Parsons Brinckerhoff 2010 William Barclay Parsons Fellowship Monograph 26 Pioneering the Application of High Speed Rail Express Trainsets in the United States Fellow: Francis P. Banko Professional Associate Principal Project Manager Lead Investigator: Jackson H. Xue Rail Vehicle Engineer December 2012 First Printing 2013 Copyright © 2013, Parsons Brinckerhoff Group Inc. All rights reserved. No part of this work may be reproduced or used in any form or by any means—graphic, electronic, mechanical (including photocopying), recording, taping, or information or retrieval systems—without permission of the pub- lisher. Published by: Parsons Brinckerhoff Group Inc. One Penn Plaza New York, New York 10119 Graphics Database: V212 CONTENTS FOREWORD XV PREFACE XVII PART 1: INTRODUCTION 1 CHAPTER 1 INTRODUCTION TO THE RESEARCH 3 1.1 Unprecedented Support for High Speed Rail in the U.S. ....................3 1.2 Pioneering the Application of High Speed Rail Express Trainsets in the U.S. .....4 1.3 Research Objectives . 6 1.4 William Barclay Parsons Fellowship Participants ...........................6 1.5 Host Manufacturers and Operators......................................7 1.6 A Snapshot in Time .................................................10 CHAPTER 2 HOST MANUFACTURERS AND OPERATORS, THEIR PRODUCTS AND SERVICES 11 2.1 Overview . 11 2.2 Introduction to Host HSR Manufacturers . 11 2.3 Introduction to Host HSR Operators and Regulatory Agencies . -
HO Scale Price List 2019
GAUGEMASTER HO Scale price list 2019 Prices correct at time of going to press and are subject to change at any time Post free option is available for orders above a value of £15 to mainland UK addresses*. Non-mainland UK orders are posted at cost. Orders to non-EC destinations are VAT free. *Except orders containing one or more items above a length of 600mm and below a total order value of £25. Order conforming to this exception will be charged carriage at cost (not to exceed £4.95) Gaugemaster Controls Ltd Gaugemaster House Ford Road Arundel West Sussex BN18 0BN Tel - (01903) 884321 Fax - (01903) 884377 [email protected] [email protected] [email protected] Printed: 06/09/2019 KEY TO PRICE LISTS The following legends appear at the front of the Product Name for certain entries: * : New Item not yet available # : Not in production, stock available #D# : Discontinued, few remaining #P# : New Item, limited availability www.gaugemaster.com Registered in England No: 2714470. Registered Office: Gaugemaster House, Ford Road, Arundel, West Sussex, BN18 0BN. Directors: R K Taylor, D J Taylor. Bankers: Royal Bank of Scotland PLC, South Street, Chichester, West Sussex, England. Sort Code: 16-16-20 Account No: 11318851 VAT reg: 587 8089 71 1 Contents Atlas 3 Magazines/Books 38 Atlas O 5 Marklin 38 Bachmann 5 Marklin Club 42 Busch 5 Mehano 43 Cararama 8 Merten 43 Dapol 9 Model Power 43 Dapol Kits 9 Modelcraft 43 DCC Concepts 9 MRC 44 Deluxe Materials 11 myWorld 44 DM Toys 11 Noch 44 Electrotren 11 Oxford Diecast 53 Faller 12 -
Finansijski Rasteretiti Privredu ISSN 0350-5340 Godina LVI Broj 1 Januar 2020
Predsjednik PKCG, Vlastimir Golubović Finansijski rasteretiti privredu ISSN 0350-5340 Godina LVI Broj 1 Januar 2020. Broj ISSN 0350-5340 Godina LVI Dr Zoran Vukčević Sanja Ćalasan Dragan Turčinović Investiciono - razvojni fond Pivara Trebjesa Tunik Milijardu eura "Trebjesin" pivski Eko kapi plasirali u razvoj pečat prepoznatljiv iz blaga privrede u svijetu prirode Na osnovu člana 8 Pravilnika o nagradama Privredne komore Crne Gore, objavljuje se KONKURS ZA DODJELU NAGRADA PRIVREDNE KOMORE CRNE GORE ZA 2019. GODINU Nagrade se dodjeljuju u sljedećim kategorijama: 1. Nagrada za uspješno poslovanje (članice Komore) 2. Nagrada za društvenu odgovornost (članice Komore) 3. Nagrada za inovativnost (članice Komore, pojedinci ili grupe) 4. Nagrada za unapređenje menadžmenta (članice Komore, pojedinci) POZIVAMO! Članice Komore, organe Komore, odbore udruženja i druge oblike organizovanja u Komori, privredne asocijacije, institucije i pojedince da daju predloge za nagrade Komore za 2019. godinu. Nagrade će biti dodijeljene na Dan Privredne komore Crne Gore, 21. aprila 2020. godine. Detaljnija objašnjenja, kriterijumi i upitnici dostupni su na internet adresi: www.privrednakomora.me Predlozi se dostavljaju do 16. marta 2020. godine, u pisanoj formi, na adresu: Privredna komora Crne Gore, ul. Novaka Miloševa 29/II, Podgorica 81000, faksom: 020 230 493 ili e-mailom: [email protected] Kontakt telefon: 020 230 545 IMPRESUM 3 Broj 1 Januar 2020. Sadržaj Na osnovu člana 8 Pravilnika o nagradama Privredne komore Crne Gore, objavljuje se KONKURS ZA DODJELU NAGRADA PRIVREDNE KOMORE CRNE GORE ZA 2019. GODINU Izdavač: Nagrade se dodjeljuju u sljedećim kategorijama: Privredna komora Crne Gore Novaka Miloševa 29/II Podgorica 81000, Crna Gora 1. Nagrada za uspješno poslovanje Tel: +382 20 230 545 (članice Komore) e-mail: [email protected] http://www.privrednakomora.me 2. -
Usability of the Sip Protocol Within Smart Home Solutions
4 55 Jakub Hrabovsky - Pavel Segec - Peter Paluch Peter Czimmermann - Stefan Pesko - Jan Cerny Marek Moravcik - Jozef Papan USABILITY OF THE SIP PROTOCOL UNIFORM WORKLOAD DISTRIBUTION WITHIN SMART HOME SOLUTIONS PROBLEMS 13 59 Ivan Cimrak - Katarina Bachrata - Hynek Bachraty Lubos Kucera, Igor Gajdac, Martin Mruzek Iveta Jancigova - Renata Tothova - Martin Busik SIMULATION OF PARAMETERS Martin Slavik - Markus Gusenbauer OBJECT-IN-FLUID FRAMEWORK INFLUENCING THE ELECTRIC VEHICLE IN MODELING OF BLOOD FLOW RANGE IN MICROFLUIDIC CHANNELS 64 21 Peter Pechac - Milan Saga - Ardeshir Guran Jaroslav Janacek - Peter Marton - Matyas Koniorczyk Leszek Radziszewski THE COLUMN GENERATION AND TRAIN IMPLEMENTATION OF MEMETIC CREW SCHEDULING ALGORITHMS INTO STRUCTURAL OPTIMIZATION 28 Martina Blaskova - Rudolf Blasko Stanislaw Borkowski - Joanna Rosak-Szyrocka 70 SEARCHING CORRELATIONS BETWEEN Marek Bruna - Dana Bolibruchova - Petr Prochazka COMMUNICATION AND MOTIVATION NUMERICAL SIMULATION OF MELT FILTRATION PROCESS 36 Michal Varmus - Viliam Lendel - Jakub Soviar Josef Vodak - Milan Kubina 75 SPORTS SPONSORING – PART Radoslav Konar - Marek Patek - Michal Sventek OF CORPORATE STRATEGY NUMERICAL SIMULATION OF RESIDUAL STRESSES AND DISTORTIONS 42 OF T-JOINT WELDING FOR BRIDGE Viliam Lendel - Stefan Hittmar - Wlodzimierz Sroka CONSTRUCTION APPLICATION Eva Siantova IDENTIFICATION OF THE MAIN ASPECTS OF INNOVATION MANAGEMENT 81 AND THE PROBLEMS ARISING Alexander Rengevic – Darina Kumicakova FROM THEIR MISUNDERSTANDING NEW POSSIBILITIES OF ROBOT ARM MOTION SIMULATION -
Case of High-Speed Ground Transportation Systems
MANAGING PROJECTS WITH STRONG TECHNOLOGICAL RUPTURE Case of High-Speed Ground Transportation Systems THESIS N° 2568 (2002) PRESENTED AT THE CIVIL ENGINEERING DEPARTMENT SWISS FEDERAL INSTITUTE OF TECHNOLOGY - LAUSANNE BY GUILLAUME DE TILIÈRE Civil Engineer, EPFL French nationality Approved by the proposition of the jury: Prof. F.L. Perret, thesis director Prof. M. Hirt, jury director Prof. D. Foray Prof. J.Ph. Deschamps Prof. M. Finger Prof. M. Bassand Lausanne, EPFL 2002 MANAGING PROJECTS WITH STRONG TECHNOLOGICAL RUPTURE Case of High-Speed Ground Transportation Systems THÈSE N° 2568 (2002) PRÉSENTÉE AU DÉPARTEMENT DE GÉNIE CIVIL ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE PAR GUILLAUME DE TILIÈRE Ingénieur Génie-Civil diplômé EPFL de nationalité française acceptée sur proposition du jury : Prof. F.L. Perret, directeur de thèse Prof. M. Hirt, rapporteur Prof. D. Foray, corapporteur Prof. J.Ph. Deschamps, corapporteur Prof. M. Finger, corapporteur Prof. M. Bassand, corapporteur Document approuvé lors de l’examen oral le 19.04.2002 Abstract 2 ACKNOWLEDGEMENTS I would like to extend my deep gratitude to Prof. Francis-Luc Perret, my Supervisory Committee Chairman, as well as to Prof. Dominique Foray for their enthusiasm, encouragements and guidance. I also express my gratitude to the members of my Committee, Prof. Jean-Philippe Deschamps, Prof. Mathias Finger, Prof. Michel Bassand and Prof. Manfred Hirt for their comments and remarks. They have contributed to making this multidisciplinary approach more pertinent. I would also like to extend my gratitude to our Research Institute, the LEM, the support of which has been very helpful. Concerning the exchange program at ITS -Berkeley (2000-2001), I would like to acknowledge the support of the Swiss National Science Foundation. -
High Speed Rail and Sustainability High Speed Rail & Sustainability
High Speed Rail and Sustainability High Speed Rail & Sustainability Report Paris, November 2011 2 High Speed Rail and Sustainability Author Aurélie Jehanno Co-authors Derek Palmer Ceri James This report has been produced by Systra with TRL and with the support of the Deutsche Bahn Environment Centre, for UIC, High Speed and Sustainable Development Departments. Project team: Aurélie Jehanno Derek Palmer Cen James Michel Leboeuf Iñaki Barrón Jean-Pierre Pradayrol Henning Schwarz Margrethe Sagevik Naoto Yanase Begoña Cabo 3 Table of contnts FOREWORD 1 MANAGEMENT SUMMARY 6 2 INTRODUCTION 7 3 HIGH SPEED RAIL – AT A GLANCE 9 4 HIGH SPEED RAIL IS A SUSTAINABLE MODE OF TRANSPORT 13 4.1 HSR has a lower impact on climate and environment than all other compatible transport modes 13 4.1.1 Energy consumption and GHG emissions 13 4.1.2 Air pollution 21 4.1.3 Noise and Vibration 22 4.1.4 Resource efficiency (material use) 27 4.1.5 Biodiversity 28 4.1.6 Visual insertion 29 4.1.7 Land use 30 4.2 HSR is the safest transport mode 31 4.3 HSR relieves roads and reduces congestion 32 5 HIGH SPEED RAIL IS AN ATTRACTIVE TRANSPORT MODE 38 5.1 HSR increases quality and productive time 38 5.2 HSR provides reliable and comfort mobility 39 5.3 HSR improves access to mobility 43 6 HIGH SPEED RAIL CONTRIBUTES TO SUSTAINABLE ECONOMIC DEVELOPMENT 47 6.1 HSR provides macro economic advantages despite its high investment costs 47 6.2 Rail and HSR has lower external costs than competitive modes 49 6.3 HSR contributes to local development 52 6.4 HSR provides green jobs 57 -
Global Competitiveness in the Rail and Transit Industry
Global Competitiveness in the Rail and Transit Industry Michael Renner and Gary Gardner Global Competitiveness in the Rail and Transit Industry Michael Renner and Gary Gardner September 2010 2 GLOBAL COMPETITIVENESS IN THE RAIL AND TRANSIT INDUSTRY © 2010 Worldwatch Institute, Washington, D.C. Printed on paper that is 50 percent recycled, 30 percent post-consumer waste, process chlorine free. The views expressed are those of the authors and do not necessarily represent those of the Worldwatch Institute; of its directors, officers, or staff; or of its funding organizations. Editor: Lisa Mastny Designer: Lyle Rosbotham Table of Contents 3 Table of Contents Summary . 7 U.S. Rail and Transit in Context . 9 The Global Rail Market . 11 Selected National Experiences: Europe and East Asia . 16 Implications for the United States . 27 Endnotes . 30 Figures and Tables Figure 1. National Investment in Rail Infrastructure, Selected Countries, 2008 . 11 Figure 2. Leading Global Rail Equipment Manufacturers, Share of World Market, 2001 . 15 Figure 3. Leading Global Rail Equipment Manufacturers, by Sales, 2009 . 15 Table 1. Global Passenger and Freight Rail Market, by Region and Major Industry Segment, 2005–2007 Average . 12 Table 2. Annual Rolling Stock Markets by Region, Current and Projections to 2016 . 13 Table 3. Profiles of Major Rail Vehicle Manufacturers . 14 Table 4. Employment at Leading Rail Vehicle Manufacturing Companies . 15 Table 5. Estimate of Needed European Urban Rail Investments over a 20-Year Period . 17 Table 6. German Rail Manufacturing Industry Sales, 2006–2009 . 18 Table 7. Germany’s Annual Investments in Urban Mass Transit, 2009 . 19 Table 8. -
Trainset Presentation
4/15/2015 California High-Speed Rail Common Level Boarding and Tier III Trainsets Peninsula Corridor Joint Powers Board Level Boarding Workshop May 2015 1 Advantages of Common Level Boarding • Improved operations at common stations (TTC, Millbrae, Diridon) • Improved passenger circulation • Improved safety • Improved Reliability and Recovery Capabilities • Significantly reduced infrastructure costs • Improved system operations • Accelerated schedule for Level Boarding at all stations 2 1 4/15/2015 Goals for Commuter Trainset RFP • Ensure that Caltrain Vehicle Procurement does not preclude future Common Level Boarding Options • Ensure that capacity of an electrified Caltrain system is maximized • Identify strategies that maintain or enhance Caltrain capacity during transition to high level boarding • Develop transitional strategies for future integrated service 3 Request for Expressions of Interest • In January 2015 a REOI was released to identify and receive feedback from firms interested in competing to design, build, and maintain the high-speed rail trainsets for use on the California High-Speed Rail System. • The Authority’s order will include a base order and options up to 95 trainsets. 4 2 4/15/2015 Technical Requirements - Trainsets • Single level EMU: • Capable of operating in revenue service at speeds up to 354 km/h (220 mph), and • Based on a service-proven trainset in use in commercial high speed passenger service at least 300 km/h (186 mph) for a minimum of five years. 5 Technical Requirements - Trainsets • Width between 3.2 m (10.5 feet) to 3.4 m (11.17 feet) • Maximum Length of 205 m (672.6 feet). • Minimum of 450 passenger seats • Provide level boarding with a platform height above top of rail of 1219 mm – 1295 mm (48 inches – 51 inches) 6 3 4/15/2015 Submittal Information • Nine Expressions of Interest (EOI) have been received thus far. -
Unit VI Superconductivity JIT Nashik Contents
Unit VI Superconductivity JIT Nashik Contents 1 Superconductivity 1 1.1 Classification ............................................. 1 1.2 Elementary properties of superconductors ............................... 2 1.2.1 Zero electrical DC resistance ................................. 2 1.2.2 Superconducting phase transition ............................... 3 1.2.3 Meissner effect ........................................ 3 1.2.4 London moment ....................................... 4 1.3 History of superconductivity ...................................... 4 1.3.1 London theory ........................................ 5 1.3.2 Conventional theories (1950s) ................................ 5 1.3.3 Further history ........................................ 5 1.4 High-temperature superconductivity .................................. 6 1.5 Applications .............................................. 6 1.6 Nobel Prizes for superconductivity .................................. 7 1.7 See also ................................................ 7 1.8 References ............................................... 8 1.9 Further reading ............................................ 10 1.10 External links ............................................. 10 2 Meissner effect 11 2.1 Explanation .............................................. 11 2.2 Perfect diamagnetism ......................................... 12 2.3 Consequences ............................................. 12 2.4 Paradigm for the Higgs mechanism .................................. 12 2.5 See also ............................................... -
How Acela Trainsets Are Made: Inside the Alstom Facility Written by William C
VOLUME 50 NUMBER 9 DISTRICT 2 - CHAPTER WEBSITE: WWW.NRHS1.ORG SEPTEMBER 2019 HOW ACELA TRAINSETS ARE MADE: INSIDE THE ALSTOM FACILITY WRITTEN BY WILLIAM C. VANTUONO, EDITOR-IN-CHIEF, RAILWAY AGE RAILWAY AGE AT THE ALSTOM MANUFACTURING FACILITY, HORNELL, N.Y., JUNE 12, 2019: Alstom Transportation is building the next generation of high-speed trainsets for Amtrak‘s Northeast Corridor Acela Express service. The new equipment is scheduled to enter service sometime in 2021 between Washington, D.C. and Boston. Amtrak says that this equipment will provide a smoother and more comfortable ride than what it is replacing. Each trainset will have 378 seats, with such amenities as personal power outlets, USB ports and adjustable reading lights. There will be an onboard information system providing real-time information such as location, train speed and conductor announcements. Part of the full ADA accessibility will be spacious restrooms with a 60-inch-diameter turning radius to accommodate people in wheelchairs. Amtrak will be implementing an advance seat reservation system. Food service is described as “contemporary, offering easy access and greater selection.” Twenty-eight of these trainsets are under construction, and Amtrak has created a microsite with photos and facts about the new trainsets. They are much lighter than the current equipment, with 17-metric-ton axle loads. The power cars are constructed of carbon steel; the coaches of aluminum. The trainsets meet FRA Tier III Passenger Equipment Safety Standards; Standards for Alternative Compliance and High-Speed Trainsets. Here is a close look at this equipment under construction. POWER CAR UNDER CONSTRUCTION. -
Hyperloop, ¿El Transporte Del Futuro? Comparativa Y Análisis Dinámico
HYPERLOOP, ¿EL TRANSPORTE DEL FUTURO? Jorge Martínez García COMPARATIVA Y 29 de junio de 2020 Tutores: ANÁLISIS DINÁMICO María Dolores Gómez Pulido Roberto Revilla Angulo Trabajo Final de Máster ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS UNIVERSIDAD POLITÉCNICA DE MADRID Máster Universitario en Ingeniería de Caminos, Canales, y Puertos Hyperloop, ¿el transporte del futuro? Comparativa y análisis dinámico Contenido Índice de Tablas ............................................................................................................................. 4 Índice de Figuras ............................................................................................................................ 5 1 Resumen ................................................................................................................................ 7 2 Agradecimientos .................................................................................................................... 8 3 Introducción .......................................................................................................................... 9 4 Estado del arte ..................................................................................................................... 10 4.1 Sistema de propulsión y suspensión ............................................................................ 12 4.2 Velocidad ..................................................................................................................... 15 4.3 Tamaño del