Variation in Plant Form in Recurrent Selection Populations of Kansas Rosinseed

Total Page:16

File Type:pdf, Size:1020Kb

Variation in Plant Form in Recurrent Selection Populations of Kansas Rosinseed Inter-species hybrid x Annual grain sorghum Wild perennial sorghum Sorghum halapense Highly diverse Perennial breeding grain population sorghum 160 cm BULK06-10 perennial legumes 1. The Land Institute is domesticating Illinois bundleflower (IBF) – Adapted to Great Plains conditions – Nitrogen fixation and seed protein content similar to soybean Dehiscent Indehiscent Pod dropping score (0=marcescent, 2=highly deciduous) 2008 families: 0 0.5 1 2 Indehiscent families 11 13 36 48 Dehiscent families 18 2 2 1 Pod dropping score (0=marcescent, 2=highly deciduous) 2008 families: 0 0.5 1 2 Indehiscent families 11 13 36 48 Dehiscent families 18 2 2 1 2. Existing forage legumes as nitrogen source for perennial cereals Mowed legume intercrop Multi-row mower tractor attachment Late spring: Mow between each row of cereal Early summer: Mowing triggers legume to drop fine roots; nitrogen from decomposing roots and leaves is taken up by the cereal crop 3. Existing perennial grain legumes – but usually grown as annuals • pigeonpea • lab-lab • runner bean • Lima bean Pigeon Pea •Deeply-rooted, perennial •4.92 million hectares worldwide (3.58 million in India alone) •Average yield 898 kg/ha ―The pigeonpea plants, especially of the perennial varieties, have a strong root system, which helps hold the soil on sloping hillsides. ― ―’Pigeonpea has been found to be very successful in covering the soil and reducing soil erosion," says Dr Zong Xuxiao, from the Chinese Academy of Agricultural Sciences at Beijing.’‖ http://www.cgiar.org/newsroom/releases/news.asp?idnews=536 Lab-lab or hyacinth bean (Lablab purpureus) Runner bean (Phaseolus coccineus) Lima bean (Phaseolus lunatus) Protecting fragile landscapes, reclaim degraded farmland In Haiti alone,15,000 acres are ―abandoned to erosion‖ each year (Paskett and Philoctete, 1990) Perennials: •No tillage: protect steep slopes •Perform well despite crusted, degraded soil •Deep taproots access moisture in droughts IBF: seed yields of 3000 kg/ha on mine spoils in Florida! http://www.spiralmonkey.com/nepal/nepal.0084.jpg Protein consumption (per capita) http://commons.wikimedia.org/wiki/File:World_map_of_Protein_consumption _1979-1981.svg by Lokal_Profil Perennial Oilseed Grains Sunflower family (Asteraceae) Helianthus Helianthus annuus maximiliani : Silphium integrifolium: modern domestic cultivar many heads, large many heads, seeds, wild accession (Kansas) small seeds, few seeds many seeds per head per head Strategies for perennial sunflower Domestication Interspecific Wild perennial Annual crop X Perennial wild species in Asteraceae sunflower (2x) sunflower (6x) F1 mostly perennial (4x) A B C Small seed, shattering Annual crop (nearly) sunflower random mating (4x) X to create a diverse 4x No shatter- BC1 population resistance Annuals & perennials found X X X Cycles of X selection for seed size and Large seed, seed yield non-shattering Backcross breeding to give a tuberous Helianthus Moderate High annuus (4x) yield yield University of Minnesota The Land Institute Perennial sunflower domestication program: Variation in plant form in recurrent selection populations of Kansas rosinseed Domestication: Helianthus maximilianii (Maximilian sunflower) 1 meter 1 Growing in natural Growing in research plots grassland ecosystem Perennial sunflower domestication program: Recurrent phenotypic selection of H. maximiliani for various agronomic traits. Maximilian sunflower Trait “Heritability” Lodging score 0.39 Yield per area 0.32 Yield per stalk 0.51 Seed weight 0.46 Shattering 0.56 Plant Height 0.61 Seed size Foliar disease (2007) Seeds/head 1838 Foliar disease (2008) Yield per head Index Plant dwarfing Yield per stalk 2108 8 Head clustering Yield per plant Stalk density Stalk diameter Average of the ―top 50‖ genotypes chosen for combined scores for Shatter resistance (3) seed size, yield, etc. Overall these Shatter resistance (2) are better than the population mean, but never the best for any one trait. Seed size Foliar disease (2007) Seeds/head 1838 Foliar disease (2008) Yield per head Index Plant dwarfing - Yield per stalk - - 2108 8 Head clustering Yield per plant Stalk density 1104 Stalk diameter + + This genotype had reduced Shatter resistance (3) shattering but also small heads— would not have been included in Shatter resistance (2) the ―top 50‖ Seed size Foliar disease (2007) Seeds/head 1838 Foliar disease (2008) + Yield per head Index Plant dwarfing - Yield per stalk 2108 8 Head clustering Yield per plant - - Stalk density 1104 Stalk diameter This genotype had huge seeds Shatter resistance (3) but higher-than-average shattering. Shatter resistance (2) Perennial sunflower domestication program: Variation among the half-sib progeny of a single unusually apically dominant plant •head size •ligule number •branching pattern •leaf size/shape Normal, branched form Unbranched type No-branching types ??? No heads! = extreme apical dominance? Hexaploid perennials --H. tuberosus --H. rigidus Eggs: 51 Eggs: 51 chromosomes chromosomes X Pollen: 17 X chromosomes Pollen: 17 chromosomes Diploid Annuals --H. annuus (wild) --H. annuus (crop) --H. petiolaris Diploid perennials --H. maximiliani --H. salicifolius --H. grosseserratus Tetraploid Breeding Population (68 chromosome) --H. giganteus containing genes from many species 2009 Sunflower populations 2009 Sunflower populations Interspecific perennial sunflower program: Variation in head size between half-sib progeny of a cross between H. annuus and H. tuberosus. Long-lived trees Annuals Shrubs, short-lived trees Herbaceous Average annual seed yield (kg/ha)yield seedannual Average perennials 0.1 1 10 100 1000 Greatest age of any plant structure (years) Long-lived trees Herbaceous Shrubs, short-lived trees Annuals perennials Average annual seed yield (kg/ha)yield seedannual Average ? 0.1 1 10 100 1000 Greatest age of any plant structure (years) structures frequently lost due to ecological disturbance: Stems, leaves (herbivory, frost, fire) Roots, rhizomes (drought, tillage, flooding) Long-lived trees Annuals Shrubs, short-lived trees Annual reproductive effort reproductive Annual Herbaceous perennials 0.1 1 10 100 1000 Greatest age of any plant structure (years) Stems, leaves (herbivory, frost, fire) Roots, rhizomes (drought, tillage, flooding) Strongest Competition: Competition to colonize: Competition for water, nitrogen, space: Competition for light: Invest in seeds Invest in roots, rhizomes invest in trunks Long-lived trees Annuals Shrubs, short-lived trees Herbaceous perennials Annual reproductive effort reproductive Annual 0.1 1 10 100 1000 Greatest age of any plant structure (years) Stems, leaves (herbivory, frost, fire) Few losses: ability to invest in dispersal Roots, rhizomes (seeds, fruits), once established. (drought, tillage, flooding) Competition to colonize: Competition for water, nitrogen, space: Competition for light: Invest in seeds Invest in roots, rhizomes invest in trunks Long-lived trees Annuals Shrubs, short-lived trees Annual reproductive effort reproductive Annual Herbaceous perennials 0.1 1 10 100 1000 Greatest age of any plant structure (years) Annual grains Annual reproductive effort reproductive Annual 0.1 1 10 100 1000 Greatest age of any plant structure (years) Nuts, Annual grains fruits Annual reproductive effort reproductive Annual 0.1 1 10 100 1000 Greatest age of any plant structure (years) Crop Product Dry matter Annual net Basis of Source and yielda reproductive reproduct location (kg ha-1) effortb ive effort Malus x domestica Fruit (diaspore) 13,000 to 0.65 Mass Palmer (1988), (apple) 17,000 New Zealand Elaeis guineensis (oil Fruit plus seed 5000 to 9000 0.34 Mass Corley (1983), palm) 0.52 Energy Malaysia Cocos nucifera Copra (seed 3000 to 6000 0.20 Mass Corley (1983), (coconut palm) endosperm) 0.31 Energy Malaysia Elaeis guineensis Oil (kernel & 6800 0.32 Energy Wahid et al. (2004), mesocarp) Bunches (fruit & Malaysia peduncles) 16,800 0.55 Energy Olea europaea (olive) Fruit (whole, 4600 0.54 Mass Villalobos et al. with seed) (2006), Spain Musa spp., genomes Fruit (whole, - 0.60 Mass Baiyeri (2002), AAB (plantain) seedless) Nigeria Vaccinium Fruit (whole fruit - 0.55 Mass Pritts and Hancock corymbosum & seed) (1985), United (highbush blueberry) States Nuts, Annual grains fruits ? Annual reproductive effort reproductive Annual 0.1 1 10 100 1000 Greatest age of any plant structure (years) Reference Common names Part harvested Species Baileyb beet root Beta vulgaris pigeon pea, red gram seed Cajanus cajan hyacinth bean, lablab seed Dolichos lablab sweet potato tuberous roots Ipomoea Batatas tomato fruit Lycopersicon lycopersicum cassava, manioc, tuberous root Manihot esculenta tapioca, yucca runner bean seed Phaseolus coccineus lima bean seed Phaseolus lunatus castor-bean seed Ricinus communis potato tuber Solanum tuberosum Ploschuk, 2005 bladderpod seed Lesquerella fendleri Smartt, 1990 chickling pea, khesari seed Lathyrus sativus dhal goa bean seed, roots, fruit Psophocarpus tetragonolobus Annual grains Nuts, fruits Annual reproductive effort reproductive Annual 0.1 1 10 100 1000 Greatest age of any plant structure (years) Perennial grasses harvested for grain Vaughn et al. (2008) China Oryza rufipogond Bohrer (1972) Poland Glyceria fluitans Guo et al. (2007) China Zizania latifolia Mongolia Elymus giganteus Griffin and Rowlett Scandinavia Leymus arenarius Arundo villosa (1981) Bye (1985) Southwestern N. Festuca octoflora Weiss et al. (2004) Israel Puccinellia distans America Alopecurus arundinaceus Distichlis palmeri Bar-Yosef and Kislev
Recommended publications
  • Fighting Sand Encroachment Lessons from Mauritania Cover Photo: Mechanical Dune Stabilization: Installing Plant Matter M
    ISSN 0258-6150 FAO FORESTRY PAPER 158 Fighting sand encroachment Lessons from Mauritania Cover photo: Mechanical dune stabilization: installing plant matter M. Ould Mohamed FAO FORESTRY Fighting sand encroachment PAPER Lessons from Mauritania 158 by Charles Jacques Berte Consultant with the collaboration of Moustapha Ould Mohamed and Meimine Ould Saleck Nature Conservation Directorate Ministry of the Environment and Sustainable Development of Mauritania FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2010 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views of FAO. ISBN 978-92-5-106531-0 All rights reserved. FAO encourages the reproduction and dissemination of material in this information product. Non-commercial uses will be authorized free of charge, upon request. Reproduction for resale or other commercial purposes, including educational purposes, may incur fees. Applications for permission to reproduce or disseminate FAO copyright materials, and all queries concerning rights and licences, should be addressed by e-mail to [email protected] or to the Chief, Publishing Policy and Support Branch, Office of Knowledge Exchange, Research and Extension, FAO, Viale delle Terme di Caracalla, 00153 Rome, Italy.
    [Show full text]
  • 00007647.Pdf
    Nutritive evaluation of some browse plant species collected from Algerian arid rangelands by chemical analyses and in vitro gas production Bouazza L., Boufennara S., López S., Bousseboua H., Bodas R. in Chentouf M. (ed.), López-Francos A. (ed.), Bengoumi M. (ed.), Gabiña D. (ed.). Technology creation and transfer in small ruminants: roles of research, development services and farmer associations Zaragoza : CIHEAM / INRAM / FAO Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 108 2014 pages 305-310 Article available on line / Article disponible en ligne à l’adresse : -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- http://om.ciheam.org/article.php?IDPDF=00007647 -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- To cite this article / Pour citer cet article -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Bouazza L., Boufennara S., López S., Bousseboua H., Bodas R. Nutritive evaluation of some browse plant species collected from Algerian arid rangelands by chemical analyses and in vitro gas production. In : Chentouf M. (ed.), López-Francos A. (ed.), Bengoumi M. (ed.), Gabiña D. (ed.). Technology creation and transfer in small ruminants: roles of research, development
    [Show full text]
  • Multiple-Factor Associative Effects of Peanut Shell Combined with Alfalfa and Concentrate Determined by in Vitro Gas Production Method
    Original Paper Czech Journal of Animal Science, 64, 2019 (8): 352–360 https://doi.org/10.17221/94/2019-CJAS Multiple-factor associative effects of peanut shell combined with alfalfa and concentrate determined by in vitro gas production method Jiu Yuan1*, Xinjie Wan2 1College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, P.R. China 2Gansu Zhenghe Biotechnology Co., Ltd, Lanzhou, P.R. China *Corresponding author: [email protected] Citation: Yuan J., Wan X.J. (2019): Multiple-factor associative effects of peanut shell combined with alfalfa and concentrate determined by in vitro gas production method. Czech J. Anim. Sci., 64, 352–360. Abstract: The associative effects (AE) between concentrate (C), peanut shell (P) and alfalfa (A) were investigated by means of an automated gas production (GP) system. The C, P and A were incubated alone or as 40 : 60 : 0, 40 : 45 : 15, 40 : 30 : 30, 40 : 15 : 45, 40 : 0 : 60 and 30 : 70 : 0, 30 : 55 : 15, 30 : 40 : 30, 30 : 25 : 45, 30 : 10 : 60, 30 : 0 : 70 mixtures where the C : roughage (R) ratios were 40 : 60 and 30 : 70. Samples (0.2000 ± 0.0010 g) of single feeds or mixtures were incubated for 96 h in individual bottles (100 ml) with 30 ml of buffered rumen fluid. GP parameters were analysed using a single exponential equation. After incubation, the residues were used to determine pH, dry matter digestibility (DMD), organic matter digestibility (OMD), volatile fatty acids (VFA) and ammonia nitrogen (NH3-N) of the incubation fluid, and their single factor AE indices (SFAEI) and multiple-factors AE indices (MFAEI) were determined.
    [Show full text]
  • Coastal Wetlunds of the Noytherrn Gua of Califurnia
    AQUATIC CONSERVATION:MARINE AND FRESHWATERECOSYSTEMS Aquatic Conseru:Mar. Freshv. Ecosyst. l6: 5 28 (2006) Publishedonline in Wiley InterScience (www.interscience.wiley.com).DOI: 10.1002/aqc.68l Coastal wetlundsof the noytherrnGuA of Califurnia: inventory flnd conservutionstatus EDWARD P. GLENNO'*, PAMELA L. NAGLERU, RICHARD C. BRUSCAb and OSVEL HINOJOSA-HUERTA' " EnvironntentalResearch Laborator!-,2601 East Airport Drive, Tucson,AZ 85706, USA bAritora Sonora Desert Museum,2021 North Kinney RoacJ,Tucson, AZ 85743,USA 'Pronatura lVoroeste,Ave. Jalisco 903, Colonia Sonora, San Luis Rio Colorado, Sonora 83440. Meric'o ABSTRACT 1. Above 28"N, the coastlineof the northern Gulf of California is indented at frequent intervals by negative or inverseestuaries that are saltier at their backs than at their mouths due to the lack of freshwater inflow. These 'esteros'total over l32,ogo ha in area and encompassmangrove marshes below 29"N and saltgrass(Drsrichlis palmeri) marshes north of 29"N. An additional 6000 ha of freshwaterand brackish wetlandsare found in the Colorado River delta where fresh water entersthe intertidal zone. 2. The mangrove marshesin the Gulf of California have been afforded some degreeof protected statusin Mexico, but the northern saltgrassesteros do not have priority conservationstatus and are increasinglybecoming developmenttargets for resorts,vacation homes and aquaculture sites. 3. We conducted an inventory of the marshesusing aerial photography and satelliteimages, and evaluatedthe extent and type of developmenton eachmarsh. We reviewedthe availableliterature on the marshesto document their vegetationtypes and ecologicalfunctions in the adjacentmarine and terrestrial ecosystems. 4. Over 95"h of the mangrove marshes have been developed for shrimp farming. However, the larms are built adjacent to, rather than in, the marshes, and the mangrove stands are still mostly intact.
    [Show full text]
  • Preparation and Characterization of Water-Soluble Xylan Ethers
    polymers Article Preparation and Characterization of Water-Soluble Xylan Ethers Kay Hettrich 1,*, Ulrich Drechsler 2, Fritz Loth 1 and Bert Volkert 1 1 Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476 Potsdam-Golm, Germany; [email protected] (F.L.); [email protected] (B.V.) 2 Salzenbrodt GmbH & Co KG, Hermsdorfer Str. 70, D-13437 Berlin, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-331-568-1514 Academic Editor: André Laschewsky Received: 30 September 2016; Accepted: 27 March 2017; Published: 31 March 2017 Abstract: Xylan is a predominant hemicellulose component that is found in plants and in some algae. This polysaccharide is made from units of xylose (a pentose sugar). One promising source of xylan is oat spelt. This feedstock was used for the synthesis of two xylan ethers. To achieve water soluble products, we prepared dihydroxypropyl xylan as a non-ionic ether on the one hand, and carboxymethyl xylan as an ionic derivative on the other hand. Different preparation methods like heterogeneous, pseudo-homogeneous, and homogeneous syntheses were compared. In the case of dihydroxypropyl xylan, the synthesis method did not significantly affect the degree of substitution (DS). In contrast, in the case of carboxymethyl xylan, clear differences of the DS values were found in dependence on the synthesis method. Xylan ethers with DS values of >1 could be obtained, which mostly show good water solubility. The synthesized ionic, as well as non-ionic, xylan ethers were soluble in water, even though the aqueous solutions showed slight turbidity. Nevertheless, stable, transparent, and stainable films could be prepared from aqueous solutions from carboxymethyl xylans.
    [Show full text]
  • Lost-Crops-Of-Africa-Grains.Pdf
    http://www.nap.edu/catalog/2305.html We ship printed books within 1 business day; personal PDFs are available immediately. Lost Crops of Africa: Volume I: Grains Board on Science and Technology for International Development, Office of International Affairs, National Research Council ISBN: 0-309-58615-1, 408 pages, 6 x 9, (1996) This PDF is available from the National Academies Press at: http://www.nap.edu/catalog/2305.html Visit the National Academies Press online, the authoritative source for all books from the National Academy of Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council: ! Download hundreds of free books in PDF ! Read thousands of books online for free ! Explore our innovative research tools – try the “Research Dashboard” now! ! Sign up to be notified when new books are published ! Purchase printed books and selected PDF files Thank you for downloading this PDF. If you have comments, questions or just want more information about the books published by the National Academies Press, you may contact our customer service department toll- free at 888-624-8373, visit us online, or send an email to [email protected]. This book plus thousands more are available at http://www.nap.edu. Copyright © National Academy of Sciences. All rights reserved. Unless otherwise indicated, all materials in this PDF File are copyrighted by the National Academy of Sciences. Distribution, posting, or copying is strictly prohibited without written permission of the National Academies Press. Request reprint permission for this book. Lost Crops of Africa: Volume I: Grains http://www.nap.edu/catalog/2305.html i !"#$!"#$%%%&'"(#&'"(#&'"(#%%%")")")%%%*)'+,-*)'+,- volume I Grains 7(5(26.&868/7&"##9?&2#%&-7#;&%'/&#7(5(26.
    [Show full text]
  • Indicators for Assessing Infant and Young Child Feeding Practices Part 1 Definitions
    Indicators for assessing infant and young child feeding practices PART 1 DEFINITIONS Indicators for assessing infant and young child feeding practices PART 1 DEFINITIONS Conclusions of a consensus meeting held 6–8 November 2007 in Washington, DC, USA WHO Library Cataloguing-in-Publication Data Indicators for assessing infant and young child feeding practices : conclusions of a consensus meeting held 6–8 November 2007 in Washington D.C., USA. 1.Infant nutrition. 2.Breast feeding. 3.Bottle feeding. 4.Feeding behavior. 5.Indicators. I.World Health Organization. Dept. of Child and Adolescent Health and Development. ISBN 978 92 4 159666 4 (NLM classification: WS 120) © World Health Organization 2008 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps rep- resent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or rec- ommended by the World Health Organization in preference to others of a similar nature that are not mentioned.
    [Show full text]
  • Agronomy of Halophytes As Constructive Use of Saline Systems
    Agronomy of Halophytes as Constructive Use of Saline Systems Item Type text; Electronic Dissertation Authors Bresdin, Cylphine Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 07/10/2021 03:23:03 Link to Item http://hdl.handle.net/10150/577318 AGRONOMY OF HALOPHYTES AS CONSTRUCTIVE USE OF SALINE SYSTEMS by Cylphine Bresdin A Dissertation Submitted to the Faculty of the department of SOIL, WATER AND ENVIRONMENTAL ScIENCES In Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY WITH A MAJOR IN ENVIRONMENTAL SCIENCE In the Graduate College ThE UNIVERSITY OF ARIZONA 2015 1 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Cylphine Bresdin, titled Agronomy of Halophytes as Constructive Use of Saline Systems and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy. _____________________________________________________ Date: 7/29/2015 Edward Glenn _____________________________________________________ Date: 7/29/2015 Janick Artiola _____________________________________________________ Date: 7/29/2015 Kevin Fitzsimmons _____________________________________________________ Date: 7/29/2015 Margaret Livingston Final approval and acceptance of this dissertation is contingent upon the candidate’s submission of the final copies of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement.
    [Show full text]
  • Minimum Dietary Diversity for Women
    MINIMUM DIETARY DIVERSITY FOR WOMEN An updated guide for measurement: from collection to action MINIMUM DIETARY DIVERSITY FOR WOMEN An updated guide for measurement: from collection to action Food and Agriculture Organization of the United Nations Rome, 2021 Required citation: FAO. 2021. Minimum dietary diversity for women. Rome. https://doi.org/10.4060/cb3434en The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. ISBN 978-92-5-133993-0 © FAO, 2021 Some rights reserved. This work is made available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo/legalcode). Under the terms of this licence, this work may be copied, redistributed and adapted for non-commercial purposes, provided that the work is appropriately cited. In any use of this work, there should be no suggestion that FAO endorses any specific organization, products or services. The use of the FAO logo is not permitted. If the work is adapted, then it must be licensed under the same or equivalent Creative Commons licence.
    [Show full text]
  • Indicators for Assessing Infant and Young Child Feeding Practices Definitions and Measurement Methods
    Indicators for assessing infant and young child feeding practices Definitions and measurement methods Indicators for assessing infant and young child feeding practices Definitions and measurement methods Indicators for assessing infant and young child feeding practices: definitions and measurement methods ISBN (WHO) 978-92-4-001838-9 (electronic version) ISBN (WHO) 978-92-4-001839-6 (print version) © World Health Organization and the United Nations Children’s Fund (UNICEF), 2021 This joint report reflects the activities of the World Health Organization (WHO) and the United Nations Children’s Fund (UNICEF) Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO or UNICEF endorses any specific organization, products or services. The unauthorized use of the WHO or UNICEF names or logos is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO) or the United Nations Children’s Fund (UNICEF). Neither WHO nor UNICEF are responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”.
    [Show full text]
  • Biocontrol of Sporobolus Grasses
    Biocontrol of Sporobolus Grasses African survey for weedy sporobolus biocontrol agents Project number NBP.304 Report prepared for MLA by: Dr. W. A. Palmer Queensland Department of Natural Resources & Mines Meat & Livestock Australia Limited Locked Bag 991 North Sydney NSW 2059 ISBN 1 74036 508 9 March 2004 Natural Resources Biocontrol of Sporobolus Grasses TABLE OF CONTENTS Abstract ......................................................................................................................................................1 Executive Summary ...................................................................................................................................1 Introduction ................................................................................................................................................3 Methods .....................................................................................................................................................3 The Survey Area ........................................................................................................................................3 Identification of the Grasses .......................................................................................................................4 Collection of Specimens .............................................................................................................................5 Results .......................................................................................................................................................5
    [Show full text]
  • A Molecular Phylogeny and Classification of the Cynodonteae
    TAXON 65 (6) • December 2016: 1263–1287 Peterson & al. • Phylogeny and classification of the Cynodonteae A molecular phylogeny and classification of the Cynodonteae (Poaceae: Chloridoideae) with four new genera: Orthacanthus, Triplasiella, Tripogonella, and Zaqiqah; three new subtribes: Dactylocteniinae, Orininae, and Zaqiqahinae; and a subgeneric classification of Distichlis Paul M. Peterson,1 Konstantin Romaschenko,1,2 & Yolanda Herrera Arrieta3 1 Smithsonian Institution, Department of Botany, National Museum of Natural History, Washington, D.C. 20013-7012, U.S.A. 2 M.G. Kholodny Institute of Botany, National Academy of Sciences, Kiev 01601, Ukraine 3 Instituto Politécnico Nacional, CIIDIR Unidad Durango-COFAA, Durango, C.P. 34220, Mexico Author for correspondence: Paul M. Peterson, [email protected] ORCID PMP, http://orcid.org/0000-0001-9405-5528; KR, http://orcid.org/0000-0002-7248-4193 DOI https://doi.org/10.12705/656.4 Abstract Morphologically, the tribe Cynodonteae is a diverse group of grasses containing about 839 species in 96 genera and 18 subtribes, found primarily in Africa, Asia, Australia, and the Americas. Because the classification of these genera and spe­ cies has been poorly understood, we conducted a phylogenetic analysis on 213 species (389 samples) in the Cynodonteae using sequence data from seven plastid regions (rps16-trnK spacer, rps16 intron, rpoC2, rpl32-trnL spacer, ndhF, ndhA intron, ccsA) and the nuclear ribosomal internal transcribed spacer regions (ITS 1 & 2) to infer evolutionary relationships and refine the
    [Show full text]