Single-Hole Sonic Logging

Total Page:16

File Type:pdf, Size:1020Kb

Single-Hole Sonic Logging i Single-hole sonic logging A study of possibilities and limitations of detecting flaws in piles MARTIN PALM Master of Science Thesis Stockholm, Sweden 2012 Single-hole sonic logging A study of possibilities and limitations of detecting flaws in piles Martin Palm July 2012 TRITA-BKN. Master Thesis 362, 2012 ISSN 1103-4297 ISRN KTH/BKN/EX-362-SE ©Martin Palm, 2012 Royal Institute of Technology (KTH) Department of Civil and Architectural Engineering Stockholm, Sweden, 2012 Preface This master thesis deals with pile integrity testing in general and single-hole sonic logging of bored piles in particular. It was initiated by Deltares in Delft, the Netherlands. It was carried out during a period of six months in the office of Deltares which is an independent research institute in the field of water, subsurface and infrastructure. This report is the written record of a master thesis project at the KTH Department of Civil and Architectural Engineering as a part of the fulfillment of the requirements for a Master degree in Civil Engineering. I would like to thank my supervisor at Deltares Paul Holscher for his support and guidance and Rodriaan Spruit, PhD candidate, TU Delft and Gemeentewerken Rotterdam for kindly giving me laboratory measurement data. I also want to express my gratitude to all the coworkers at Deltares who contributed to this thesis by answering my questions. I would also like to thank my supervisor at KTH, Raid Karoumi, for his kindly advices and for handling a lot of my paper work when I was stuck in the Netherlands. Paul Holscher (Deltares) and Raid Karoumi (Kungliga Tekniska högskolan, KTH) were supervisors. Paul Holscher (Deltares), Michael Hicks (Deltares) and Raid Karoumi (KTH) were examiners. Delft, The Netherlands. July 2012 Martin Palm ii iii Abstract As a part of the Dutch development program Geo-impulse, which aims to half the occurrence of geotechnical failures in civil engineering projects inside the Netherlands by 2015, this master thesis is investigating how to trace imperfections in bored piles at an early stage. The objective is to carry out literature study on suitable methods and then focus the research on one particular method. The basis of the research is the single-hole sonic logging method. Field and laboratory measurements are carried out with the aim to investigate the detection range of the method as well as try to apply more advanced post-processing techniques. Results from the measurements are discussed and also a comparison between single- hole sonic logging and the better standardized test cross-hole sonic logging is made. The results indicate that single-hole sonic logging has a small detection range inside a bored pile, especially compared to cross-hole sonic logging. Also more advanced post- processing techniques fails or make the test to advance to use on a daily basis. Finally the recommendation is to carry on research with other techniques which in scientific papers have showed some promising results. Keywords: Pile integrity, Single-hole sonic logging, Cross-hole sonic logging, Bored piles, Nondestructive testing iv v Contents Preface ................................................................................................................ ii Abstract ............................................................................................................. iv 1 Introduction.................................................................................................. 1 1.1 Background ................................................................................................. 1 1.2 Objective ..................................................................................................... 1 1.3 Delimitations ............................................................................................... 2 1.4 Methodology ............................................................................................... 2 2 Literature study ............................................................................................ 4 2.1 On bored piles ............................................................................................. 4 2.1.1 General ............................................................................................ 4 2.1.2 Problems during construction .......................................................... 5 2.2 Pile integrity investigation methods ............................................................ 7 2.2.1 General ............................................................................................ 7 2.2.2 Direct tests ...................................................................................... 7 2.2.3 Indirect tests.................................................................................... 8 2.2.4 Single-hole sonic logging .................................................................. 9 2.2.5 Sonic echo ...................................................................................... 11 2.2.6 Parallel seismic .............................................................................. 13 2.3 Case studies for pile integrity .................................................................... 15 2.4 Theory of wave propagation and ray-tracing ............................................. 17 2.4.1 Elastic wave theory ....................................................................... 17 2.4.2 Waves............................................................................................ 18 2.4.3 Wave fronts ................................................................................... 19 2.4.4 Attenuation ................................................................................... 20 2.4.5 Waves in media with interfaces or inclusions (heterogeneous media) 21 2.4.6 Ray-tracing theory ........................................................................ 24 3 Water test and the CHUM-equipment ............................................................ 27 3.1 Introduction .............................................................................................. 27 3.2 Methodology ............................................................................................. 27 vi 3.3 Results ...................................................................................................... 28 3.4 Discussion ................................................................................................. 30 4 The Horstwald test site ................................................................................. 31 4.1 Introduction .............................................................................................. 31 4.2 Methods .................................................................................................... 31 4.2.1 General .......................................................................................... 31 4.2.2 Theoretical ray-path fitting to the measurement data.................... 33 4.2.3 FAT-picking analyses .................................................................... 36 4.3 Results ...................................................................................................... 37 4.3.1 Theoretical ray-path fitting to the measurement data.................... 37 4.3.2 FAT picking analyses .................................................................... 41 4.4 Discussion ................................................................................................. 42 4.4.1 Theoretical ray-path fitting to the measurement data.................... 42 4.4.2 FAT picking analyses .................................................................... 43 5 Laboratory experiment in Delft ..................................................................... 45 5.1 Introduction .............................................................................................. 45 5.2 Methods .................................................................................................... 45 5.2.1 General .......................................................................................... 45 5.2.2 Cross-hole sonic logging ................................................................. 46 5.2.3 Single-hole sonic logging ................................................................ 46 5.3 Results ...................................................................................................... 47 5.3.1 Cross-hole sonic logging ................................................................. 47 5.3.2 Single-hole sonic logging ................................................................ 51 5.4 Results ...................................................................................................... 54 5.4.1 Cross-hole sonic logging ................................................................. 54 5.4.2 Single-hole sonic logging ................................................................ 54 5.4.3 Comparison between single-hole and cross-hole sonic logging......... 55 6 Conclusions and further studies ..................................................................... 56 Bibliography ....................................................................................................... 59 A Seismograms from BAM test site in Horstwald ................................................ 63 B Plots of Zoeppritz equations .......................................................................... 69 C Cross-correlations ........................................................................................
Recommended publications
  • Spotlight on Pile Integrity Test
    Piles & Deep Foundations A Spotlight on Low Strain Impact Integrity Test Concrete piles and drilled shafts are an important category of foundations. Despite their relatively high cost, they become necessary when we want to transfer the loads of a heavy superstructure (bridge, high rise building, etc.) to the lower layers of soil. Pile integrity test (PIT), or as ASTM D5882 refers to it as "a low strain impact integrity test," is a common non-destructive test method for the evaluation of pile integrity and/or pile length. A pile integrity test can be used for forensic evaluations on existing piles, or quality assurance in new construction. The Integrity test is applicable to driven concrete piles and cast-in- place piles. What is Pile Integrity Test (PIT) ? Low strain impact integrity testing provides acceleration or velocity and force (optional) data on slender structural elements (ASTM D5882). Sonic Echo (SE) and Impulse Response (IR) are employed for the integrity test on deep foundation and piles. The test results can be used for the evaluation of the pile cross-sectional area and length, the pile integrity and continuity, as well as consistency of the pile material. It is noted that this evaluation practice is approximate. 647-933-6633 Website: fprimec.com Email: [email protected] Use PIT Method To Evaluate : Integrity and consistency of pile material (concrete, timber); Unknown length of piles, or shafts; Pile cross-sectional area and length. Limitations of Use : Like all other non-destructive testing solutions, the low strain pile integrity test has certain limitations. These limitations must be understood and taken into consideration in making the final integrity evaluation.
    [Show full text]
  • Cen/Tc 250/Sc 7 N 1508
    CEN/TC 250/SC 7 N 1508 CEN/TC 250/SC 7 Eurocode 7 - Geotechnical design Email of secretary: [email protected] Secretariat: NEN (Netherlands) pr EN1997-3 MASTER v2021.40 Submission Document type: Other committee document Date of document: 2021-05-03 Expected action: INFO Background: Committee URL: https://cen.iso.org/livelink/livelink/open/centc250sc7 CEN/TC 250 Date: 2021-04 prEN 1997-3:202x CEN/TC 250 Secretariat: NEN Eurocode 7: Geotechnical design — Part 3: Geotechnical structures Eurocode 7 - Entwurf, Berechnung und Bemessung in der Geotechnik — Teil 3: Geotechnische Bauten Eurocode 7 - Calcul géotechnique — Partie 3: Constructions géotechniques ICS: Descriptors: Document type: European Standard Document subtype: Working Document Document stage: v4 31/10/2019 Document language: E prEN 1997-3:202x (E) Contents Page 0 Introduction ............................................................................................................................................ 9 0.1 Introduction to the Eurocodes ......................................................................................................... 9 0.2 Introduction to EN 1997 Eurocode 7 .............................................................................................. 9 0.3 Introduction to EN 1997-3 ................................................................................................................. 9 0.4 Verbal forms used in the Eurocodes ............................................................................................10 0.5 National
    [Show full text]
  • DRILLED SHAFT FOUNDATION DEFECTS Identification, Imaging, and Characterization
    DRILLED SHAFT FOUNDATION DEFECTS Identification, Imaging, and Characterization Publication No. FHWA-CFL/TD-05-007 October 2005 Tube 1 Tube 2 Tube 3 Anomaly CSL GDL IDENTIFICATION (Verification) <4,000 psi CSLT STRENGTH IMAGING (Definition) CHARACTERIZATION Central Federal Lands Highway Division 12300 West Dakota Avenue Lakewood, CO 80228 Technical Report Documentation Page 1. Report No. 2. Government Accession No 3. Recipient’s Catalog No FHWA-CFL/TD-05-003 4. Title and Subtitle 5. Report Date Defects in Drilled Shaft Foundations: March 2005 Identification, Imaging, and Characterization 6. Performing Organization Code 7. Authors 8. Performing Organization Report No. Frank Jalinoos, MS Geophysics – Principal Investigator (PI); 3755FHA Natasa Mekic, MS Geophysics; Robert E. Grimm, Ph.D., Geophysics; Kanaan Hanna, MS, Mining Engineering 9. Performing Organization Name and Address 10. Work Unit No. Blackhawk, a division of ZAPATA ENGINEERING 301 Commercial Road, Suite B 11. Contract or Grant No. Golden, Colorado 80401 DTFH68-03-P-00116 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Federal Highway Administration Final Report, May 2003-March 2005 Central Federal Lands Highway Division 14. Sponsoring Agency Code 12300 West Dakota Avenue HFTS-16.4 Lakewood, Colorado 80228 15. Supplementary Notes COTR: Khamis Haramy, FHWA-CFLHD. Advisory Panel: Scott Anderson, FHWA-FLH and Roger Surdahl FHWA- CFLHD. This project was funded under the Federal Lands Highway Technology Deployment Initiatives and Partnership Program (TDIPP.)
    [Show full text]
  • West Bank Bypass Main Report 1
    EARTHQUAKE RECONSTRUCTION AND REHABILITATION AUTHORITY (ERRA) No. THE ISLAMIC REPUBLIC OF PAKISTAN URGENT REHABILITATION PROJECT: WEST BANK BYPASS DESIGN UNDER THE URGENT DEVELOPMENT STUDY ON REHABILITATION AND RECONSTRUCTION IN MUZAFFARABAD CITY IN THE ISLAMIC REPUBLIC OF PAKISTAN FINAL REPORT MAIN TEXT MARCH 2008 JAPAN INTERNATIONAL COOPERATION AGENCY NIPPON KOEI CO., LTD. SD JR 08-014 Note: Following exchange rates are applied in the Study. 1 US$ = PKR60.800 = JPY119.410 (As of 1st August, 2007) PREFACE In response to the request from the Government of the Islamic Republic of Pakistan, the Government of Japan decided to conduct “The Urgent Development Study on Rehabilitation and Reconstruction in Muzaffarabad City in the Islamic Republic of Pakistan”, and entrusted the study to the Japan International Cooperation Agency (JICA). JICA selected and dispatched a study team headed by Mr. Tetsu NAKAGAWA of Nippon Koei Co., Ltd. to the Islamic Republic of Pakistan from February 2007 to November 2007. The team conducted Basic Design and Detailed Design for the “Urgent Rehabilitation Project: West Bank Bypass Design under the Urgent Development Study on Rehabilitation and Reconstruction in Muzaffarabad City in the Islamic Republic of Pakistan” based on field surveys, holding a series of discussions with and presentations to the officials concerned of the Government of the Islamic Republic of Pakistan. I hope that this report will contribute to the development of Pakistan and to the enhancement of friendly relationship between the two countries. Finally, I wish to express my sincere appreciation to the officials concerned of the Government of the Islamic Republic of Pakistan for their close cooperation and friendship extended to the Study.
    [Show full text]
  • Mackays to Peka Peka Expressway ■ Tauroa Subdivision
    NZ NZ GEOMECHA JUNE 2014 issue 87 N ICS NEWS ICS E N WS NZBulletin of the GEOMECHA New Zealand Geotechnical Society Inc. NICSISSN 0111–6851 ■ Ground Improvement Ground Mackays to ■ Tauroa Subdivision Tauroa Peka Peka Expressway ■ Mackays to Peka Expressway issue 87 JUNE 2014 NZ GEOMECHANICS NEWS EWS N 6851 ICSISSN 0111– GEOMECHA N NZBulletin of the New Zealand Geotechnical Society Inc. ■ Ground Improvement Mackays to ■ Tauroa Subdivision ■ Peka Peka NZGS Life Member and IPENZ Awards Expressway ■ Mackays to Peka Peka Expressway ■ NZGS Life Member and IPENZ Awards SEARCH NZGS at yOUR tauroa subdivision ground improvement App nzgs life member and ipenz awards JUNE STORE 2014 Back issues now free online check out www.nzgs.org issue 87 30/05/14 12:04 pm NZGS TAUROANZGS_june14cv4.indd 1 SUBDIVISION june GROUND IMPROVEMENT 2014 issue 87 NZGS LIFE MEMBER AND IPENZ AWARDS NZGS Back issues now free online check out www.nzgs.org Our multidisciplinary operation specialises We’re proud to be the sole distributor in the fields of ground anchoring, soil in New Zealand for SAMWOO Anchor nailing, drilling, post-tensioning and Technology, BluGeo GRP Powerthread K60 RETAINING YOUR BUSINESS grouting. The combination of capability Bar, Tighter (Kite) Earth Anchors and Grout and depth of technical expertise makes Grippa Grout Sock (Australasia). us a market leader and supports our IS OUR BUSINESS. reputation for providing value engineered solutions to our customers. Over more than 40 years, Grouting Services has delivered We’re experts in: some of New Zealand’s most significant Ground Anchoring, Soil Nailing, Micro-Piling and Post-Tensioning contracts.
    [Show full text]
  • NDT Diagnosis of Drilled Shaft Foundations
    NDT Diagnosis of Drilled Shaft Foundations by Larry D. Olson, P.E., Principal Engineer Olson Engineering, Inc. 5191 Ward Road, Suite 1 Wheat Ridge, Colorado 80033-1905 Tel: 303/423-1212 Fax: 303/423-6071 E-Mail: [email protected] Marwan F. Aouad, Ph.D., Project Manager Olson Engineering, Inc. 5191 Ward Road, Suite 1 Wheat Ridge, Colorado 80033-1905 Tel: 303/423-1212 Fax: 303/423-6071 E-Mail: [email protected] and Dennis A. Sack, Project Manager Olson Engineering, Inc. 5191 Ward Road, Suite 1 Wheat Ridge, Colorado 80033-1905 Tel: 303/423-1212 Fax: 303/423-6071 E-Mail: [email protected] A paper prepared for presentation at the 1998 Annual Meeting of the Transportation Research Board and for publication in the Transportation Research Record Olson, Aouad and Sack Page 1 ABSTRACT Number of words = 6590 (including 250 words for each figure) Nondestructive methods based on propagation of sonic and ultrasonic waves are increasingly being used in the United States and internationally for forensic investigations of existing structures and for quality assurance of new construction. Of particular interest is the quality assurance of newly constructed drilled shaft foundations. A large number of State Departments of Transportation specify NDT testing of drilled shaft foundations, particularly for shafts drilled and placed under “wet” construction conditions. For quality assurance of drilled shaft foundations of bridges, the Crosshole Sonic Logging (CSL) and Sonic Echo/Impulse Response (SE/IR) methods are routinely used. The CSL method requires access tubes to be installed in the shaft prior to concrete placement. SE/IR measurements require that the top of the shaft be accessible after concrete placement.
    [Show full text]
  • Foundation Reuse for Highway Bridges
    Publication No. FHWA-HIF-18-055 Infrastructure Office of Bridges and Structures November 2018 Foundation Reuse for Highway Bridges Existing New Ground Improvement Turner-Fairbank Highway Research Center U.S. Department of Transportation 6300 Georgetown Pike Federal Highway Administration McLean, VA 22101-2296 FOREWORD Given the high percentage of deteriorated or obsolete bridges in the national bridge inventory, the reuse of bridge foundations may be a viable option that can present a significant cost savings in bridge replacement and rehabilitation efforts. The potential time savings associated with foundation reuse can, in turn, reduce mobility impacts and increase the economic viability and sustainability of a project. However, existing foundations may have uncertain material properties, geometry, or details that impact the risks associated with reuse. Unlike a new foundation, an existing foundation may have been damaged, may not have sufficient capacity, and may have limited remaining service life due to deterioration. Assessment of these issues as well as foundation strengthening and repair measures and innovative approaches to optimize loading are discussed in this report. To better demonstrate the engineering assessment of key integrity, durability and load carrying capacity issues, the report contains fifteen (15) case examples where foundation was reused by the owner agencies. On new construction, the report looks ahead and includes discussions on foundation design with consideration for reuse. Cheryl Allen Richter, P.E., Ph.D. Director, Office of Infrastructure Research and Development Notice This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in this document.
    [Show full text]
  • Ask Vincent Chu (Common FAQ on Practical Civil Engineering Works)
    Ask Vincent Chu (Common FAQ on Practical Civil Engineering Works) Vincent T. H. CHU Ask Vincent Chu Vincent T. H. CHU CONTENTS Preface 3 1. Bridge Works 4 2. Concrete Works 13 3. Drainage and Tunneling Works 29 4. Marine Works 37 5. Piles and Foundation 51 6. Roadworks 61 7. Slopes 64 About the author 73 2 Ask Vincent Chu Vincent T. H. CHU Preface This is my third book since my first one in 2006. Following positive and encouraging response since the publication of “200 Questions and Answers on Practical Civil Engineering Works” and “Civil Engineering Practical Notes A-Z”, it provides great incentive for me to further write and discuss civil engineering practice to share my knowledge with fellow engineers around the world. Ever since the establishment of the free email service “Ask Vincent Chu” in 2008, a huge surge of email were received from time to time regarding civil engineering queries raised by engineers around the globe. It is my interest to publish some of these engineering queries in this book and hence the title of this book is called “Ask Vincent Chu”. Moreover, in this book I intend to write more on geotechnical aspects of civil engineering when compared with my previous two publications. Should you have any comments on the book, please feel free to send to my email askvincentchu @yahoo.com.hk and discuss. Vincent T. H. CHU June 2009 3 Ask Vincent Chu Vincent T. H. CHU Chapter 1. Bridge Works 1. What is the purpose of dowel bar in elastomeric bearing? Elastomeric bearing is normally classified into two types: fixed and free.
    [Show full text]
  • View Souvenir Book
    DFI INDIA 2018 Souvenir With extended abstracts Sponsor / Exhibitor catalogue www.dfi -india.org Deep Foundations Institute USA, DFI of India Indian Institute of Technology Gandhinagar, Gujarat, India Indian Geotechnical Society, Ahmedabad Chapter, Ahmedabad, India 8th Annual Conference on Deep Foundation Technologies for Infrastructure Development in India IIT Gandhinagar, India, 15-17 November 2018 1 Deep Foundations Institute of India Advanced foundation technologies Good contracting and work practices Skill development Design, construction, and safety manuals Professionalism in Geotechnical Investigation Student outreach Women in deep foundation industry Join the DFI Family DFI India 2018 8th Annual Conference on Deep Foundation Technologies for Infrastructure Development in India IIT Gandhinagar, India, 15-17 November 2018 Souvenir With extended abstracts Sponsor / Exhibitor catalogue Deep Foundations Institute, DFI of India Indian Institute of Technology Gandhinagar, Gujarat, India Indian Geotechnical Society, Ahmedabad Chapter, Ahmedabad, India www.dfi -india.org 3 Deep Foundation Technologies for Infrastucture Development in India - DFI India 2018 IIT Gandhinagar, Gujarat, India, 15-17 November 2018 DFI India 2018, 8th Annual Conference on Deep Foundation Technologies for Infrastructure Development in India Advisory Committee Prof. Sudhir K. Jain, Director. IIT Gandhinagar Dr. Dan Brown, Dan Brown and Association and DFI President Mr. John R. Wolosick, Hayward Baker and DFI Past President Prof. G. L. Sivakumar Babu, IGS President Er. Arvind Shrivastava, Nuclear Power Corp of India and EC Member, DFI of India Prof. A. Boominathan, IIT Madras and EC Member, DFI of India Prof. S. R. Gandhi, NIT Surat and EC Member, DFI of India Gianfranco Di Cicco, GD Consulting LLC and DFI Trustee Prof.
    [Show full text]
  • GEO STRATA MARCH/APRIL 2010.Indd
    Plus… Geo-Strata: A Decade of Delivery March/April 2010 Levees At Risk We build the barriers that keep clean water clean. Grout Curtain, McCook Reservoir Stage I Chicago, IL The support you need to protect your vital resources. The McCook Reservoir will store the wastewater overflow that would otherwise threaten the City of Chicago’s drinking water. To create a seal in the fractured limestone around the reservoir, Nicholson constructed a grout curtain using its computerized GROUT I.T. system which measures, records and graphically displays grouting parameters in real time. At Nicholson Construction Company, we specialize in deep foundations, earth retention, ground treatment and ground improvement techniques that help you achieve your project 1-800-388-2340 goals. Nicholson...the support you need. nicholsonconstruction.com DEEP FOUNDATIONS EARTH RETENTION GROUND TREATMENT GROUND IMPROVEMENT Micropiles • Caissons • Driven/Drilled Piles • Augercast Piles Tiebacks • Excavation and Drainage • Sheet Piling Rock / Soil Nailing • Grouting • Bridges and Complex Structures Concrete Foundations • Lock and Dam Construction Steel Erection • Demolition/Brownfields Redevelopment 1000 John Roebling Way • Saxonburg, PA 16056 Office: 724-443-1533 • Fax: 724-443-8733 www.braymanconstruction.com Features May/June 2008 January/February 2007 VOLUME 14 l ISSUE 2 Geo-Strata 19 Geo-Strata: A Decade of Delivery By James L. Withiam, Ph.D., P.E., D.GE, M.ASCE and Linda R. Bayer, IOM FIGURE 3 Hurricanes: Geotechnical Condition Assessments Lessons Learned Excavation sites based EM3 anomalies. The broad low-weak 24 What’s In Your Levee? 19 anomalies are associated with beaver dens, and the high- By Mara Johnson, Ph.D., and Louise Pellerin, Ph.D.
    [Show full text]
  • Technical Specification Series 10000 Piling Works
    TECHNICAL SPECIFICATION SERIES 10000 PILING WORKS Series 10000 –Piling Works NRAP-MoPW TECHNICAL SPECIFICATION PART 10000 - PILING TABLE OF CONTENTS Item Number Page 10000 Board Cast in Place Piles 10-4 10001 Description 10-4 10100 Materials 10-4 10101 Steel Classing 10-4 10102 Concrete 10-5 10103 Reinforcement 10-5 10104 Drilling Fluid 10-5 10200 Construction Methods 10-5 10201 General 10-5 10202 Setting out Piles 10-6 10203 Diameter of Piles 10-7 10204 Tolerance 10-7 10205 Boring 10-7 10206 Placing Reinforcement 10-9 10207 Placing Concrete 10-9 10208 Extraction of Temporary Casing 10-10 10209 Temporary Support 10-10 10210 Records 10-12 10210 Measures in Case of Rejected Casing 10-12 10212 Measurement 10-12 10213 Payment 10-12 10300 Precast Concrete Units for River Training and Retaining Structures 10-13 10301 Description 10-13 10302 Materials 10-13 10303 Construction Methods 10-13 10304 King Post & Anchor Piles 10-14 10305 Precast Planks 10-14 10306 Tolerance 10-14 10307 Measurement 10-14 10308 Payment 10-14 10400 Pile Test Loading 10-15 10401 General 10-15 10402 Definitions 10-15 10403 Supervision 10-15 10500 Safety Precautions 10-16 10501 General 10-16 10502 Kentledge 10-16 10503 Tension Piles and Ground Anchors 10-16 10504 Testing Equipment 10-16 UNOPS-Afghanistan PART 10-1 Series 10000 –Piling Works NRAP-MoPW 10600 Construction of a Pilot Pile to be Test Loaded 10-17 10601 Notice of Construction 10-17 10602 Method of Constructions 10-17 10603 Boring or Driving Record 10-17 10604 Cut-Off Level 10-17 10605 Pile Head for Compression
    [Show full text]
  • Shofana Elfa Hidayah Nim 161910301059
    DigitalDigital RepositoryRepository UniversitasUniversitas JemberJember EVALUASI DAYA DUKUNG PONDASI BORED PILE DENGAN STATIC LOADING TEST DAN CROSSHOLE SONIC LOGGING (CSL) PADA PROYEK TRANS ICON SURABAYA SKRIPSI OLEH: SHOFANA ELFA HIDAYAH NIM 161910301059 PROGRAM STUDI STRATA 1 TEKNIK SIPIL JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS JEMBER 2020 i DigitalDigital RepositoryRepository UniversitasUniversitas JemberJember EVALUASI DAYA DUKUNG PONDASI BORED PILE DENGAN STATIC LOADING TEST DAN CROSSHOLE SONIC LOGGING (CSL) PADA PROYEK TRANS ICON SURABAYA SKRIPSI Diajukan guna melengkapi tugas akhir dan memenuhi salah satu syarat untuk menyelesaikan Program Studi Strata 1 Teknik Sipil dan mencapai gelar Sarjana Teknik Oleh : SHOFANA ELFA HIDAYAH NIM 161910301059 PROGRAM STUDI STRATA 1 TEKNIK SIPIL JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS JEMBER 2020 ii DigitalDigital RepositoryRepository UniversitasUniversitas JemberJember PERSEMBAHAN Skripsi ini saya persembahkan untuk : 1. Ayah dan Alm. Ibu saya yang telah memberi doa, semangat, dan materi yang tiada henti sejak saya lahir hingga saat ini. 2. Adik saya, Alfath Luthfiansyah Abror yang menjadi sumber motivasi saya untuk berbuat lebih banyak lagi sehingga dapat memudahkan jalannya kelak di masa yang akan datang. 3. Mas Riantri Hidayat yang telah menemani dan selalu membantu saya saat proses pengerjaan tugas akhir ini. Semoga selalu dipermudah jalanmu kedepannya dan semua yang menjadi cita –cita kita dapat terwujud. 4. Dosen pembimbing saya, Ibu Indra Nurtjahjaningtyas, S.T., M.T, dan Bapak Luthfi Amri Wicaksono, S.T., M.T yang selalu membimbing serta mengarahkan saya dalam pengerjaan tugas akhir ini. 5. Dosen Pembimbing Akademik saya, Bapak Dr. Gusfan Halik M.T yang telah memberikan masukan – masukan dari semester 1 hingga saat ini. 6. Sahabat –sahabat serta keluarga besar saya, Surgacorp, Biji Besi 2016, dan semua yang tidak bisa saya sebutkan satu persatu terimakasih sudah memberikan semangat, ilmu, waktu, dan doa.
    [Show full text]